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Abstract

Maximum likelihood estimation (MLE) is a statistical method used to estimate
the parameters of a probability distribution that best explain the observed data.
In the context of text generation, MLE is often used to train generative language
models, which can then be used to generate new text. However, we argue that MLE
is not always necessary and optimal, especially for closed-ended text generation
tasks like machine translation. In these tasks, the goal of model is to generate
the most appropriate response, which does not necessarily require it to estimate
the entire data distribution with MLE. To this end, we propose a novel class
of training objectives based on convex functions, which enables text generation
models to focus on highly probable outputs without having to estimate the entire
data distribution. We investigate the theoretical properties of the optimal predicted
distribution when applying convex functions to the loss, demonstrating that convex
functions can sharpen the optimal distribution, thereby enabling the model to better
capture outputs with high probabilities. Experiments on various text generation
tasks and models show the effectiveness of our approach. It enables autoregressive
models to bridge the gap between greedy and beam search, and facilitates the
learning of non-autoregressive models with a maximum improvement of 9+ BLEU
points. Moreover, our approach also exhibits significant impact on large language
models (LLMs), substantially enhancing their generative capability on various tasks.
Source code is available at https://github.com/ictnlp/Convex-Learning.

1 Introduction

Text generation is an important field within natural language processing that aims to generate
human-like texts for specific tasks. It can be broadly divided into two categories: open-ended and
closed-ended text generation. Open-ended tasks encourage the model to produce novel and diverse
outputs without a specific expected outcome or structure. Representative tasks in this category include
language modeling [41, 7], chatbot [64], storytelling [13], etc. In contrast, closed-ended tasks are
more constrained and adhere to specific rules or formats. Representative tasks in this category include
machine translation [8, 2], text summarization [45], etc.

In recent years, learning neural probabilistic models with maximum likelihood estimation has become
the dominant approach for both open-ended and closed-ended text generation [5, 2, 7]. Maximum
likelihood estimation (MLE) is a statistical method used to estimate the parameters of a probability
distribution that maximize the likelihood of the observed data [33]. Since directly maximizing the
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likelihood can be numerically unstable, it is common to minimize the negative log-likelihood loss
function, which is also referred to as cross-entropy loss. It is equivalent to minimizing Kullback-
Leibler (KL) divergence [25, 1] between the true distribution and the predicted distribution, which
ensures that the optimal predicted distribution is the true data distribution.

While MLE has gained widespread adoption, it does not always align with the objective of text
generation, especially for closed-ended text generation tasks such as translation and summarization. In
these tasks, the goal of the model is to generate the most appropriate response, rather than producing
diverse outputs. For example, in the task of machine translation, though there may exist multiple
translations for the same input sentence, we usually want the most accurate and commonly used
translation result. Generally speaking, the desired output can be mathematically defined as the output
with the maximum probability in the true data distribution, which does not necessarily require the
model to estimate the entire data distribution with MLE.

In terms of generating the most probable output, MLE is also suboptimal for current neural text
generation models. For autoregressive models, even if the model can perfectly fit the data distribution,
it still requires decoding algorithms like greedy or beam search to generate the output, which do
not guarantee the exact result with the maximum probability. To our knowledge, only Stahlberg
and Byrne [55] proposed an exact decoding algorithm for autoregressive models, but it is too slow
for practical applications. The limitation in exact decoding can be overcome by non-autoregressive
models [17, 14], which independently predict the output at each position. However, fitting the data
distribution by MLE is theoretically beyond the ability of non-autoregressive models [21]. In light
of these issues, alternative training objectives should be considered to better address the specific
requirements of text generation without incurring the shortcomings associated with MLE.

Based on the analysis above, MLE is suboptimal that it trains the model to estimate the data
distribution, which complicates the training and decoding of text generation models. It would be
advantageous if the model could converge to a sharper optimal distribution under an alternative loss
function, as this would enable autoregressive models to easily find high probability outputs and
also allow non-autoregressive models to converge to a better distribution. Exploring loss functions
with this characteristic could lead to improved performance and efficiency of neural text generation
models, particularly for closed-ended tasks.

In this paper, we propose a novel class of training objectives based on convex functions, which help
text generation models capture highly likely outputs without estimating the entire data distribution.
Intuitively, the concave shape of log-probability discourages the model from assigning a large predic-
tion probability to a single sample, as the marginal benefit diminishes with increasing probability.
If the learning criterion is convex or less concave, then intuitively the model would converge to a
sharper distribution, which is the motivation of this work. We further investigate the theoretical
properties of the optimal predicted distribution when applying convex functions to the loss. Our
findings demonstrate that convex functions can sharpen the optimal distribution, allowing the model
to better capture outputs with high probabilities.

Experiments on various closed-ended text generation tasks and models show the effectiveness of our
approach. Specifically, it enables autoregressive models to bridge the gap between greedy and beam
search, and facilitates the learning of non-autoregressive models with a maximum improvement of 9+
BLEU points. Moreover, our approach also exhibits significant impact on large language models,
substantially enhancing their generative capability on various tasks.

2 Preliminaries

2.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a statistical method used to estimate the parameters of
a probability distribution that best explain the observed data. This is achieved by maximizing
a likelihood function so that the observed data is most probable. Since directly maximizing the
likelihood can be numerically unstable, it is common to minimize the negative log-likelihood loss
function, also referred to as cross-entropy loss. Given the data distribution pdata and a parametric
model with parameters θ, MLE training minimizes:

LMLE(θ) = −Ex∼pdata(x)[log pθ(x)]. (1)
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MLE can be viewed as an attempt to minimize KL divergence between the true underlying distribution
of the data pdata and the estimated distribution pθ provided by the model [1]. The following equation
reveals the relationship between MLE loss and KL divergence:

DKL(pdata|| pθ) =
∑
x

pdata(x) log
pdata(x)

pθ(x)
= LMLE(θ)−Hdata, (2)

where Hdata is the Shannon entropy of the data distribution, which remains constant with respect
to the model parameter θ. Therefore, the MLE loss and KL divergence share the same minimizer
that the estimated distribution pθ equals to the true distribution pdata. By minimizing the MLE loss,
the predicted distribution is encouraged to be as close as possible to the true data distribution. In the
context of text generation, this ensures that the model learns to generate text that closely resembles
the text in the training data.

The above discussion can be extended to conditional scenarios. In such cases, the log-likelihood loss
can be expressed as:

LMLE(θ) = −Ec∼pdata(c)[Ex∼pdata(x|c)[log pθ(x|c)]], (3)
where c represents the input context. This extension allows the MLE framework to accommodate a
wide range of text generation tasks such as machine translation, summarization, dialogue system, etc.

2.2 Text Generation Models

Based on how the sequence probability is factorized, neural text generation models can be broadly
categorized into two types: autoregressive (AR) models and non-autoregressive (NAR) models. Au-
toregressive models generate text sequentially, predicting one token at a time based on the previously
generated tokens. In AR models, the probability of generating a sequence x = (x1, x2, ..., xT ) is
factorized as:

pθ(x|c) =
T∏

t=1

pθ(xt|x<t, c), (4)

where c represents the input context. With the autoregressive decomposition, AR models can perfectly
fit the data distribution if it satisfies pθ(xt|x<t, c) = pdata(xt|x<t, c) for every x, c, t. In inference,
AR models can perform deterministic decoding like greedy/beam search to generate a high probability
output, or sample from the model distribution to generate diverse outputs.

In contrast to autoregressive models, non-autoregressive models [17, 14] generate text in parallel,
predicting all tokens simultaneously without conditioning on previously generated tokens. This
approach can significantly speed up the generation process, as it removes the sequential dependency
between tokens. In NAR models, the generation probability is factorized as:

pθ(x|c) =
T∏

t=1

pθ(xt|c). (5)

Unlike AR models, NAR models can efficiently find the most likely output by using argmax decoding
at each step. However, MLE is beyond the ability of NAR models since they are theoretically unable
to fit the data distribution. Huang et al. [21] showed that KL divergence from pθ to pdata is bounded
by a non-negative constant:

DKL(pdata|| pθ) ≥ C = −Hdata(x|c) +
T∑

t=1

Hdata(xt|c), (6)

The MLE loss is minimized when NAR models achieve the equality by ignoring sequential depen-
dency and predicting pθ(xt|c) = pdata(xt|c). Therefore, NAR models trained with MLE often suffer
from reduced performance, as they lack the ability to model dependencies between tokens.

3 Approach

In this section, we will explore alternative loss functions for the learning of text generation models,
which overcomes the limitations of MLE. We begin by introducing a general learning framework that
allows arbitrary loss functions. Next, we discuss the benefits of applying convex functions to the loss
within this framework. Finally, we use convex functions to construct composite loss functions, which
can be used in practical text generation scenarios.
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3.1 General Learning Framework

For simplicity of notation, we omit condition c in the probabilities, with the data distribution
represented as pdata(x) and the model predicting the distribution pθ(x). The derived theoretical
results hold in both unconditional and conditional settings.

First, we introduce the general learning framework for text generation, characterized by the following
loss function:

Lf (θ) = −Ex∼pdata(x)[f(pθ(x))], (7)

where f is an arbitrary function of the prediction probability pθ(x). We impose some basic re-
quirements on f : (1) The domain of function f should contain the interval (0, 1]; (2) f must be
differentiable on the interval (0, 1] since we need to compute its gradient; and (3) f should be an
increasing function on (0, 1] to encourage the model to generate the current sample. Under this
framework, we can explain maximum likelihood estimation as a special case of f = log, which is a
differentiable and increasing function within the interval (0, 1]. We also establish some reasonable
assumptions:

Assumption 1 (Countability of Sample Space). The sample space X is countable, which allows us
to enumerate all samples in a systematic way. Note that |X | can be either finite or infinite.

Assumption 2 (Distinctness of Sample Probabilities). In the data distribution pdata, the probabilities
of all samples are distinct, which allows us to arrange samples in a strictly descending order of
sample probabilities.3

Assumption 1 naturally holds in text generation tasks due to the inherent discreteness of textual
data. With a countable sample space and probabilities lying in a dense subspace of real number, it
is reasonable to assume the distinctness of sample probabilities. While Assumption 2 is not strictly
necessary, removing it would introduce many corner cases that would complicate the subsequent
analysis. In the following, we will assume that Assumptions 1-2 always hold, and we arrange the
samples such that pdata(x1) > pdata(x2) > · · · > pdata(xi) > · · · . Since the sample space X is
countable, the loss function in Equation 7 can be reformulated as follows:

Lf (θ) = −
|X |∑
i=1

pdata(xi) · f(pθ(xi)). (8)

In this framework, our primary focus is to analyze the probability distribution pθ that the model is
inclined to predict when the loss function is Lf . We use pf to denote the optimal distribution that
minimizes the loss Lf , which represents the expected outcome of the model. If Lf has multiple
optimal distributions, we use pf to denote an arbitrary optimal distribution. This choice does not harm
the generality of our analysis, as the subsequent discussion is applicable to all optimal distributions.
Currently, it is only established that the optimal distribution for the MLE loss Llog is the data
distribution plog = pdata. For other loss functions, the following theorem reveals a general property
of the optimal distribution. With samples organized in descending order of their probabilities in the
data distribution, i.e., pdata(x1) > pdata(x2) > · · · > pdata(xi) > · · · , the optimal distribution of
an arbitrary function f maintains this order as pf (x1) ≥ pf (x2) ≥ · · · ≥ pf (xi) ≥ · · · . The proofs
for the theorems presented in this paper can be found in Appendix A.

Theorem 1. Given an arbitrary differentiable and increasing function f , the optimal distribution pf
satisfies pf (x1) ≥ pf (x2) ≥ · · · ≥ pf (xi) ≥ · · · .

In the following, we will further explore the properties of optimal distributions associated with
specific loss functions.

3.2 Loss with Convex Function

In certain text generation scenarios that require precise and deterministic outputs, it is beneficial
for the model to converge to an optimal distribution that is sharper than the data distribution. In

3When X is countably infinite, an arbitrary sequence of sample probabilities forms a convergent series
since their sum is 1. This guarantees the existence of a maximum point in the series, ensuring that the sample
probabilities can be arranged in a strictly descending order.
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this section, we demonstrate that this objective can be achieved by employing convex functions as
learning criterion.

The MLE loss function is based on log-probability, which is a concave function whose gradient
decreases as the probability increases. The concave shape of the learning criterion prevents the model
from assigning a large prediction probability to a single sample, since the marginal benefit diminishes
as the probability increases. If function f is convex, then intuitively the model would converge to a
sharper distribution. The following theorem validates this intuition, which shows that the optimal
distribution pf is a one-hot distribution when f is convex.

Theorem 2. If f is an increasing convex function on [0, 1], then the optimal distribution pf is a
one-hot distribution that pf (x1) = 1 and pf (xi) = 0, i > 1.

The one-hot characteristic of the optimal distribution is advantageous for text generation models
seeking precise and deterministic outputs. For autoregressive models, they do not need the computa-
tionally expensive beam search decoding any more if the model distribution is nearly one-hot. For
non-autoregressive models, they suffer from reduced performance under MLE due to their inability to
fit the data distribution. However, fitting a one-hot optimal distribution is well within their capabilities,
allowing these models to generate high-quality outputs.

However, the direct application of loss with convex functions in training text generation models
comes with an inherent limitation, impeding its practical utility. Specifically, the gradient of the
parameter θ tends to be very small when the prediction probability approaches 0, thereby rendering
the training process inefficient. The gradient of θ can be formulated as follows:

∂Lf (θ)

∂θ
= −Ex∼pdata(x)[f

′(pθ(x)) ·
∂pθ(x)

∂θ
]

= −Ex∼pdata(x)[f
′(pθ(x)) · pθ(x) ·

T∑
t=1

∂ log(pθ(xt))

∂θ
],

(9)

where we have omitted the autoregressive history condition of pθ(xt) for simplicity. The equation
above indicates that the gradient is proportional to the sentence probability pθ(x). In text generation
models, the sentence probability pθ(x) is the product of token probabilities pθ(xt), which causes
pθ(x) to be typically close to 0, especially when the model is newly initialized.

To counter this effect, the gradient f ′(pθ(x)) would need to approach infinity as pθ(x) approaches
0. For instance, the log-probability function has the gradient 1

pθ(x)
, which offsets the impact of

pθ(x) such that f ′(pθ(x)) · pθ(x) = 1. However, for an increasing convex function f(pθ(x)) whose
gradient increases with pθ(x), its gradient must be bounded when pθ(x) approaches 0, leading to an
extremely small gradient update for the parameter θ during training. This inherent limitation of loss
with convex functions poses a significant hurdle to their practical applications.

3.3 Loss with Convex-composition Function

3.3.1 Theoretical Analysis

In the preceding discussion, we illustrate that while convex functions can induce a desirable one-
hot optimal distribution, their inherent limitations during training pose significant impediments to
practical applications. Consequently, we consider a relaxation of the convexity requirement, with
the objective of rendering the function f less concave. This approach aims to obtain an optimal
distribution that is sharper than pdata, thereby providing a practical solution that augments model
performance without sacrificing training feasibility.

The standard loss function in maximum likelihood estimation is the negative log-probability, where
log-probability is a concave function that yields a smooth optimal distribution. To render the learning
criterion less concave, we propose a convex-composition approach that combines a convex function
f with the original concave function g. This composition yields the following loss function:

Lfg(θ) = −
|X |∑
i=1

pdata(xi) · fg(pθ(xi)), (10)
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where f is an increasing convex function and g is an increasing concave function. The objective of
this composition is to moderate the concavity of the overall loss function, thereby allowing for a
sharper optimal distribution. The subsequent theorem and corollaries outline the theoretical properties
associated with the optimal distribution under this function composition framework.

Theorem 3. Let f be an increasing convex function and g be an increasing concave function. Then,
there exists a positive integer m such that the following inequalities hold:

1. pfg(xi) ≥ pg(xi) for all i < m,

2. pfg(xi) ≤ pg(xi) for all i ≥ m.

Corollary 1. The Shannon entropy of pfg is less than or equal to the Shannon entropy of pg .

Corollary 2. For any n ∈ {1, 2, ...}, the sum of the probabilities of the n most probable samples
increases:

∑n
i=1 pfg(xi) ≥

∑n
i=1 pg(xi).

Theorem 3 indicates that the convex-composition loss function tends to allocate higher probabilities
to the more probable samples, while simultaneously diminishing the probabilities assigned to less
probable ones, resulting in a sharper optimal distribution. Corollary 1 quantitatively establishes
this observation, demonstrating that the incorporation of a convex function into the loss function
effectively sharpens the optimal distribution, as evidenced by a reduction in the Shannon entropy of
pfg compared with pg . Furthermore, Corollary 2 reveals an increase in the cumulative probability of
the n most probable samples. Consequently, text generation models are better equipped to capture
the highly probable outputs without explicitly modeling the data distribution.

In the above analysis, we only assume the original loss g to be an increasing concave function.
By imposing specific conditions on g, we can derive more desirable properties from the optimal
distribution pfg , as demonstrated in the subsequent theorem:

Theorem 4. Let f be an increasing convex function and g be an increasing concave function. If g
satisfies g′′′(x)·g′(x) ≥ g′′(x)2 > 0 for all x ∈ (0, 1), then the difference between pfg and pg exhibits
a monotonic order: pfg(x1) − pg(x1) ≥ pfg(x2) − pg(x2) ≥ ... ≥ pfg(xm−1) − pg(xm−1) ≥ 0,
where m is the positive integer described in Theorem 3.

This theorem provides a more granular description of the relative difference between pfg and pg.
When pfg decreases the probabilities assigned to less probable samples, it tends to reallocate this
probability mass to the most probable samples. This enables text generation models to more accurately
capture the most probable outputs. Note that the condition g′′′(x) · g′(x) ≥ g′′(x)2 > 0 is not overly
restrictive. For instance, the loss function g = log in MLE readily fulfills this condition:

log′′′(x) · log′(x)− log′′(x)2 =
2

x3
· 1
x
− (− 1

x2
)2 =

1

x4
> 0. (11)

3.3.2 Practical Applications

The preceding theoretical analysis highlights the effectiveness of function composition. Here we
turn to its practical applications and give some examples of convex-composition loss functions.
The loss function in maximum likelihood estimation is typically the log-probability, and length
normalization is often applied in practical usage, resulting in the loss g(pθ(x)) =

log(pθ(x))
T , where T

denotes the sentence length. Common choices for increasing convex functions on (−∞, 0] include
the exponential function f(x) = ekx, k ≥ 0 and the power function f(x) = −(−x)k, 0 ≤ k ≤ 1.
Through function composition, we can derive the following losses:

fg(pθ(x)) =

{
pθ(x)

k
T , f(x) = ekx

−(− log(pθ(x))
T )k, f(x) = −(−x)k

. (12)

The gradient of the convex-composition function is f ′(g(pθ(x))) · g′(pθ(x)). Compared to the
gradient of the original loss g′(pθ(x)), it has an additional term f ′(g(pθ(x))) that can be interpreted
as a weight for the loss. Given that f is a convex function and g is an increasing function, the
weight f ′(g(pθ(x))) is larger for more probable samples, thereby directing the model’s focus towards
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Figure 1: Translation quality (BLEU) of autoregressive model as beam size varies on WMT14
EN↔DE test set.
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Figure 2: Translation quality (BLEU) and prediction confidence (Output NLL) of different NAT
models as the exponent k varies on WMT14 EN-DE test set.

generating outputs with high probabilities. Specifically, the loss weights f ′(g(pθ(x))) associated
with Equation 12 are:

f ′(g(pθ(x))) =

{
k · pθ(x)

k
T , f(x) = ekx

k · (− log(pθ(x))
T )k−1, f(x) = −(−x)k

, (13)

where the exponential function weights the sample by the prediction probability, and the power
function weights the sample by the log-probability.

In practical applications, label smoothing [59, 63] is a widely used regularization technique for text
generation models. The smoothing loss and log-probability loss are typically combined using a fixed
hyperparameter ϵls. To preserve the ratio of smoothing loss to log-probability loss, we also apply the
weight f ′(g(pθ(x))) to the smoothing loss before interpolating it with the convex-composition loss.

4 Experiments

To validate the practical advantages of loss functions with sharper optimal distributions, we conduct
experiments on basic autoregressive (AR) models, non-autoregressive (NAR) models, and large
language models (LLMs). We evaluate their performance on two representative closed-ended
text generation tasks, including neural machine translation and text summarization. Following
the theoretical analysis in previous sections, we combine the exponential function with standard
log-probability, i.e. Lf (θ) = −Ex∼pdata(x)[pθ(x)

k
T ], as our training objective in the following

experiments. We have also attempted to combine the power function with log-probability as training
objective. We found that the power form encountered some difficulties during training, leading to
worse performance compared to the exponential form. Due to the space limit, we leave the results
under this setting in Appendix E.

Our theoretical analysis suggests that the model trained by convex-composition loss tends to predict
a sharper distribution, in which the probability mass is more heavily allocated to the most probable
samples. Such property leads the model becoming more confident about its prediction and facilitates
the de-facto maximum a posteriori (MAP) decoding framework in closed-ended text generation tasks.
In the following, we will discuss and validate the effects of convexity in the context of AR models,
NAR models, and LLMs respectively. More details of settings can be found in Appendix B.
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Table 1: BLEU scores of autoregressive models on WMT14 EN↔DE test set with different decoding
strategies.

Model EN-DE DE-EN
greedy beam5 ∆ greedy beam5 ∆

Transformer [62] 26.48 27.57 1.09 29.78 31.21 1.43

Transformer + Convex 26.92 27.78 0.86 30.32 31.33 1.01

Table 2: ROUGE scores on CNN/DailyMail and XSum test sets. RG-1, RG-2, RG-L stand for
ROUGE-1, ROUGE-2 and ROUGE-L scores.

Model CNN/DM XSUM
RG-1 RG-2 RG-L RG-1 RG-2 RG-L

Transformer [62] 39.03 15.98 35.88 31.04 10.68 24.77
Transformer + Convex 39.56 16.84 36.26 31.55 11.13 25.09

4.1 Effects of Convexity on Autoregressive Models

In the context of autoregressive models, a model distribution trained with a convex-composition loss
tends to exhibit fewer modes and a sharper distribution, thereby facilitating the task of approximate
search algorithms in identifying the most likely output. We validate this conjecture by investigating the
performance of greedy and beam search when trained with standard MLE and convex-composition
loss in translation and summarization tasks. For translation task, we vary the beam size from
{1, 2, 3, 5, 8}, where beam size 1 can be considered as greedy search.

Figure 1 visualizes the results in terms of BLEU [38], with precise numerical values given in Table 1.
We observe a consistent improvement in translation quality when using convex-composition losses
compared to MLE, and a similar trend is observed in summarization tasks as detailed in Table 2.
These results provide experimental support that the composition with convex function promotes
those approximate searching algorithms to perform argmax decoding. Meanwhile, Table 1 exhibits a
diminishing gap between greedy search and beam search when equipped with convex-composition
loss. This outcome can be attributed to the efficacy of the convex function in reducing the complexity
of the model distribution, as described in Theorem 3. Such property amplifies the potential of
lightweight approximate decoding algorithms within the autoregressive structure, a desirable trait in
the context of modern, computation-intensive autoregressive neural networks.

4.2 Effects of Convexity on Non-autoregressive Models

Non-autoregressive models face the challenge of multi-modality, where fitting a data distribution
with multiple target modes exceeds the capabilities of NAR models. Therefore, the mode collapse
property of convex-composition loss would be beneficial to NAR models. Likelihood training will
force the model to ignore sequential dependency, resulting in disfluency in its output (e.g., token
repetition and omission). In contrast, convex-composition loss would encourage model to allocate
most of its probability mass to the best among all proper candidates. Such property is able to help
NAR model avoid generating a mixture of modes, thereby alleviating disfluency issues.

To demonstrate its effectiveness, we investigate the performance of convex-composition loss on three
representative NAR models, including Vanilla-NAT [17], CMLM [14] and CTC [46]. Considering
most of the NAR researches are restricted in the field of translation, we only conduct experiments
on translation dataset. In addition to translation quality, we also assess the prediction confidence
and generation fluency of NAR outputs. The prediction confidence is measured with negative log-
likelihood of its generation and the fluency is measured by an external pre-trained language model
4. We use the PPL value reported by the language model to quantify the fluency of generation. The
exponent hyperparameter k is manipulated to adjust the convexity of our composite loss function.

4https://github.com/facebookresearch/fairseq/tree/main/examples/language_model
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Table 3: BLEU and COMET scores on WMT14 EN↔DE test set.

Model Speedup EN-DE DE-EN
BLEU COMET BLEU COMET

Transformer [62] 1.0× 27.57 82.76 31.21 82.98

Vanilla-NAT [17] 15.6× 10.41 40.69 16.01 56.03
Vanilla-NAT + Convex 15.6× 16.74 57.25 22.63 68.83

CMLM [14] 15.0× 11.22 43.62 15.26 56.63
CMLM + Convex 15.0× 20.45 65.99 19.11 63.54

CTC [46] 14.7× 16.98 54.77 20.53 66.26
CTC + Convex 14.7× 23.34 67.38 26.68 74.75

Table 4: Prediction confidence (Output NLL) and generation fluency (External PPL) of CMLM on
WMT14 EN-DE test set.

k-th Power 1 2 3 5 8

Confidence (Output NLL) ↓ 20.57 13.72 10.09 6.85 4.88
Fluency (External PPL) ↓ 939.34 481.08 315.54 213.84 218.68

The results are shown in Figure 2 and Table 3. We observe a consistent improvement in translation
quality across all NAT models with a maximum improvement of 9+ BLEU points on CMLM.
Meanwhile, Figure 2 implies that prediction confidence significantly gains and the gain increases as
k gets larger. Such phenomenon reveals a descending trend of model entropy as applying convex
function on loss, which is consistent with Corollary 1. More importantly, we note a strong correlation
between model entropy and generation fluency in Table 4, providing clear evidence that the mode
collapse property of convex function indeed relieves NAR model from multi-modality problem.

4.3 Effects of Convexity on Large Language Models

Large language models have demonstrated remarkable capabilities in various applications, including
both open-ended and closed-ended text generation tasks. For open-ended tasks, stochastic decoding
methods such as temperature sampling are commonly employed to produce responses. In contrast,
deterministic decoding methods like beam search are favored for closed-ended tasks like machine
translation [22, 69, 30]. Given that the convex-composition loss enhances the model’s ability to
identify highly probable sentences, incorporating this loss function into the LLMs’ training process
would be beneficial to closed-ended generation tasks.

To demonstrate its effectiveness, we assess the performance of LLMs in machine translation (Table
5) and summarization (Table 6). Table 5 reveals that the LLaMA-7B model, incorporating convex-
composition loss, surpasses the baseline model across all language pairs, achieving an average
improvement of 1.84 BLEU. Likewise, the LLaMA-13B model with convex-composition loss
outperforms the baseline model in three out of four language pairs. Table 6 further demonstrates the
effectiveness of our method in text summarization. Due to memory limitations, we are only able to
decode the text summarization dataset using the LLaMA-7B model.

5 Related Work

Alternative Loss Functions Maximum likelihood estimation has become the dominant approach for
learning text generation models, but it also comes with certain limitations. Various alternative loss
functions have been proposed to improve the training process from different perspectives. Regarding
the exposure bias problem [42] that autoregressive models are exposed to different distributions during
training and inference, Bengio et al. [4], Mihaylova and Martins [32], Zhang et al. [72] proposed to
reduce this gap by sampling from the model’s own predictions during training. Another issue with
text generation models is text degeneration: output text may be bland, incoherent, or gets stuck in
repetitive loops [20]. To avoid text degeneration, Dieng et al. [9] proposed a learning criterion termed
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Table 5: BLEU scores of Alpaca fine-tuned large language models on WMT22 test sets.

Model EN-DE DE-EN EN-ZH ZH-EN AVG

LLaMA-7B 25.42 17.93 13.86 13.17 17.59
LLaMA-7B + Convex 27.57 19.88 15.00 15.28 19.43

LLaMA-13B 29.35 21.74 15.58 16.27 20.74
LLaMA-13B + Convex 28.75 22.20 16.25 20.08 21.82

Table 6: ROUGE scores of Alpaca fine-tuned large language models on CNN/DailyMail.

Model RG-1 RG-2 RG-L AVG

LLaMA-7B 28.66 12.49 26.37 22.51
LLaMA-7B + Convex 32.76 14.67 30.00 25.81

reflective likelihood to penalize incoherent outputs, and Welleck et al. [66] proposed unlikelihood
training that forces unlikely generations to be assigned lower probability by the model. Additionally,
to address the discrepancy between likelihood training and evaluation metrics, loss functions that
more directly optimize evaluation metrics are proposed. Ranzato et al. [42] utilized the reinforcement
learning technique to train recurrent neural networks with sequence level objectives. Shen et al. [53]
proposed to optimize evaluation metrics with minimum risk training. Norouzi et al. [35], Edunov
et al. [12] incorporated evaluation metrics into the maximum likelihood training objective. There are
also efforts on learning a more focused distribution for text generation models [37, 71, 56]. However,
these approaches primarily reformulate the loss function at the word level, which is insufficient for
guiding the model towards identifying high-probability sentences at the sentence level. In contrast,
our method explicitly trains the model to concentrate on generating highly probable sentences.

Reinforcement Learning Our work aligns closely with reinforcement learning (RL) based training
techniques for text generation [67, 58]. While RL techniques typically maximize the expected reward
by concentrating the probability mass on the sequence with the highest reward, our approach strives
to put all the probability mass on the most likely sequence. RL allows for text generation models
to optimize discrete evaluation metrics, which have wide usage in text generation tasks, including
machine translation [42, 3], text summarization [39], image captioning [44], dialogue generation
[27], etc. Furthermore, RL can be integrated with Generative Adversarial Networks [68] and can
leverage human feedback for training [57, 36].

Loss Functions for NAR Models The limitation of maximum likelihood estimation is amplified in
non-autoregressive (NAR) models since they inherently lack the capability to fit the data distribution
[21]. To address this issue, researchers have developed loss functions specifically designed for NAR
models, guiding them towards generating coherent text. Shao et al. [50, 52], Ding et al. [10] proposed
to train NAR models with sequence-level objective functions. Ghazvininejad et al. [15], Du et al. [11]
relaxed the alignment restriction in the cross-entropy loss. Shao et al. [51], Shao and Feng [49], Ma
et al. [31] proposed n-gram based differentiable training objectives to optimize n-gram prediction
accuracy. However, these methods lack theoretical guarantees for the shape of optimal distribution.

6 Conclusion

This paper investigates the theoretical properties and practical applications of a novel class of training
objectives based on convex functions. Our findings show that convex functions can sharpen the
optimal distribution, enabling text generation models to focus on highly probable outputs without
having to estimate the entire data distribution. Experiments on various text generation tasks and
models verify our theoretical analysis and demonstrate the practical effectiveness of our approach.
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A Proofs

A.1 Proof of Theorem 1

Theorem 1. Given an arbitrary differentiable and increasing function f , the optimal distribution pf
satisfies pf (x1) ≥ pf (x2) ≥ · · · ≥ pf (xi) · · · .

Proof. We prove this theorem by contradiction. Suppose there exist an indice (i, j) such that i < j
and pf (xi) < pf (xj). In this case, we can construct a distribution p′f with a lower loss than pf ,
which contradicts the optimality of pf . Specifically, let p′f be identical to pf except for the changes
p′f (xi) = pf (xj) and p′f (xj) = pf (xi). We denote the loss of a model distribution p as Lf (pθ = p)

and show that p′f has a lower loss:

Lf (pθ = p′f ) = Lf (pθ = pf )+(pdata(xj)−pdata(xi)) ·(f(pf (xj))−f(pf (xi))) < Lf (pθ = pf ).
(14)

This inequality contradicts the assumption that pf minimizes Lf , thereby proving the theorem.

A.2 Proof of Theorem 2

Theorem 2. If f is an increasing convex function on [0, 1], then the optimal distribution pf is a
one-hot distribution that pf (x1) = 1 and pf (xi) = 0, i > 1.

Proof. We prove this theorem by contradiction. Suppose pf is not the one-hot distribution described
above, then there must exist an index i > 1 such that pf (xi) > 0. In this case, we can construct a
distribution p′f with a lower loss than pf , which contradicts the optimality of pf . Specifically, let p′f
be identical to pf except for the changes p′f (x1) = pf (x1) + α and p′f (xi) = pf (xi) − α, where
0 ≤ α ≤ pf (xi). Then we can calculate the gradient of loss Lf (pθ = p′f ) with respect to α:

∂Lf (pθ = p′f )

∂α

∣∣∣∣
α=0

= pdata(xi) · f ′(pf (xi))− pdata(x1) · f ′(pf (x1)). (15)

We can analyze the above equation via the following steps:
1. pf (x1) ≥ pf (xi), from theorem 1
2. f ′(pf (x1)) ≥ f ′(pf (xi)) > 0, from step 1 and the convexity of f
3. pdata(x1) > pdata(xi) > 0

4.
∂Lf (pθ=p′

f )

∂α

∣∣∣∣
α=0

< 0, from steps 2,3

. (16)

The above reasoning shows the loss can be further reduced, which contradicts the assumption that pf
minimizes Lf and proves the theorem.

A.3 Proof of Theorem 3

Theorem 3. Let f be an increasing convex function and g be an increasing concave function. Then,
there exists a positive integer m such that the following inequalities hold:

1. pfg(xi) ≥ pg(xi) for all i < m,

2. pfg(xi) ≤ pg(xi) for all i ≥ m.

Proof. We prove this theorem by contradiction. Assuming the theorem does not hold, there must
exist an indice (i, j) with i < j, pfg(xi) < pg(xi), and pfg(xj) > pg(xj). In this case, we can
construct a distribution p′fg with a lower loss than pfg , which contradicts the optimality of pfg .

First, we can establish the following inequality from the optimality of pg:

pdata(xi) · g′(pg(xi)) ≥ pdata(xj) · g′(pg(xj)). (17)
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Assume the above inequality does not hold, then we can further reduce the loss, which contradicts the
optimality of pg . Let p′g(xi) = pg(xi)−α, and p′g(xj) = pg(xj) +α. The gradient of loss Lfg with
respect to α = 0 is pdata(xi) · g′(pg(xi))− pdata(xj) · g′(pg(xj)) < 0, so we can further reduce the
loss with a positive α, proving inequality 17 by contradiction.

Then, let p′fg be identical to pfg except for the changes p′fg(xi) = pfg(xi) + α and p′fg(xj) =

pfg(xj) − α, where 0 ≤ α ≤ pfg(xj). We can calculate the gradient of loss Lfg(pθ = p′fg) with
respect to α:

∂Lfg(pθ = p′fg)

∂α

∣∣∣∣
α=0

= pdata(xj)·f ′g(pfg(xj))·g′(pfg(xj))−pdata(xi)·f ′g(pfg(xi))·g′(pfg(xi)).

(18)

We can analyze the above equation via the following steps:
1. g′(pfg(xi)) ≥ g′(pg(xi)), from pfg(xi) < pg(xi) and the concavity of g
2. g′(pfg(xj)) ≤ g′(pg(xj)), from pfg(xj) > pg(xj) and the concavity of g
3. pdata(xi) · g′(pg(xi)) ≥ pdata(xj) · g′(pg(xj)), from inequality 17

. (19)

Combining steps 1-3, we obtain:

pdata(xi) ·g′(pfg(xi)) ≥ pdata(xi) ·g′(pg(xi)) ≥ pdata(xj) ·g′(pg(xj)) ≥ pdata(xj) ·g′(pfg(xj)).
(20)

Further, the following steps shows that the gradient is less than 0:
1. pfg(xi) ≥ pfg(xj), from theorem 1
2. f ′g(pfg(xi)) ≥ f ′g(pfg(xj)), from step 1, the increasing property of g, and the convexity of f

3.
∂Lfg(pθ=p′

fg)

∂α

∣∣∣∣
α=0

< 0, from step 2 and inequality 20
.

(21)

The above reasoning shows the loss can be further reduced, which contradicts the assumption that pf
minimizes Lf and proves the theorem.

Corollary 1. The Shannon entropy of pfg is less than or equal to the Shannon entropy of pg .

Proof. The Shannon entropy of distribution p, denoted by Hp, is defined as Hp =
−
∑

x p(x) log p(x). Consider a function h(∆x) = −(x1+∆x) log(x1+∆x)−(x2−∆x) log(x2−
∆x). It’s first-order derivative h′(∆x) = log(x2 −∆x)− log(x1 +∆x). Assuming x1 ≥ x2, we
observe that h′(∆x) < 0 when ∆x > 0, so the entropy decreases when we reduce x2 and increase
x1 accordingly. The transformation from pg to pfg can be viewed as a series of such adjustments,
which implies that the Shannon entropy of pfg is less than or equal to the Shannon entropy of pg .

Corollary 2. For any n ∈ {1, 2, ...}, the sum of the probabilities of the n most probable samples
increases:

∑n
i=1 pfg(xi) ≥

∑n
i=1 pg(xi).

Proof. The theorem guarantees the existence of a positive integer m such that pfg(xi) ≥ pg(xi) for
all i < m and pfg(xi) ≤ pg(xi) for all i ≥ m. In the case where n < m, we have pfg(xi) ≥ pg(xi)
for all i with 1 ≤ i ≤ n < m. This leads to the inequality

∑n
i=1 pfg(xi) ≥

∑n
i=1 pg(xi). In

the case where n ≥ m, we have pfg(xi) ≤ pg(xi) for all i with m ≤ n < i. Therefore, we can
write

∑n
i=1(pfg(xi)− pg(xi)) = −

∑|X |
i=n+1(pfg(xi)− pg(xi)) ≥ 0. Consequently, the inequality∑n

i=1 pfg(xi) ≥
∑n

i=1 pg(xi) also holds. Therefore, in both cases, the corollary is proved.

A.4 Proof of Theorem 4

Theorem 4. Let f be an increasing convex function and g be an increasing concave function. If g
satisfies g′′′(x)·g′(x) ≥ g′′(x)2 > 0 for all x ∈ (0, 1), then the difference between pfg and pg exhibits
a monotonic order: pfg(x1) − pg(x1) ≥ pfg(x2) − pg(x2) ≥ ... ≥ pfg(xm−1) − pg(xm−1) ≥ 0,
where m is the positive integer described in Theorem 3.
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Proof. We prove this theorem by contradiction. Assuming the theorem does not hold, there must
exist an indice indice (i, j) with i < j and 0 ≤ pfg(xi)− pg(xi) < pfg(xj)− pg(xj). In this case,
we can construct a distribution p′fg with a lower loss than pfg, which contradicts the optimality of
pfg. Specifically, let p′fg be identical to pfg except for the changes p′fg(xi) = pfg(xi) + α and
p′fg(xj) = pfg(xj) − α, where 0 ≤ α ≤ pfg(xj). Then we can calculate the gradient of loss
Lfg(pθ = p′fg) with respect to α:

∂Lfg(pθ = p′fg)

∂α

∣∣∣∣
α=0

= pdata(xj)·f ′g(pfg(xj))·g′(pfg(xj))−pdata(xi)·f ′g(pfg(xi))·g′(pfg(xi)).

(22)

Our goal is to demonstrate that
∂Lfg(pθ=p′

fg)

∂α

∣∣∣∣
α=0

< 0, which would contradict the assumption that

pfg minimizes Lfg , thereby proving the theorem.

Given the optimality of pg, we have pdata(xi) · g′(pg(xi)) ≥ pdata(xj) · g′(pg(xj)), otherwise
we can reduce pg(xi) to obtain a lower loss. From Theorem 1, we know that pfg(xi) ≥ pfg(xj),
and because f is convex and g is increasing, we have f ′g(pfg(xi)) ≥ f ′g(pfg(xj)). Using these
inequalities, we obtain a upperbound of equation 22:

∂Lfg(pθ = p′fg)

∂α

∣∣∣∣
α=0

/ (pdata(xi) · g′(pg(xi)))

=
pdata(xj) · f ′g(pfg(xj)) · g′(pfg(xj))

pdata(xi) · g′(pg(xi))
− pdata(xi) · f ′g(pfg(xi)) · g′(pfg(xi))

pdata(xi) · g′(pg(xi))

≤ pdata(xj) · f ′g(pfg(xj)) · g′(pfg(xj))

pdata(xj) · g′(pg(xj))
− pdata(xi) · f ′g(pfg(xi)) · g′(pfg(xi))

pdata(xi) · g′(pg(xi))

=
f ′g(pfg(xj)) · g′(pfg(xj))

g′(pg(xj))
− f ′g(pfg(xi)) · g′(pfg(xi))

g′(pg(xi))

≤ f ′g(pfg(xj)) · (
g′(pfg(xj))

g′(pg(xj))
− g′(pfg(xi))

g′(pg(xi))
).

(23)

To demonstrate that
∂Lfg(pθ=p′

fg)

∂α

∣∣∣∣
α=0

< 0, we only need to prove the following inequality:

g′(pfg(xj))

g′(pg(xj))
− g′(pfg(xi))

g′(pg(xi))
< 0. (24)

Let ∆x = pfg(xi) − pg(xi) < pfg(xj) − pg(xj). As a result, pfg(xj) > ∆x + pg(xj), and thus
g′(pfg(xj)) < g′(pg(xj) + ∆x). This allows us to further simplify the inequality:

g′(pfg(xj))

g′(pg(xj))
− g′(pfg(xi))

g′(pg(xi))
<

g′(pg(xj) + ∆x)

g′(pg(xj))
− g′(pg(xi) + ∆x)

g′(pg(xi))
. (25)

To establish that the right-hand side of the above inequality is non-positive, we can apply the logarithm
transformation and show the following inequality instead:

log(g′(pg(xj) + ∆x)− log(g′(pg(xj))) ≤ log(g′(pg(xi) + ∆x)− log(g′(pg(xi))). (26)

Let’s denote h(x) = log(g′(x)), x1 = pg(xi), and x2 = pg(xj). The above inequality can be
simplified to:

h(x2 +∆x)− h(x2) ≤ h(x1 +∆x)− h(x1), (27)
where ∆x ≥ 0 and x2 ≤ x1 according to Theorem 1. The above inequality holds when h(x) is a
convex function. The second-order derivative of h(x) = log(g′(x)) is:

h′′(x) =
g′′′(x)g′(x)− g′′(x)2

g′(x)2
. (28)

Therefore, h(x) is a convex function under the condition g′′′(x) · g′(x) ≥ g′′(x)2. This verifies that
∂Lfg(pθ=p′

fg)

∂α

∣∣∣∣
α=0

< 0, completing the proof by contradiction.
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B Experimental Settings

B.1 Machine Translation

B.1.1 Datasets and Metrics

Datasets We conduct experiments on widely used translation benchmark: WMT14 English-German
(EN-DE, 4.5M), where the validation and test sets are newstest2013 and newstest2014 respectively.
We apply BPE [48] with 32K merge operations to learn a joint vocabulary on the tokenized data.
Considering the major topic of this research is how to learn from a real-world data distribution, we
don’t apply any tricks that may have an influence on the distribution, e.g., knowledge distillation.

Metrics The overall quality of translation is assessed using metrics BLEU [38] and COMET [43].5 In
the case of non-autoregressive models, we additionally quantify the prediction confidence and transla-
tion fluency of the generated output. Prediction confidence is measured with negative log-likelihood
(NLL) of model generation. A lower NLL value indicates a more focused model distribution and
higher prediction confidence. To evaluate translation fluency, we utilize an external pre-trained
autoregressive language model. The generated translation is fed to the language model using teacher
forcing and the resulting perplexity (PPL) is calculated as a measure of fluency.6 A lower external
PPL score indicates a higher level of fluency.

B.1.2 Implementation Details

Architectures In order to validate the overall efficacy of convex-composition loss, we perform
experiments using various model architectures. We adopt Transformer-base [63] as our autoregressive
baseline and Vanilla-NAT [17], CMLM [14] and CTC [46] as our non-autoregressive baselines. We
apply uniform copy to construct decoder inputs in Vanilla-NAT and CTC. The decoder length in CTC
is set to 2× the source length.

Training Although training with convex-composition loss offers the desirable property of optimality,
it can encounter gradient vanishing issues during initialization as analyzed previously. To mitigate
this, we employ a two-step training approach: MLE pre-training followed by fine-tuning with convex-
composition loss. This approach allows us to avoid numerical gradient issues while still benefiting
from the optimality achieved through convex composition. For training with convex-composition loss,
we set the exponent hyperparameter k to 1 for the autoregressive model and tune it from {1,2,3,5,8}
on the validation set for non-autoregressive models. Throughout both MLE and convex-composition
training, all models are optimized using the Adam optimizer [24] with β = (0.9, 0.98) and ϵ = 10−8.
Detailed information regarding other training hyperparameters can be found in Table 7.

Table 7: Settings of training hyperparameters on WMT14 EN↔DE dataset.

Transformer Vanilla-NAT CMLM CTC
MLE Convex MLE Convex MLE Convex MLE Convex

batch size 32k 32k 64k 256k 64k 256k 64k 256k
learning rate 7e-4 2e-4 5e-4 3e-4 5e-4 3e-4 5e-4 3e-4
warmup steps 4k 1k 10k 500 10k 500 10k 500
training steps 200k 50k 300k 10k 300k 10k 300k 10k
dropout 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.1
weight decay 0 0 0.01 0.01 0.01 0.01 0.01 0.01
label smoothing 0.1 0.1 0.1 0 0.1 0 0.01 0
length loss factor - - 0.1 0.01 0.1 0.01 - -

Decoding For the autoregressive model, we set the beam length to 5 by default and tune the length
penalty on the validation set unless stated otherwise. For Vanilla-NAT and CTC, we utilize fully
non-autoregressive argmax decoding. In the case of CMLM, we employ 5 length candidates and

5We use checkpoint Unbabel/wmt22-comet-da to compute COMET score. It is available at https:
//github.com/Unbabel/COMET.

6We use checkpoint transformer_lm.wmt19.de to compute the external PPL score. It is available at
https://github.com/facebookresearch/fairseq/tree/main/examples/language_model.
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disable iteration for inference. The decoding speedup is measured with a batch size of 1 on GeForce
RTX 3090 GPUs.

B.2 Abstractive Summarization

B.2.1 Datasets and Metrics

We conduct experiments on two widely used summarization benchmarks: CNN/DailyMail [18] and
Xsum [34]. CNN/DailyMail contains 220K articles from the Daily Mail newspaper and 93K articles
from CNN. Each article contains a bullet point summary consisting of multiple sentences. We use
the non-anonymized variant following [47, 29]. After the pre-processing, there are 311,971 〈article,
summary〉 pairs. XSum consists of 227K online articles from the British Broadcasting Corporation
(BBC), containing professionally written single-sentence summaries. After the preprocessing, there
are 226,677 〈article, summary〉 data pairs. In order to maintain consistency with previous works
[26, 40], we employ GPT-2 tokenizer to tokenize raw CNN/DailyMail data, and Berttokenizer to
tokenize raw Xsum data. The summarization quality is measured with ROUGE-1, ROUGE-2 and
ROUGE-L [28] as discussed in [6].

B.2.2 Implementation Details

In our summarization experiments, most of the implementation details of the Transformer align with
those used in translation. However, there are a few modifications to ensure consistency with previous
work [26]. We apply layer normalization to the embeddings. The attention dropout is set to 0.1, and
the weight decay is set to 0.01. We utilize beam search with a size of 4 during decoding. The length
penalty, max_len_b, and min_len are set to 2.0, 140, and 55, respectively on CNN/DailyMail dataset.
We use a length penalty of 1.2 on Xsum dataset. For CNN/DailyMail dataset, we additionally employ
a tri-gram repetition prevention trick.

B.3 Large Language Models

For the development of LLMs, we utilize LLaMA-7B and LLaMA-13B [61] as our foundation
models. We conduct instruction tuning using the Alpaca dataset by GPT4 [65, 60], which comprises
52K instruction-following demonstrations. Instead of the standard cross-entropy loss employed
during instruction tuning, we adopt the convex-composition loss of exponential form to fine-tune
foundation models.

The generative capability of LLMs is also evaluated on the two representative closed-ended text
generation tasks: machine translation and text summarization. For machine translation, we follow
previous works [22, 70, 69, 30] to evaluate the translation capability on four WMT22 translation
tasks (Chinese-to-English, English-to-Chinese, German-to-English, and English-to-German). For
text summarization, we follow Liu et al. [30] to conduct the evaluation on CNN/DailyMail Dataset
[18]. We employ beam search with a beam size of 4 for machine translation and 2 for summarization.
The prompt for machine translation is "Translate the following sentences from [SRC] to [TGT]." The
prompt for summarization is "Write a brief and focused summary of the passage that follows.".

C Effects of k on AR Models

We study the effects of exponent hyper-parameter k on autoregressive models. Table 8 presents the
BLEU scores of autoregressive models as the exponent k varies, showing that the optimal performance
is achieved when k = 1. Other choices of k, such as k = 0.5 or 0.75, also yield improvements,
predominantly in the context of the greedy search setting.

Table 8: BLEU scores of autoregressive models as the exponent k varies on WMT14 EN-DE test set.

k-th Power 0.5 0.75 1 2 3

Greedy 26.89 26.89 26.92 26.78 26.13

Beam5 27.62 27.74 27.78 27.49 26.76
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D Correlations on Other NAR Models

In Section 4.2, we present compelling evidence in support of the mode collapse property of convex
function effectively mitigating the multimodality issue in the NAR model. This evidence is derived
from the strong correlation observed between model entropy and generation fluency in the CMLM
model, as demonstrated in Table 4. In this section, we provide additional evidence for other NAR
models to further support our findings in Table 9 and 10.

Table 9: Prediction confidence (Output NLL) and generation fluency (External PPL) of Vanilla-NAT
on WMT14 EN-DE test set.

k-th Power 1 2 3 5 8

Confidence (Output NLL) ↓ 23.34 16.17 11.32 6.25 6.27
Fluency (External PPL) ↓ 1000.06 730.91 463.78 344.56 353.40

Table 10: Prediction confidence (Output NLL) and generation fluency (External PPL) of CTC on
WMT14 EN-DE test set.

k-th Power 1 2 3 5 8

Confidence (Output NLL) ↓ 18.74 13.88 11.20 7.69 5.55
Fluency (External PPL) ↓ 174.79 142.80 134.28 137.07 154.60

E Results on Alternative Choice of Convex Function

In addition to the exponential function, we have also explored another choice of convex function
in our framework of convex-composition loss. In this section, we discuss the results of the choice
of power function, i.e., Lf (θ) = −Ex∼pdata(x)[−(− log(pθ(x))

T )k], 0 ≤ k ≤ 1. The results obtained
from applying the power function in convex-composition loss are presented in Table 11.

Table 11: Results of BLEU scores by applying power function in convex-composition loss. We
denote the MLE baseline by using k = 1.0. We employ greedy decoding for Transformer. In cases
where training fails, we use "N/A" to denote such instances.

k-th Power 0.1 0.3 0.5 0.7 1.0

Transformer 26.64 26.68 26.60 26.52 26.48
Vanilla-NAT N/A N/A 10.74 10.51 10.41

We have observed that the benefits of applying the power function within the convex composition
framework are significantly marginal compared to the exponential function, especially in the case of
Vanilla-NAT. In addition, we have found the training process may encounter difficulties or failure
when k is approaching 0. We attribute such problem to the shape of f ′(g(pθ(x))) when power
function is applied, i.e., k · (− log(pθ(x))

T )k−1.

As shown in Figure 3, the value of f ′(g(pθ(x))) will approach a constant 1 as k approaches 1. This
phenomenon arises due to the reduction in the convexity of function f , resulting in a decrease in gain.
In case of k approaching 0, the situation is even worse where f ′(g(pθ(x))) will experience a sudden
increase from an extremely small value near 0. These factors result in an unstable training process
and contribute to the power function being less suitable within the framework of convex-composition
loss.
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Figure 3: Shapes of f ′(g(pθ(x))) when different convex functions are applied.

F Results on Diverse Generation

We study the effects of convex functions on VAE-based text generation models by replacing the
log-probability-based reconstruction loss in ELBO with the convex-composition loss. Formally, we
train the model using the following loss:

Ez∼q(z|x) − f(
1

T
log p(x|z)) + KL(q(z|x)||p(z)), (29)

where we opt for the convex function f to be ekx, k ≥ 0. We perform experiments within the context
of conditional generation, utilizing a VAE-based non-autoregressive model [54, 16] for the task of
machine translation. During inference, we randomly sample the latent variable 3 times to generate
diverse texts. We assess the quality with BLEU score computed against reference (reference-BLEU)
and measure the diversity with BLEU score computed against each other (pairwise-BLEU). The
average value and standard derivation are reported in Table 12.

Table 12: Reference-BLEU and Pairwise-BLEU scores of VAE-based NAT models trained with
different objectives on WMT14 EN-DE test set. The texts are generated by sampling the latent
distribution 3 times.

ELBO Convex + KL
Reference-BLEU 16.23±.14 23.35±.04
Pairwise-BLEU 29.52±.20 91.91±.03

During the training process, we have observed that KL divergence tends to vanish more readily when
the convex functions are applied. We attribute this phenomenon to the smaller norms of gradients
associated with the convex-composition loss. As a result, the gradient of the KL divergence dominates
the model update, leading to the KL divergence vanishing. We note VAE-based text generation
models trained using the convex-composition loss exhibit a higher generation quality while suffering
from poor diversity, which is consistent with the mode collapse property of convex function.

G Analysis of Convex Learning and Knowledge Distillation

With the ability to capture a concentrated distribution from datasets exhibiting a multi-modal distribu-
tion, the proposed convex learning approach shows similar dynamics to knowledge distillation [19], a
technique which encourages the student model to imitate the output of the teacher model. To compare
the two methods, we utilize autoregressive Transformer as the teacher and apply sequence-level
knowledge distillation [23] to construct a dataset of lower complexity, and train the models using
different losses.
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Table 13: BLEU scores of autoregressive and vanilla-NAT models trained with or without knowledge
distillation (KD) on WMT14 EN-DE test set.

Transformer Vanilla-NAT
MLE Convex MLE Convex

w/ KD 27.73 27.80 19.18 23.17
w/o KD 27.57 27.78 10.41 16.74

1 2 3 5 8
beam size
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26.4
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27.2
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Figure 4: BLEU scores of autoregressive models as beam size varies with or without knowledge
distillation (KD) on WMT14 EN-DE test set.

The results in Table 13 and Figure 4 demonstrate that convex learning and knowledge distillation
have similar effects on text generation models. Both methods lead to significant improvements on
non-autoregressive models and bridge the performance gap between greedy and beam search of
autoregressive models. It is worth noting that training with the convex-composition loss avoids
the intricate process of training an additional teacher model and decoding the whole training set to
achieve the improvements. Moreover, convex-composition loss can be combined with knowledge
distillation to further enhance the performance.
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