
Blockwise Parallel Transformers
for Large Context Models

Hao Liu
UC Berkeley

hao.liu@cs.berkeley.edu

Pieter Abbeel
UC Berkeley

pabbeel@cs.berkeley.edu

Abstract

Transformers have emerged as the cornerstone of state-of-the-art natural language
processing models, showcasing exceptional performance across a wide range of AI
applications. However, the memory demands posed by the self-attention mecha-
nism and the large feedforward network in Transformers limit their ability to handle
long sequences, thereby creating challenges for tasks involving multiple long se-
quences or long-term dependencies. We present a distinct approach, Blockwise
Parallel transformers (BPT), that leverages blockwise computation of self-attention
and feedforward network fusion to minimize memory costs. By processing longer
input sequences while maintaining memory efficiency, BPT enables training se-
quences 32 times longer than vanilla Transformers and up to 4 times longer than
previous memory-efficient methods. Extensive experiments on language modeling
and reinforcement learning tasks demonstrate the effectiveness of BPT in reducing
memory requirements and improving performance.

1 Introduction

Transformers [54] have become the backbone of many state-of-the-art natural language processing
models [15, 45, 5, 37]. They have demonstrated impressive performance across a wide range of
AI problems, including language modeling, machine translation, image captioning, and protein
folding [41, 49, 32, 45, 5, 47, 9]. Transformers achieve this success through their architecture design
that uses self-attention and position-wise feedforward mechanisms. These components facilitate the
efficient capture of long-range dependencies between input tokens, enabling scalability in terms of
context length and model size through highly parallel computations.

However, the memory requirements of Transformers limit their ability to handle long sequences,
which is necessary for many AI problems, such as high-resolution images, podcasts, code, or books
and especially those that involve multiple long sequences or long-term dependencies [10, 7, 41, 7, 36,
29, 49, 32, 1]. The quadratic self-attention and the large feed forward network of Transformers require
a large amount of memory, which makes it challenging to scale to longer input sequences. This
limitation has led to various techniques proposed to reduce the memory requirements of Transformers,
including sparse-approximation, low-rank approximation, and low precision approximation [see e.g.
53, 24, 22, 11, 25, 38, 56].

One distinct line of research does not rely on approximation but instead focuses on computing exact
self-attention with linear memory complexity. This approach leverages the observation that the
softmax matrix in self-attention can be computed without materializing the full matrix [39]. This
technique has led to the development of FlashAttention [14] and Memory Efficient Attention [44].
Both methods propose a blockwise computation of the self-attention softmax, demonstrating reduced
memory requirements.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: Maximum context length during training time with the GPT model using different methods.
Model sizes range from 1B to 70B. Figures (A), (B), and (C) show evaluation using one, eight A100,
and 64 TPUv4, respectively, with a single sequence. Our method enables training sequences 32 times
longer than vanilla attention-based transformers [54], and 2 to 4 times longer than FlashAttention
[14] and Memory Efficient Attention [44]. Section 3.1 provides a memory cost breakdown.

Despite the resulting reduced memory requirements of the self-attention block in transformers models,
a significant challenge still arises from the feedforward network. This network contains a large number
of parameters and produces high-dimensional intermediate vectors, resulting in substantial memory
requirements. This issue is becomes the key memory challenge once employing memory-efficient
attention mechanisms. Consequently, training Transformers on longer context lengths and scaling
up transformers models become significantly hindered due to the overwhelming memory demands
imposed by the feedforward network.

To address this challenge, we make an important observation: when self-attention is computed in a
blockwise manner to reduce memory requirements, it becomes feasible to merge the computation
of the feedforward network. This eliminates the need to wait for the self-attention computation to
finish before performing the feedforward step on the entire sequence. By computing the feedforward
network on a block-by-block basis, we effectively reduce the memory cost associated with the
feedforward network. This process involves the utilization of two nested loops over the input
sequence blocks. In the outer loop, we iterate over each block and compute the query. In the inner
loop, we iterate over each block to calculate the key and value. These key-value pairs, along with the
query, are then used to compute the blockwise attention specific to the corresponding input block.
This blockwise attention is subsequently used to calculate the output of the feedforward network,
followed by a residual connection. This approach enables us to process longer input sequences while
maintaining lower memory budget. Since our approach performs blockwise parallel computation and
fuses the feedforward and self-attention computations, we name our method the Blockwise Parallel
transformers (BPT).

We evaluate the effectiveness of our approach on several benchmarks, including language modeling
and reinforcement learning. Our experiments show that BPT can reduce the memory requirements
of Transformers, enabling us to train 32 times longer sequence than vanilla attention [54] based
GPT models and up to 4 times longer sequence than prior state-of-the-arts FlashAttention [14] and
Memory Efficient Attention [44]. Furthermore, we demonstrate the application of BPT on the task
of traning transformers based RL agent. By conditioning on multiple trajectories, BPT significantly
improves the performance and achieves better results on challenging RL benchmarks. We believe
that our approach has the potential to enable the training and evaluation of more complex models that
require longer input sequences, which could lead to further breakthroughs in AI research.

Our contributions are twofold: (a) proposing a blockwise computation of self-attention and feedfor-
ward approach that enables 32 times longer and up to 4 times longer context lengths than vanilla
transformers and previous memory-efficient Transformers, respectively, and (b) demonstrating the
effectiveness of our approach through extensive experiments.

2 Memory Bottleneck of Transformer

Given input sequences Q,K, V ∈ Rs×d where s is the sequence length and d is the head dimension.
We compute the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V, (1)

2



where softmax is applied row-wise. Standard attention implementations materialize the matrices
QKT and softmax(QKT

√
d
) to HBM, which takes O(s2) memory, so the overall space complexity

is O(s2). There has been a large body of work trying to reduce memory usage of self-attention by
using online softmax [39, 44, 14] to reduce memory cost of self-attention by preventing it from full
materialization. And these approaches reduce memory footprint from O(s2) to O(s). However, the
large feedforward layers have been overlooked.

In addition to attention sub-layers, each of the attention layers is accomplished with a fully connected
feedforward network, which is applied to each position separately and identically. This consists of
two linear transformations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

While the linear transformations are the same across different positions, they use different parameters
from layer to layer. The large size of the feedforward network requires substantial memory resources,
and this becomes even more pronounced when dealing with large context sizes. See Section 3.1 for
analysis of memory cost associated with transformers.

3 Blockwise Parallel for Large Context Models

Self-attention can be computed in a blockwise manner without materializing the softmax attention
matrix softmax(QKT ) [39, 14, 44]. This approach involves splitting the sequences Q ∈ Rs×d

into Bq blocks and sequences K,V ∈ Rs×d into Bkv blocks. For each query block, the blockwise
attention Attention(Q,K, V ) can be computed by iterating over all key-value blocks. Once the
blockwise attention is computed, the global attention matrix can be obtained by scaling the blockwise
attention using the difference between the blockwise and global softmax normalization constants [39].
This is achieved by keeping track of normalization statistics and combining them from all blocks to
scale each block accordingly. For a specific query block Qi, 1 ≤ i ≤ Bq , the corresponding attention
output can be computed by scaling each blockwise attention as follows:

Attention(Qi,K, V ) = Scaling({exp(QiK
T
j )Vj}Bkv

j=1). (3)

The scaling operation scales each blockwise attention based on the difference between the blockwise
maximum and the global maximum:

Attention(Qi,Kj , Vj) = exp
(
QiK

T
j −max(QiK

T
j )

)
/
∑

exp
(
QiK

T
j −max(QiK

T
j )

)
maxi = max

(
max(QiK

T
1 ), . . . ,max(QiK

T
B)

)
Attention(Qi,K, V ) =

[
exp(QiK

T
j −maxi) Attention(Qi,Kj , Vj)

]Bkv

j=1
.

This blockwise self-attention computation eliminates the need to materialize the full attention matrix
of size O(n2), resulting in significant memory savings.

We observe that the blockwise computation is not limited to self-attention but can also be applied
to the feedforward network. For each query block, after iterating over the key and value blocks, the
feedforward network can be computed along with a residual connection, completing the attention and
feedforward network computation for that query block. This means that the model does not need to
compute the feedforward network on the full sequence, but rather on intermediate blocks, resulting in
memory savings. The computation for a query block is given by:

Outputi = FFN
(
Attention(Qi,K, V ) +Qi

)
+Attention(Qi,K, V ) +Qi.

Therefore, the output for each block consists of the feedforward network, self-attention, and residual
connection computed in a blockwise manner.

It is worth mentioning that for large models, the memory cost of the feedforward network on the
full sequence can be much larger than the memory efficient attention. Therefore computing the
feedforward network on the same block as attention can significantly reduce memory cost, and it
also reduces data movements, contributing to overall computational efficiency. Moreover, we should
remark that blockwise parallelism can be directly applied to the final cross entropy loss, which can
further minimize memory cost. The full process of our framework, coined as BPT, is summarized in
Algorithm 1.

3



Figure 2: We use the same model architecture as the original transformers but with a different way of
organizing the compute. In the diagram, we explain this by showing that for the bottom first incoming
input block, we project it into query; then we iterate over the same input sequence positioned above
the bottom row, and project it to key and value. These query, key and value are used to compute
self-attention (yellow box), whose output is pass to feedforward network (cyan box), followed by a
residual connection. In our proposed approach, this process is then repeated for the other incoming
input blocks.

3.1 Analysis of Memory Cost

We present an analysis of memory cost across different transformers architectures: the Vanilla
Transformer, the memory-efficient / Flash Attention variant, and BPT.

Vanilla Transformers:

Attention: For Q, K, V , saving their input x needs 2bsh bytes, where b is batch size, s is sequence
length, and h is hidden dimension. For QKT matmul, saving activations Q and K needs 4bsh bytes.
For softmax(QKT ), saving input QKT needs 2bs2a bytes, where a is the number of attention heads.
For mask and dropout, saving mask needs bs2a bytes. For score × V , saving score needs 2bs2a
bytes, and saving V needs 2bsh bytes. For output projection and dropout, saving the input needs
2bsh bytes, and saving dropout mask needs bsh bytes. The maximum attention activation size of
attention is O(s2) with checkpointing.

4



Algorithm 1 Reduce memory cost with BPT.
Required: Input sequence x. Number of query blocks Bq . Number of key and value blocks Bkv .
Initialize
Project input sequence x into query, key and value.
Split query sequence into Bq of query input blocks.
Split key and value sequences into Bkv of key-value input blocks.
for outer = 1 to Bq do

Choose the outer-th query.
for inner = 1 to Bkv do

Choose the inner-th key and inner-th value block.
Compute attention using query, key and value, and record normalization statistics.

end for
Combine each blocks by scaling them to get attention output for the outer-th input block.
Compute feedforward on attention output and add residual connection.

end for

FFN: For the first linear layer, saving input needs 2bsh bytes. For activation, saving input needs 8bsh
bytes. For the second linear layer, saving input needs 8bsh bytes. For dropout, saving the mask needs
bsh bytes. With checkpointing, the maximum activation size of FFN is 8bsh bytes.

Consequently, for a large context length, the memory cost of activation in vanilla transformers is
O(s2).

BPT:

Attention: Since BPT does not materialize full attention and instead computes it blockwise, it needs
to store intermediate blockwise activations in the key-value loop, which has a maximum activation
size of 4bch with checkpointing. Additionally, it needs to store q output activations for the query
loop, which requires 2bsh bytes. Since s ≫ c, the maximum activation size is 2bsh.

FFN: When iterating the FFN over blocks, BPT needs to save the following activations: For the first
linear layer, saving input needs 2bch bytes. For activation, saving input needs 8bch bytes. For the
second linear layer, saving input needs 8bch bytes. For dropout, saving the mask needs bch bytes. In
total, 19bch bytes are needed. Additionally, storing the output of the for loop requires 2bsh bytes.
Therefore, the maximum FFN activation size is 2bsh.

Consequently, each BPT layer’s memory cost of activation is 2bsh.

Memory-Efficient / Flash Attention:

Attention: Similar to BPT attention, the maximum activation size is 2bsh.

FFN: Similar to the vanilla FFN, the maximum activation size is 8bsh.

Consequently, each Flash Attention layer’s memory cost is 8bsh.

Comparing the activation memory of Flash Attention/Memory-Efficient transformers with BPT, we
see that BPT offers 8bsh/2bsh = 4 times memory saving. By taking into account other factors
of memory cost such as model parameters and optimizer states, BPT allows training with context
lengths 2-4 times larger than prior state-of-the-arts.

3.2 Why Blockwise Parallel

The utilization of blockwise parallelization may raise questions about the effectiveness of running
parallel computers, as computation can become sequential between blocks. However, the benefits of
blockwise parallelization depend on the model size and hardware configuration. In cases where the
model is large or the context length is extremely long, a block may reach its maximum arithmetic
density, making it impractical to execute the original full-length sequence in parallel. In such
scenarios, blockwise parallelization treats the long sequence as short ones, allowing dealing with
large models and effectively enabling large context size. Moreover, using blockwise parallelization
allows us to avoid waiting for the completion of self-attention and allocating a significant amount of
memory solely for feed-forward network computation.

5



Another notable advantage of blockwise parallelization is its ability to leverage hardware with
significantly faster SRAM speed compared to HBM speed. For instance, in Nvidia GPUs, SRAM is
an order of magnitude faster than HBM, while in Google TPUs, SRAM also offers higher speed than
HBM. By utilizing blockwise parallelization, we can tap into the increased speed of SRAM, thereby
reducing communication costs and increasing throughput. This advantage aligns with memory
efficient self-attention approaches [14, 44].

3.3 Implementation

Algorithm 1 provides the pseudocode of the algorithm. Figure 3 in Appendix shows a Jax imple-
mentation optimized for simplicity. The full code of BPT is provided at GitHub 1 which supports
large-scale distributed training of large context models using BPT.

The blockwise_ffn function begins by accepting a rematerialized feed forward module, inputs
and chunk size. The remat_ffn compute feedforward on inputs with checkpointing, i.e.without
saving intermediates. The scan_ffn function is then used to scan over input sequences and generate
outputs.

The blockwise_attn function process query, key, and value to produce attention blockwise. The
scan_attention function is defined, which computes the attention weights between the query
vector and key-value pairs from another chunk. This is done by applying the scan_kv_block
function to the key-value chunk, calculating the dot product between the query and key vectors,
and then adding a bias term. The bias term introduces a positional bias between different chunks
based on their indices without materializing the full matrix. The softmax function is then applied
to the attention weights in a numerically stable manner, using the max-score trick to avoid large
exponentiation results.

Finally, BPT combines the outputs from all chunks, normalizes them using their max-score-adjusted
weights, and passes them through a feed-forward neural network (blockwise_ffn). The final output
is the sum of the feed-forward output, the attention output, and the original input.

4 Setting

We evaluate the impact of using BPT in improving large transformers models by benchmarking
memory requirement, maximum sequence length and throughout speed. We show apply BPT to
reinforcement learning as an application.

Model Configuration. Our study is built upon the GPT architecture. Table 1 provides a overview of
the model sizes considered in our experiments.

Baselines. We evaluate our method by comparing it with vanilla Transformer [54] which is denoted
as “Vanilla”, and FlashAttention [14] and Memory Efficient Attention [44] which are state-of-the-art
memory efficient attention, we denote them as “MemoryEfficient” in our experiments. All methods
use the same gradient checkpointing in the experiments.

Datasets. We consider two datasets for evaluation purposes. Including pretraining on OpenWebText
dataset and large context reinforcement learning on ExoRL.

• OpenWebText. The OpenWebText dataset [18] is a large and diverse collection of web pages
that has been filtered and cleaned for use in natural language processing (NLP) tasks. The dataset
consists of over 6 billion tokens from more than 40 million web pages, covering a wide range of
topics and genres.

• ExoRL. The ExoRL [58] dataset is based on unlabeled exploratory data collected by running
unsupervised RL algorithms. For each environment, it comes with eight different unsupervised
data collection algorithms, taken from from URLB [28]. The datasets are collected by unsuper-
vised RL and then relabeled using task reward function. The resulting mixed dataset consists of 8
millions timesteps (8000 episodes), with each episode spanning a length of 1000 steps.

Training Configuration. Our main baselines are vanilla attention [54], which computes self-attention
by materializing the attention matrix and computes the feedforward network normally. We also

1https://github.com/lhao499/llm_large_context

6

https://github.com/lhao499/llm_large_context


Table 1: Sizes and architectures of the models which we evaluated in experiments.

Model Name nparams nlayers dmodel nheads dhead

GPT 1B 1.3B 24 2048 16 128
GPT 3B 2.7B 32 2560 32 80
GPT 7B 6.7B 32 4096 32 128
GPT 13B 13.0B 40 5140 40 128
GPT 30B 30.0B 48 7168 56 128
GPT 70B 70.0B 80 8192 64 128

consider two prior state-of-the-art memory-efficient methods, namely FlashAttention [14], which
focuses on GPU efficiency, and Memory Efficient Attention [44], which focuses on TPU efficiency.
Since they share a similar idea, for notation simplicity, we refer to them as FlashAttention in our
experiments. We tune the block size for both the baselines and BPT, and report the best results
achieved by each. The experiments are on NVIDIA 80GB A100 GPUs, we consider both single GPU
for smaller model training and 8 GPUs settings for model parallel training. We also experiment with
scaling up model on 64 TPUv4.

We note that no data parallelism is considered in our evaluations since our approach is independent
of data parallelism. As a result, the batch sizes used in our analysis are much lower than the ones
used for the end-to-end training. All of our results are obtained using full precision instead of mixed
precision.

5 Results

In our experiments, our primary objective is to comprehensively evaluate the performance of BPT
across multiple key metrics, including maximum sequence length, memory usage, and throughput.
Moreover, we extend the applicability of BPT to reinforcement learning and evaluate its effectiveness
in large context application.

Table 2: Maximum context length during training with different methods. BPT enables training 2-4
times longer sequence length than FlashAttention / Memory Efficient Attention, and up to 32 times
longer sequence length than vanilla attention.

1 A100 PartitionSpec Vanilla Attention MemoryEfficient Blockwise Parallel
350M (1,1,1) 16K (16384) 65K (65536) 131K (131072)
1B (1,1,1) 16K (16384) 65K (65536) 131K (131072)
3B (1,1,1) 8K (8192) 16K (16384) 65K (65536)

8 A100 PartitionSpec Vanilla Attention MemoryEfficient Blockwise Parallel
3B (1,1,8) 16K (16384) 65K (65536) 131K (131072)
7B (1,1,8) 16K (16384) 65K (65536) 131K (131072)
13B (1,1,8) 8K (8192) 33K (32768) 65K (65536)
30B (1,1,8) 8K (8192) 16K (16384) 65K (65536)

64 TPUv4 PartitionSpec Vanilla Attention MemoryEfficient Blockwise Parallel
13B (1,1,64) 4K (4096) 16K (16384) 33K (32768)
30B (1,1,64) 2K (2048) 4K (4096) 16K (16384)
70B (1,1,64) 1k (1024) 2K (2048) 8K (8192)

5.1 Evaluation of Context Length

We present experimental results comparing the maximum training sequence lengths achieved using
three different attention mechanisms: Vanilla, MemoryEfficient, and Blockwise Parallel. Table 2
summarizes the findings. On one A100 GPU, Vanilla transformers supports a maximum training
sequence length of 16K for 1B parameters and 8K for 3B parameters. In contrast, MemoryEfficient
enables longer sequences of 65K for 1B parameters and 16K for 3B parameters. Notably, our
proposed method, Blockwise Parallel, surpasses both methods, achieving a maximum sequence

7



length of 131K for 1B parameters and 3B parameters. Moving on larger models, Blockwise Parallel
again outperforms the other two methods, allowing training sequences of 65K for 30B large model
on 8 GPUs and 8K for 70B large model on 64 TPUv4, which are two and four times longer than
MemoryEfficient, respectively.

Table 3 shows the analysis of memory usage across different settings with three distinct approaches:
Vanilla Transformer, MemoryEfficient, and our proposed method, BPT. It is evident that Vanilla
transformers consumes the highest amount of memory, while MemoryEfficient and BPT offer notable
improvements in memory optimization. Notably, our BPT technique consistently outperforms both
Vanilla transformers and MemoryEfficient in all settings, showcasing memory efficiency.

Table 3: Memory usage comparison for different settings. "oom" denotes out of memory.

Setting 3B on A100 13B on 8 A100
Context
Length

Vanilla MemoryEfficient BPT Vanilla MemoryEfficient BPT

8192 64GB 44GB 43GB 59GB 44GB 42GB
16384 oom 47GB 45GB oom 46GB 45GB
32768 oom 55GB 52GB oom 55GB 52GB
65536 oom 75GB 70GB oom 75GB 68GB
131072 oom oom 79GB oom oom 78GB

5.2 Evaluation on Throughput and Speed

In Table 4, we present a comparison of the throughput achieved by different attention mechanisms on
the GPT-XL (1B) model trained on the OpenWebText dataset using 8 GPUs. Throughput is measured
as number of tokens processed per device per second. We evaluate the performance at various context
lengths, including 2K, 8K, 16K, 33K, and 65K tokens. Our proposed method achieves competitive
throughput as MemeoryEfficient mechanism, and surpasses the Vanilla transformer, achieving 1.17x
speedup at context length 8k and 1.2x speedup at context length 16k. At context length 32K and
64K, our method maintains high throughput and training speed, while the alternatives cannot train
due to running out of memory. This demonstrates the scalability and efficiency of our proposed
method, allowing it to effectively handle large context lengths without compromising on throughput
and training speed.

5.3 Evaluation on Reinforcement Learning

In this section, we present the results of applying BPT to improve the performance of transformers in
reinforcement learning (RL). We report our results in Table 5, where we evaluate our proposed model
on the ExoRL benchmark across six different tasks. On ExoRL, we report the cumulative return,
as per ExoRL [58]. The numbers of BC, DT [6] and AT [34] are from the ExoRL and AT paper.
AT + ME and AT + BPT numbers are run by ourselves. Since the ExoRL data is significantly more
diverse than D4RL because it is collected using various unsupervised RL algorithms [28, 35, 33],
it is found that TD learning performs best while behavior cloning struggles [58]. AT [34] shows
that conditioning transformers on multiple trajectories with relabeled target return can significantly
outperforms behavior cloning approaches BC-10% and DT, and achieves competitive results with TD
learning. For more details, please refer to their papers. We are interested in applying BPT to improve
the performance of AT by conditioning on a 32 trajectories rather than 4 trajectories in original work.
It is worth noting that each trajectory has 1000 × 4 length where 1000 is sequence length while 4
is return-state-action-reward, making training 32 trajectories with 350M size model infeasible for
both Vanilla and MemoryEfficient. Results in Table 5 show that, by scaling the sequence length, AT
+ BPT consistently outperforms the original transformers model in all six tasks, achieving a total
average return of 111.13 compared to the original transformers model’s total average return of 83.02

6 Related Work

Transformers have garnered significant attention in the field of natural language processing (NLP) and
have become the basis for numerous state-of-the-art models. Several works have explored memory-

8



Table 4: Throughput comparison on GPT-XL (1B) using OpenWebText dataset. Throughput is
measured as tokens processed per second. ‘oom’ denotes running out of memory, ‘na’ denotes results
not available because we early terminated these runs to reduce compute cost.

Model Context Len Val Loss Throughput Speed up
Vanila transformers 2048 2.46 3827 1x
MemoryEfficient 2048 2.46 4371 1.14x
Blockwise Parallel 2048 2.46 3985 1.04x

Vanila transformers 4096 2.44 2340 1x
MemoryEfficient 4096 2.44 2567 1.1x
Blockwise Parallel 4096 2.44 2687 1.15x

Vanila transformers 8192 2.43 2455 1x
MemoryEfficient 8192 2.43 2781 1.13x
Blockwise Parallel 8192 2.43 2875 1.17x

Vanila transformers 16384 2.41 1701 1x
MemoryEfficient 16384 2.41 1889 1.11x
Blockwise Parallel 16384 2.41 2045 1.2x

Vanila transformers 32768 oom oom oom
MemoryEfficient 32768 na 810 1x
Blockwise Parallel 32768 na 857 1.1x

Vanila transformers 65536 oom oom oom
MemoryEfficient 65536 oom oom oom
Blockwise Parallel 65536 na 600 1x

Table 5: Application of BPT on improving transformers in RL. All the baselines use vanilla attention.
AT + ME denotes using “MemoryEfficient”. AT + BPT denotes using Blockwise Parallel.

ExoRL benchmark BC-10% DT AT AT AT + ME AT + BPT
Task N Trajs = 4 N Trajs = 32 N Trajs = 32 N Trajs = 32

Walker Stand 52.91 34.54 68.55 oom oom 95.45
Walker Run 34.81 49.82 88.56 oom oom 105.88
Walker Walk 13.53 34.94 64.56 oom oom 78.56
Cheetah Run 34.66 67.53 125.68 oom oom 178.75
Jaco Reach 23.95 18.64 52.98 oom oom 87.56
Cartpole Swingup 56.82 67.56 97.81 oom oom 120.56

Total Average 36.11 45.51 83.02 oom oom 111.13

efficient techniques to address the memory limitations of Transformers and enable their application
to longer input sequences. One line of research focuses on various approximation techniques or
compressing along the sequence dimension [see e.g. 24, 12, 14, 4, 44, 56, 38, 25]. Other works
explored replacing attention [19, 20, 43, 23, 3, 59, 42, 55]. Another line of work explores partitioning
the large hidden dimension of the feedforward network into parts and retrieving only one part per
token [30, 50, 17, 26, 60, 62]. Additionally, extending the context by attending over states from
previous sequences has been explored [13, 46], as well as combining local and global contexts [21, 11].
For a comprehensive review of these techniques, we recommend referring to the surveys by Tay et al.
[53], Narang et al. [40], Tay et al. [52]. Several studies explored sharding large model on distributed
devices tensor, data, or sequence parallelism [51, 16, 57, 27, 61, 31, 48]. Ours shares similarities
with the sequence parallelism [27] where sequences are distributed across devices, in contrast,
ours implements blockwise computation on sequences for each device. This creates an orthogonal
relationship between our method and sequence parallelism, allowing for straightforward combination.
In addition, our methodology is compatible with both tensor and data parallelism. Another direction
involves computing exact self-attention in a blockwise manner using the tiling technique [39]. This
approach has led to the development of memory efficient attention mechanisms [14, 44]. In line with
these advancements, our work falls into this category. We propose computing both the feedforward

9



network and self-attention in a blockwise manner, resulting in a significant reduction in memory
requirements.

7 Conclusion

In conclusion, we propose a blockwise parallelization approach to reduce the memory requirements
of Transformers, the backbone of state-of-the-art AI models. Our approach enables processing longer
input sequences while maintaining or improving performance. Through extensive experiments, we
demonstrate its effectiveness, achieving up to 4x memory reduction than memory-efficient Transform-
ers. Our contributions include a practical method for large context sizes in large transformers models.
With the increasing capability of hardware, larger models and longer context length are widely used
in AI research. At the same time, as we are pushing up against physics and fabrication limits, it is
more important to design scaling approaches as efficient as possible to scale up large models and
large context size. Our approach holds promise for training and evaluating complex models with
longer input sequences, potentially driving new breakthroughs in machine learning research.

Limitations and Future Work. Although our method achieves state-of-the-art low memory usage
for transformers models, it does have some limitations that need to be addressed:

• Optimal performance. While our implementation prioritizes simplicity with high-level Jax
operations, optimizing low-level operations is crucial for achieving optimal performance. In
future work, we suggest considering porting our method to CUDA and OpenAI Triton to achieve
minimal memory cost and maximum speedup.

Acknowledgements

This project is supported in part by ONR under N00014-21-1-2769. We would like to express
our sincere appreciation to the members of the RLL Lab and Berkeley AI Lab, as well as Anselm
Levskaya, Markus Rabe, Federico Lebron, Sharad Vikram, and Tri Dao for their valuable insights and
contributions to this paper. We thank Google TPU Research Cloud for granting us access to TPUs.

10



References
[1] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,

M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in
Neural Information Processing Systems, 35:23716–23736, 2022.

[2] K. Andrej. GitHub - karpathy/nanoGPT: The simplest, fastest repository for training/finetuning
medium-sized GPTs. — github.com. https://github.com/karpathy/nanoGPT, 2023. [Accessed
16-May-2023].

[3] I. Bello. Lambdanetworks: Modeling long-range interactions without attention. arXiv preprint
arXiv:2102.08602, 2021.

[4] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[6] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

[7] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[8] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost.
arXiv preprint arXiv:1604.06174, 2016.

[9] X. Chen, X. Wang, S. Changpinyo, A. Piergiovanni, P. Padlewski, D. Salz, S. Goodman,
A. Grycner, B. Mustafa, L. Beyer, et al. Pali: A jointly-scaled multilingual language-image
model. arXiv preprint arXiv:2209.06794, 2022.

[10] X. Chen, M. Lin, N. Schärli, and D. Zhou. Teaching large language models to self-debug. arXiv
preprint arXiv:2304.05128, 2023.

[11] R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

[12] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Davis, A. Mohiuddin, L. Kaiser, et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020.

[13] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860,
2019.

[14] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. Advances in Neural Information Processing Systems, 35:
16344–16359, 2022.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[16] Facebook. Fully Sharded Data Parallel: faster AI training with fewer GPUs — engineer-
ing.fb.com. https://engineering.fb.com/2021/07/15/open-source/fsdp/, 2023.
[Accessed 16-May-2023].

[17] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):5232–5270,
2022.

11

https://engineering.fb.com/2021/07/15/open-source/fsdp/


[18] A. Gokaslan and V. Cohen. Openwebtext corpus, 2019. URL http://Skylion007.github.
io/OpenWebTextCorpus.

[19] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré. Hippo: Recurrent memory with optimal
polynomial projections. Advances in neural information processing systems, 33:1474–1487,
2020.

[20] A. Gu, K. Goel, and C. Ré. Efficiently modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396, 2021.

[21] J. Ho, N. Kalchbrenner, D. Weissenborn, and T. Salimans. Axial attention in multidimensional
transformers. arXiv preprint arXiv:1912.12180, 2019.

[22] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[23] W. Hua, Z. Dai, H. Liu, and Q. Le. Transformer quality in linear time. In International
Conference on Machine Learning, pages 9099–9117. PMLR, 2022.

[24] A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisserman, and J. Carreira. Perceiver: General
perception with iterative attention. In International conference on machine learning, pages
4651–4664. PMLR, 2021.

[25] N. Kitaev, Ł. Kaiser, and A. Levskaya. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

[26] A. Komatsuzaki, J. Puigcerver, J. Lee-Thorp, C. R. Ruiz, B. Mustafa, J. Ainslie, Y. Tay,
M. Dehghani, and N. Houlsby. Sparse upcycling: Training mixture-of-experts from dense
checkpoints. arXiv preprint arXiv:2212.05055, 2022.

[27] V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi, and B. Catanzaro. Re-
ducing activation recomputation in large transformer models. arXiv preprint arXiv:2205.05198,
2022.

[28] M. Laskin, D. Yarats, H. Liu, K. Lee, A. Zhan, K. Lu, C. Cang, L. Pinto, and P. Abbeel. Urlb:
Unsupervised reinforcement learning benchmark. arXiv preprint arXiv:2110.15191, 2021.

[29] M. Laskin, L. Wang, J. Oh, E. Parisotto, S. Spencer, R. Steigerwald, D. Strouse, S. Hansen,
A. Filos, E. Brooks, et al. In-context reinforcement learning with algorithm distillation. arXiv
preprint arXiv:2210.14215, 2022.

[30] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen.
Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv
preprint arXiv:2006.16668, 2020.

[31] S. Li, J. Fang, Z. Bian, H. Liu, Y. Liu, H. Huang, B. Wang, and Y. You. Colossal-ai: A unified
deep learning system for large-scale parallel training. arXiv preprint arXiv:2110.14883, 2021.

[32] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling,
F. Gimeno, A. Dal Lago, et al. Competition-level code generation with alphacode. Science, 378
(6624):1092–1097, 2022.

[33] H. Liu and P. Abbeel. Aps: Active pre-training with successor features. In International
Conference on Machine Learning, 2021.

[34] H. Liu and P. Abbeel. Emergent agentic transformer from chain of hindsight experience.
International Conference on Machine Learning, 2023.

[35] H. Liu, T. Zahavy, V. Mnih, and S. Singh. Palm up: Playing in the latent manifold for
unsupervised pretraining. Advances in Neural Information Processing Systems, 35:35880–
35893, 2022.

[36] H. Liu, C. Sferrazza, and P. Abbeel. Chain of hindsight aligns language models with feedback.
arXiv preprint arXiv:2302.02676, 2023.

12

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


[37] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[38] X. Ma, C. Zhou, X. Kong, J. He, L. Gui, G. Neubig, J. May, and L. Zettlemoyer. Mega: moving
average equipped gated attention. arXiv preprint arXiv:2209.10655, 2022.

[39] M. Milakov and N. Gimelshein. Online normalizer calculation for softmax. arXiv preprint
arXiv:1805.02867, 2018.

[40] S. Narang, H. W. Chung, Y. Tay, W. Fedus, T. Fevry, M. Matena, K. Malkan, N. Fiedel,
N. Shazeer, Z. Lan, et al. Do transformer modifications transfer across implementations and
applications? arXiv preprint arXiv:2102.11972, 2021.

[41] OpenAI. Gpt-4 technical report, 2023.

[42] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, and S. De. Resurrecting
recurrent neural networks for long sequences. arXiv preprint arXiv:2303.06349, 2023.

[43] M. Poli, S. Massaroli, E. Nguyen, D. Y. Fu, T. Dao, S. Baccus, Y. Bengio, S. Ermon, and
C. Ré. Hyena hierarchy: Towards larger convolutional language models. arXiv preprint
arXiv:2302.10866, 2023.

[44] M. N. Rabe and C. Staats. Self-attention does not need o(n2) memory. arXiv preprint
arXiv:2112.05682, 2021.

[45] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[46] J. W. Rae, A. Potapenko, S. M. Jayakumar, and T. P. Lillicrap. Compressive transformers for
long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

[47] R. M. Rao, J. Liu, R. Verkuil, J. Meier, J. Canny, P. Abbeel, T. Sercu, and A. Rives. Msa
transformer. In International Conference on Machine Learning, pages 8844–8856. PMLR,
2021.

[48] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 3505–3506,
2020.

[49] K. M. Ruff and R. V. Pappu. Alphafold and implications for intrinsically disordered proteins.
Journal of Molecular Biology, 433(20):167208, 2021.

[50] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[51] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-lm:
Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[52] Y. Tay, M. Dehghani, S. Abnar, H. W. Chung, W. Fedus, J. Rao, S. Narang, V. Q. Tran,
D. Yogatama, and D. Metzler. Scaling laws vs model architectures: How does inductive bias
influence scaling? arXiv preprint arXiv:2207.10551, 2022.

[53] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient transformers: A survey. ACM
Computing Surveys, 55(6):1–28, 2022.

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[55] J. Wang, J. N. Yan, A. Gu, and A. M. Rush. Pretraining without attention. arXiv preprint
arXiv:2212.10544, 2022.

13



[56] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020.

[57] Y. Xu, H. Lee, D. Chen, B. Hechtman, Y. Huang, R. Joshi, M. Krikun, D. Lepikhin, A. Ly,
M. Maggioni, et al. Gspmd: general and scalable parallelization for ml computation graphs.
arXiv preprint arXiv:2105.04663, 2021.

[58] D. Yarats, D. Brandfonbrener, H. Liu, M. Laskin, P. Abbeel, A. Lazaric, and L. Pinto. Don’t
change the algorithm, change the data: Exploratory data for offline reinforcement learning.
arXiv preprint arXiv:2201.13425, 2022.

[59] S. Zhai, W. Talbott, N. Srivastava, C. Huang, H. Goh, R. Zhang, and J. Susskind. An attention
free transformer. arXiv preprint arXiv:2105.14103, 2021.

[60] Z. Zhang, Y. Lin, Z. Liu, P. Li, M. Sun, and J. Zhou. Moefication: Transformer feed-forward
layers are mixtures of experts. arXiv preprint arXiv:2110.01786, 2021.

[61] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang, Y. Wang, Y. Xu, D. Zhuo, E. P. Xing,
et al. Alpa: Automating inter-and {Intra-Operator} parallelism for distributed deep learning. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pages
559–578, 2022.

[62] S. Zuo, Q. Zhang, C. Liang, P. He, T. Zhao, and W. Chen. Moebert: from bert to mixture-of-
experts via importance-guided adaptation. arXiv preprint arXiv:2204.07675, 2022.

14



A Experiment Details

A.1 Evaluation of Memory

In the experimental results presented in Section 5.1, we used model parallelism to partition the
model across 8 GPUs or 64 TPUv4 units. Our evaluation focused on determining the maximum
achievable sequence length, using a sequence number of one. For TPUs, we utilized its default
training configuration, which involved performing matmul operations in bfloat16 format with
weight accumulation in float32. On the other hand, for GPUs, we adopted the default setup, where
all operations were performed in float32.

To profile memory usage, we utilized jax.profile and repeated the evaluation 100 times, reporting
the average results. We conducted a grid search for the optimal query block size and key-value
block size, considering values from the set [16, 64, 128, 512, 1024, 2048, 4096]. For each method,
we reported the lowest memory achieved.

A.2 Evaluation of Throughput

In the evaluation presented in Section 5.2, we split OpenWebText following the methodology
of [2]. Throughput is measured as tokens per device per second. To ensure a fair compari-
son, we performed a grid search for the optimal query block size and key-value block size, con-
sidering values from the set [16, 64, 128, 512, 1024, 2048, 4096]. For gradient checkpointing [8],
we additionally grid search among three commonly used checkpointing policies including noth-
ing_saveable, dots_saveable, and dots_with_no_batch_dims_saveable for attention and
use nothing_saveable for feedforward network (FFN). For more details, please refer to Jax
documentation. We selected the best performing configuration for both baselines and our method.

The training was conducted using FSDP [16] and gradient accumulation. We used weight decay of
0.1 and utilized cosine learning rate decay with a maximum learning rate of 2.0× e−4. For sequence
lengths of 2048, 4096, 8192, 16384, the batch sizes in trajectories were set as 8, 4, 2, 1, 1 respectively.
We use gradient accumulation to accumulate batch size in tokens to 1 million per batch.

A.3 Evaluation on RL

Table 6: Hyperparameters used in RL evaluation.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Activation function ReLU
Batch size 64
Dropout 0.1
Learning rate 10−4

Learning rate decay Linear warmup for 105 steps
Grad norm clip 0.25
Weight decay 10−4

Initial desired target return at test time 850 Walker Stand
400 Walker Run
900 Walker Walk
350 Cheetah Run
300 Jaco Reach
800 Cartpole Swingup

Number of trajectories during training 4 → 32
Number of trajectories at test time 4 → 16

In the experiment presented in Section 5.3, we followed the prior work’s setting for learning rate,
batch size, and other hyperparameters, while modifying the number of trajectories. The specific
hyperparameters are provided in Table 6. The original agentic transformers used 4 trajectories during
training, we increase the number to 32.

During testing, increasing the number of trajectories has been shown to improve performance.
However, performing autoregressive sampling over a large number of trajectories (e.g., 64× 1000× 4

15



total number of tokens) can be computationally slow. To reduce the sampling time, we limited the
rollout to 16 trajectories.

16



1 def blockwise_ffn(remat_ffn, inputs, chunk_size, deterministic):
2 # remat_ffn: a rematerialized ffn
3 inputs = rearrange(inputs, 'b (c n) d -> b c n d', c=chunk_size)
4 def scan_ffn(remat_ffn, carry, hidden_states):
5 outputs = remat_ffn(hidden_states, deterministic=deterministic)
6 return carry, outputs
7 scan_axis = inputs.ndim - 2
8 _, res = nn.scan(
9 scan_ffn,

10 variable_broadcast="params",
11 split_rngs={"params": False, "dropout": True},
12 in_axes=scan_axis,
13 out_axes=scan_axis,
14 )(remat_ffn, None, inputs)
15 res = rearrange(res, 'b c n d -> b (c n) d')
16 return res
17

18 def blockwise_attn(query, key, value, query_chunk_size,
19 key_chunk_size, dtype, policy, precision, prevent_cse):
20 query = query / jnp.sqrt(query.shape[-1]).astype(dtype)
21 query = rearrange(query, 'b (c n) h d -> n b c h d', c=query_chunk_size)
22 key, value = map(lambda t: rearrange(t, 'b (c n) h d -> n b c h d',
23 c=key_chunk_size), (key, value))
24 num_q, batch, _, num_heads, dim_per_head = query.shape
25 num_kv = key.shape[0]
26 def scan_attention(args):
27 query_chunk, query_chunk_idx = args
28 @functools.partial(jax.checkpoint, prevent_cse=prevent_cse, policy=policy)
29 def scan_kv_block(carry, args):
30 key_chunk, value_chunk, key_chunk_idx = args
31 (numerator, denominator, prev_max_score) = carry
32 attn_weights = jnp.einsum('bqhd,bkhd->bqhk', query_chunk,
33 key_chunk, precision=precision)
34 bias_chunk = _chunk_bias_fn(query_chunk_idx, key_chunk_idx)
35 bias_chunk = jnp.moveaxis(bias_chunk, 1, 2)
36 attn_weights = attn_weights + bias_chunk
37

38 max_score = jnp.max(attn_weights, axis=-1, keepdims=True)
39 max_score = jnp.maximum(prev_max_score, max_score)
40 max_score = jax.lax.stop_gradient(max_score)
41 exp_weights = jnp.exp(attn_weights - max_score)
42 exp_values = jnp.einsum(
43 'bqhv,bvhf->bqhf', exp_weights, value_chunk, precision=precision
44 )
45 correction = jnp.exp(prev_max_score - max_score)
46 numerator = numerator * correction + exp_values
47 denominator = denominator * correction + exp_weights.sum(axis=-1, keepdims=True)
48 return Carry(numerator, denominator, max_score), None
49 init_carry = Carry(
50 jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=query.dtype),
51 jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=query.dtype),
52 (-jnp.inf) * jnp.ones((batch, query_chunk_size, num_heads, 1), dtype=query.dtype),
53 )
54 (numerator, denominator, max_score), _ = lax.scan(
55 scan_kv_block, init_carry, xs=(key, value, jnp.arange(0, num_kv))
56 )
57 outputs = (numerator / denominator).astype(dtype)
58 return outputs
59 _, res = lax.scan(
60 lambda _, x: ((), scan_attention(x)),
61 (), xs=(query, jnp.arange(0, num_q))
62 )
63 res = rearrange(res, 'n b c h d -> b (n c) h d')
64 return res

Figure 3: Key parts of the implementation of Blockwise Parallel in Jax. The full code is available
at https://github.com/lhao499/llm_large_context

17

https://github.com/lhao499/llm_large_context

	Introduction
	Memory Bottleneck of Transformer
	Blockwise Parallel for Large Context Models
	Analysis of Memory Cost
	Why Blockwise Parallel
	Implementation

	Setting
	Results
	Evaluation of Context Length
	Evaluation on Throughput and Speed
	Evaluation on Reinforcement Learning

	Related Work
	Conclusion
	Experiment Details
	Evaluation of Memory
	Evaluation of Throughput
	Evaluation on RL


