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Appendix

A Optimal Monteiro-Svaiter Acceleration Framework

In this section, we present some general results that hold for the Monteiro-Svaiter Acceleration
framework. In particular, in the first part of this section (Section [A.T)), we present the proof of
Proposition [T}

A.1 Proof of Proposition

To begin with, we establish a potential function for Algorithm I, as shown in Proposition 2. The
result is similar to Proposition 1 in [31]], but for completeness we present its proof loosely following
the strategy in [44] Theorem 5.3]. To simplify the notations, we use f* to denote the optimal f(x*).

Proposition 2. Consider the iterates generated by Algorithm[l} If f is convex, then

1 1
Arpr(F(xks1) = £7) + llzen =X < A(F (k) = £7) + 5llze —x"1* @D

Moreover, let o0 = a1 + ag and we have

N—-1 o

(53N
> ElRer1 -yl <
k=0 Tk

ozl =<7 (22)

Proof. Since f is convex, it holds that

F(xk) = f(Xv1) = (VF(Xig1), Xk — Xgg1) >0,
F(X") = f(Xig1) — (Vf(Xpg1), X" — Xpq1) > 0.

By summing up the two inequalities with weights aj, and Ay, respectively, we get

* A * A * A A A
Ap(f(xk) = f7) = (A +a) (f Rit1) = f7) — an(V f (Ri1), X5 = Kppp1 — ?:(Xk+1 —xx)) = 0.
(23)
Let zg11 = X1 + ’%‘(kkH — Xy, ). By rearranging the terms, can be rewritten as
(Ak + ap) (f Kp+1) = 1) = Ap(f(xx) = [7) < ar{V [ (Rpet1), 21 — X7). 24)
Moreover, note that the update rule for z1 in both (9) and can be written as
Mk R
Ziy1 — Zj = *%akvf(xkﬂ)- (25)
Also, since we also have z;, = yx + %:(yk — xy,) from , we can write
_ . A . A
Zj+1 — Zk = |Xp41 + l(xk—&-l - Xk):| - [Yk- + l()’k - Xp)
a Qg
A+ ay . ag ,
= L E K1 — ya) = — (K1 — Vi) (26)
Qg Nk

where we used the fact that (A + ax)n, = aj in the last equality (cf. (2)). Hence, combining
and leads to

- - (273N ~ N [£270%
Zrs1—2k1 1|l = Zh1 — 2o —(Zog1—26) || = a||xk+1_Yk+77kvf(Xk+l)H < J*kHXkH—YkH'

27
where we used (8) in the last inequality. In the following, we distinguish two cases depending on
N = Nk or N, < Mg. In both cases, we shall prove that

(1—0%)a? .
T’“kaﬂ—kaQ.
k

(28)

Ap (F G =) g e =7 < Ap(F000) )+ 5 =P

13
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If this is true, then Proposition |Z immediately follows. Indeed, since o < 1, the last term in the
right-hand side of is negative, which implies (21). Moreover, follows from summing the
inequality in fromk=0to N — 1.

Case I: 7, = 7. Since by (9) we have xx+1 = Xg4+1 and Ay = Ay + ag, becomes
A1 (f(Xp41) = 1) = Ae(f(xx) = [7) < a{V f (Xpet1), Zre1 — X7).
Using zx+1 = 2 — a;V f(xg+1) in (9), we have
A1 (f(xpe1) = f7) — Ar(f(xx) = f7)
< (2k — Zrt1, Zpt1 — X7)
= (2Zk — Zkt1, Zht1 — Zht1) + (Zk — Zh1, 2y — X7)

1, . 1, .
= 5 llze= >+ 12 = zia||® — 1201 — z.||” (29)
1 1
+§|\Zk—x*||2—§||zk+1 —X*||2—§||Zk— 2

(1 B 0'2)&% I
2n?

where we used and in the last inequality. This immediately leads to after rearranging
the terms.

1 1
< Sl = X117 = Sllzes — x| - %1 — yll?,

s : _ (A=) Ak Ve (Ar+ak) 5 :
Case II: ), < m. Since 0 < v, < 1 and X341 = ArFyear Xk + ArTorar Xk+1 according to (10,

by Jensen’s inequality we have (A + yiar) f (Xep+1) < Y6 (Ar + ar) f(Xk+1) + (1 — vi) A f (xk),
which further implies that

(Ax+ykar) (f (Xe41) = ) = Ak (f (%) = ) < (A +ar) (f Kis1) = ) = A (f (xk) = 7).
Moreover, since Ag1 = Ag + yrar by (10), together with we obtain
A1 (f (1) = f7) = A (f(xx) = f7) < yean(Vf(Xit1), 21 — X7).
Using zx+1 = zx — YkarV f (X+1) in (10), we follow the same reasoning as in to get:
Apr (f(Xpg1) = ) = Ar(f(xk) — f7)
<2k — Zht1, Zky1 — X7)
= (2Zk — Zrt1,Zhy1 — Zhy1) + (B — Zht 1, Zht1 — X7)

1 1
= 5llze= I* + 3 Zks1 — zp1|? - DL zi|)?
Ttz = X2 = Sl — X — =g ?
2 g 7k +1 2

1 21 2 (1—0%)aj 2
< gllze =7 = Sllzers — %77 - WkaJrl = yell*
which also leads to (28). O

Next, we prove a lower bound on A . Recall that B denotes the set of iteration indices where the
line search scheme backtracks, i.e., B = {k : fjp < n3}.

Lemma 3. Forany N > 0, it holds that

1 2
AN24< ot > \/nTc) (30)

1<k<N-1,k¢B

Proof. To begin with, according to the update rule of A1 in (9) and and the expression of ay,
in (2), the sequence { Ay} follows the dynamic:

Ay + ag, if Ny =, (k ¢ B); Nk Mk + /1 + 4k Ar
A = o " where v, = = and a;, = .
F {Ak +yeak, if g < (k€ B), Tk g 2
Since we initialize Ay = 0, we have ag = 79. We further have A; = 7jy, since we get A; =

Ag + ag = 1jp if 0 ¢ B, while we get A; = Ag + Yoao = Z—Eno =19 if 0 € B. Moreover:

14
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e In Case I where k ¢ BB, we have

+V/1f + 4 Ay )
Aues = A = Ay BT ’“>Ak+772k+\/m><\/fk+\/jk>,

which further implies that /Ax+1 > VA + \/2"7 = VAL + @

e In Case II where k € BB, we have A1 = Ay + Yrar > Ay, which implies that \/Ax11 > / Ag.
Considering the above, we obtain Ay > VA1 + 30 cp o1 1es Yk which leads to (30). [

Lemma|3 provides a lower bound on A in terms of the step sizes 7j, in those iterations where the
line search scheme does not backtrack, i.e., k& ¢ B. The following lemma shows how we can further

prove a lower bound in terms of all the step sizes {ﬁk}]kvz_ol.

Lemma 4. We have

> Jﬁ?gl_lﬂ Vie+r Y Vil (31)

1<k<N-1,keB 1<k<N-1,k¢B

As a corollary, we have

. — _1-VBR=
Vin+ Y @zz_ﬁ;ﬁc. (32)

1<k<N-1,k¢B

Proof. When the line search scheme backtracks, i.e., k € BB, we have 7, < Bny. Therefore,

N—-1 N-2
N Viks Y VB VB =B+ > VB (33)
k=1 k=1

1<k<N-1,keB 1<k<N-1,keB

Moreover, in the update of Algorithm we have g1 = 1 /B if k ¢ B (cf. Line and k41 = Nk
otherwise (cf. Line[13). This implies that 7, < 7)o/3 and we further have

N2
VB A Y Bk =/ Bm + > Bikg1 + > V BNkt
k=1

1<k<N-2,k¢B 1<k<N-2,keB

< Vo + > Ve + > V Bk
1<k<N-2,k¢B 1<k<N-2,keB

<Vio+ > Viak+ Y, VB (34)
1<k<N-1,k¢B 1<k<N-1,keB

We combine and to get

Y. VsVt Y Vit Y, VB

1<k<N-1,keB 1<k<N-1,k¢B 1<k<N-1,keB

By rearranging the terms and simple algebraic manipulation, we obtain as desired. Finally,
follows by adding /7o + 31 << n—1 k¢ Vi to both sides of B1). O

Now we are ready to prove Proposition|[T}

Proof of Proposition[I] By Proposition the potential function ¢, = A (f(xx)— f*)+ 4|2k —x* |2
is non-increasing in each iteration. Hence, via a recursive augment we have Ay (f(xy) — f*) <

on < - < g = %Hzo — x*||2, which yields f(xy) — f* < W. Moreover, combining
Lemma [3|and in Lemma 4] leads to the second inequality in Proposition [T} O
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A.2 Additional Supporting Lemmas

A crucial part of our analysis is to bound the path length of the sequence {yy }2_,. This is done in
Lemma(8] To achieve this goal we first present the results in Lemmas which provide the required
ingredients for proving the claim in Lemma 8] In our first intermediate result, we establish uniform
upper bounds for the error terms ||z, — x*|| and ||xz — x*||.

Lemma 5. Recall that 0 = oy + as. For all k > 0, we have ||z, — x*|| < ||zg — x*|| and

2
1—02

i — x| < 20 - x*|.

Proof. To begin with, it follows from (21)) in Proposition [2] that
Sz =x7 12 < Ak (f(er) = )+ S llze =717 < Ao(f(x0) = f7) 45 ll20 =71 = 5120 —x"|*.

Hence, we get ||z — x*|| < ||zo — x*|| for any k& > 0. To show the second inequality, we distinguish
two cases and in both cases we will prove that
N N 202%a? . .
Apr |31 —x [ < Aller =[P+ (Ap1—A) p E 1%k =y kP +2( Ak — Ak |21 =%
k
(35)
Case I: 7, = 1. Recall that in the proof of Propositionwe defined Z 1 = Xg1+ f—: (X1 —Xk)-

Since xj+1 = Xk41, We have Xg 11 = ﬁxk + ﬁi;ﬂ_l and by Jensen’s inequality

Ay ag -
Xpp1 — X% < ——|Ixp — x|+ ——||Zer1 — x*||%
s =2 < e =P g —
Furthermore, we have
~ *(12 ~ 2 |2 202@% : 2 112
128110 =17 < 2012k 41 —2h4 1 [7+ 2|20 =X < 72 %1 =Yell"+ 2|20 =77, (36)
k
where we used in the last inequality. By combining the above two inequalities, we obtain
202%a?
(Ap + ap)[xerr — x| < Agllxr —x*|* + a po E%k1 = yull* + 2ak |2k — X7, 37
k

which leads to (note that Ay 1 = Ay + ay, in Case I).

(A=) Ak xp + Vi (Ax+ar) 4

. Q _ N _ A ar ~
Case II: Since x;11 = A tsar A toray Xkt1 and X;41 = Ak‘&ak X + Akj;ak Zj41, WE

have
Ay YOk -

Xk Z
Ap + Vrag Ag + Yrag
Similarly, by Jensen’s inequality we have
(Age + yar)[xe41 —x|° < Apllxr — x| + year]| 21 — x|
Combining this inequality with (36), we obtain

Xkp+1 = k+1-

N 20%a2 .
(Aptyrar) | xpr1—x | < Agllxe—x|*+year po PR =yl P4+ 270ak || 2k —x* 7. (38)
k

which leads to (note that A1 = Ax + Yray in Case II).
Now by summing overk =0,...,N — 1, we get

N-1 N-1
By 20%a2 . *
Anllxy = x* |2 < (Akr — Ap) =52 [Rrgr = yel® + Y 2(Aksr — Ap)|zegr — X7
k=0 Mk k=0
(39
N-1 N-1 o N-1
<20 ) (Appr — A) Y 5l &kgr — yil® + 2llzo — X I° Y (Apyr — Ak)
k=0 =0 Tk k=0
(40)
202 N N
< TsAnllzo —x 12 + 24N ||zo — x*||? 1)
2AN w12
:1_0_2HZO—X II<. (42)
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ses  Hence, this implies that ||x), — x*[|? < +25||zo — x*||? for any k > 0. O

s64 A key term appearing in several of our bounds is Ak+a1k4:k+1 . In the next lemma, we establish an
s65 upper bound for this ratio based on a factor of its previous value, for both cases of our algorithm.
Ak+1 1 ag

ses Lemma 6. Without loss of generality assume 3 > 1/5. In Case I we have .

k1 < 2B __ay
t1tars1r — B+l Aptag”

Titart1 — B Axtar’

s67  Otherwise, in Case II we have I

ses  Proof. By the choice of ay, in ([2) we have ny(Ay, + ai) = af forall k > 0. As a result, we have

% Tk 21k — 2 (43)
Ay + ay, ag 7]k+\/77]%+477k14k 14+ /1_#4&7
Nk
s69 and similarly
Af+1 _ 2 (44)

Ap1 + ag1 1+ /1+4Ak+1.
Mk+1

570 In Case I, we have 1 = ni /8 and A1 > Ag. Hence, it implies that Ag11/nk+1 > BAk/ Mk,
571 which leads to

A1 2 2 1 ag

2 1
< —_—— =

Apyq + apsr — 18As 18A AL Ap +ar
ntan Ty 1y 8T g gy A VB f1pade VB

Nk

572 where the second inequality follows from the fact that 5 < 1.

573 In Case II, we have 11 = 7, = Ve, and Ag11 = A + Yyxag. Since we also have aj, > ny and
574y, < B, weobtain Agi1/nk11 > Ar/(yene) +1 > Ag/(Bnr) + 1. Hence,

a+1 < 2 < 2 < 2VB 2 _ 2B
Appr+apsr — 4 /5+%12: _1+ﬁ /1+%_\/B+11+ 1+% VB+1 A+ ay’

575 where we used § > 1/5 in the second inequality and the fact that 1 + ﬁ x> \éﬁ\/%l (14 z) for

s76 « > 1 in the last inequality.

577 Next, as a corollary of Lemma@ we establish an upper bound on the series Zg;ol A:_ﬁak . Moreover,
578 we use this result to establish an upper bound for fo;ol I%k+1 — yill-
579 Lemma 7. We have
N-1
1420 — A
v oa 1B B(l—HogN). (45)
= Ag + ag VB—p Ay
580 Moreover,
N-1
. 1 1+2V/B-8 An
— < 1+ log — —x*. 46
;lekﬂ yk_\/l_o_g NG +log 7 |20 — x| (46)

581 Proof. Given the initial values of A and a; we have

N-—1 N—-1

ag Qg Q. [47%
LR S o SRV o o
= Ax + = Artax weB a1 Ak Tk k¢5,k21A’“+a’“

17



ss2  Note that using the result in Lemma|§|

Qg  Ok41
< 48
Z Ap+ap — Z Apy “%)

a
keB,k>1 1+ Gk

_ Z Ak+1 + Z Ak+1 (49)

Apt1 + apsr Apt1 + app1

kB k>0 keB k>0
ag
< > + D (50)
k¢6k>0fAk+ak kBk>0\F+1Ak+ak

ax
\/B+ Z \/>Ak+ak Z f+1Ak+ak D

k¢B,k>1 keBk>1

s83 Hence, if we move the last term in the above upper bound to the left hand side and rescale both sides
ss4  of the resulted inequality we obtain

ag ].-l-\/B ag
Z Ak+ak§\/Bﬂ(1+ Z Ak—i—ak)' (52)

kEB,k>1 k¢Bk>1

585 Now, if we replace the above upper bound into (47) we obtain

ag 1+2\/B*5 ag
ZAk—i—ak_ VB—5 <1+ Z Ak—I—ak)' ©3)

kgB,k>1

sss  Moreover, note that for k& ¢ B, we have Ay1 = Ax + ai. Hence,

> oty <1AAk )S Z (1og(Ay+1) — log(Ar))

A a
k¢B,k>1 k¢B,k>1

= A
Z (log(Ak41) — log(Ax)) = log A%V.
k=1

ss7  Now if we replace the above upper bound, i.e., log & with 0, ¢Bk>1 Ak e into the expression in
sss  the right-hand side of (53)) we obtain the result in

589 Next, note that by Cauchy-Schwarz inequality, we have

N-1 o N-1 .

N-1 . ;N n?
D I&ksr — yill < Z - Z ’“ka+1 Vel <\ 103 > a%llZo —x"
k=0 k=0 K

590 where the last inequality follows from (22). Moreover, based on the expression for a; in (2)) and the
so1  result in that we just proved, we have

N—-1

2 1 2V — A
I S D D L (RS )
= aj. Ak + ak Ak + ak \/B - p Ay
s92  Combining the two mequahtles above leads to (46). O

se3 Now we are ready to present and prove Lemma|[8] which characterizes a bound on the path length of
se+ the sequence {yj}1_,

sos  Lemma 8. Consider the iterates generated by Algorithm[l| Then for any N,
N—1

AN
> Iyeen —vill < Ca 1108 5 o — ' 54
k=0

_ 1 1+2y-8 1 2 \1+2/B-7
02‘2\/102 e e e )
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Proof. By the triangle inequality, we have

lye — Yrsll < 1%err — Yol + [[Xer1 — Yrsall- (56)
We again distinguish two cases.

. . N A
Case I: 7j;, = 1. In this case X411 = Xg41 and ygy1 = 714“1’:“;“1 Xpt+1 + 7Ak+a1k:;k+1 Zj.11, hence
X a1 l|Zi1 — Xl _ 1 2\ arllzo —x"|
Krrn — = Ilxpiq — — < — 144/
[%k+1 = Yrsrll = %41 =yt A1 + Qs = VB 1— 02 A +ap
(57)

where we used Lemma [6 and the fact that [|z11 — Xp41] < [|zrg1 — x*|| + [[xps1 — x*|| <
(1+ 2 )||zo — x*|| in the last inequality. Therefore, using and the above bound we have

1—02
1 2 ar
— < ||%Xgr1 — +—(1+ zo — X" . 58
=yl < e -l + 5 (14 2 ) -] 9
X i — A YAk 5 o _ A an, =
Case II: 7, < ng. Since Xp11 = Ak+";kak X + Aot ean Zht1 and X1 = Ak“fak X + Ak'tak Zit1,
we get
St Ay (x L (x ; ))+ ar oo Ak""Ykak:x +<1_'Yk)akz
k41 = > ( Xkt 1+ —— (X1~ Zk+1 T Zk41 = k+1 k+1-
+ Ax + ag + Ay * + Ag + ag + Ag + ag * Ag + ag *
Thus, given the above equality and the expression for yx41, i.€., Yxtr1 = ﬁxkﬂ +
ag41
A a2kl We have
. (1 —)ak - (1 —vk)ak Ak+1
Xk+1 = Yht1ll £ ————|Zk+1 — Zit1|| + - Zk+1 — Xk41]|-
(S = Yoot | € S s~z [ T x|
(39)

Moreover, based on the result in (27), we can upper bound ||Zg 41 — zg41|| by U%”f{k_}rl -yl
which implies that

(1 —yp)a (1—w)ap . . .
—_— —||X - =o(l—- X - < ||x —
Ap + ar nk(Ak+ak)” k+1 }’k|| ( 'Yk)” k+1 YkH > || k+1 YkH

where the equality holds due to the definition of ay, and the last inequality holds as both ~; and o are
in (0, 1). On the other hand, note that

|Zk+1—2Zk 1l < o

(I—w)ar  app < (1 —yn)aw < 60)
A + ag Apy1 + apqr Ap + ay, A + ay,
aprr  (L=wak _ 2v/Bay, _ O —mar o a 61)
Appr+tapyr Aptar — B+ Ag+ar) Artar T Aptag

2sqrtpB
VB+1

where in the second bound we used the result in LemmalEand the fact that < 1. Hence, we

get

akllzo — x*||
A +ag
(62

a||zrg1 — Xy ||
A + ag

N - . 2
A P A S ()

where the last inequality follows from the fact ||z;11 — Xp41]| < ||Zk+1 — X*|| + ||Xk+1 — x*|| and
the bounds in Lemma[5] Now by applying the above upper bound into (56) we obtain that

2 (7%
- < 2||Xpy1 — 1 —x". 63
s =yl < 2 —vall+ (144 o0 ) £ a6

Considering the upper bounds established for ||y, — yx+1| in case I (equation (58)) and case II
(equation (63)), we can conclude that

1 2 ag
- < 2||Xpq1 — —(1 — x| 64
= vunl < 2% - vl + o (14 o ) -l 6

Finally, Lemmal|8| follows from summing over k = 0to N — 1 and the result of Lemma[7| [
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Subroutine 1 Backtracking line search

: Input: iterate y € R?, gradient g € R?, Hessian approximation B € S, initial trial step size 7 > 0
: Parameters: line search parameters 8 € (0,1), a1 > 0 and as > O such that oy + a2 < 1
: Setn) <1

: Compute s; < LinearSolver(I + /1B, —7jg; 1) and X4 < y + s4

o while % —y + AV f(X4)[l2 > (a1 + a2)[|X4 — y||2 do

Set X4 < x4 and 7} < (7

Compute s+ < LinearSolver(I + 7B, —7jg; 1) and X4+ <y + s+

: end while

: if ) = 7 then

Return 7 and X4

: else

Return 7, X4 and X+

: end if

SOPTPU AW —

—_— —
W =

B Line Search Subroutine

In this section, we provide further details on our line search subroutine in Section[3.1} For complete-
ness, the pseudocode of our line search scheme is shown in Subroutine[I. In Section[B.T, we prove
that Subrountine [T| will always terminate in a finite number of steps. In Section[B.Z, we provide the
proof of Lemmal]

B.1 The line search subroutine terminates properly

Recall that in our line search scheme, we keep decreasing the step size 7 by a factor of 5 until we
find a pair (7, X, ) satisfying (also see Lines[5|and[6]in Subroutine1). In the following lemma,
we show that when the step size 7} is smaller than a certain threshold, then the pair (1), X, ) satisfies
both conditions in and (12), which further implies that Subroutine [T] will stop in a finite number
of steps.

Lemma 9. Suppose Assumptioanholds. If i) < £ and X4 is computed according to (13),
op
then the pair (1), X satisfies the conditions in (L1)) and (12).

Proof. By Deﬁnition the pair (77, X+ ) always satisfies the condition in when X is computed
from (13). Hence, in the following we only need to prove that the condition in also holds. Recall
thatg = Vf(y). By Assumption the function f is L;-smooth and thus we have

Vi) =gl = IV &) = VI < Luflxy =yl
Moreover, by using the triangle inequality, we get
IVix4) —g =By —y)l < [IVFx4) — gl + [Bxy = y)I| < (L1 + [Bllop)[[%4+ = ylI-

Hence, if 7 < , we have

V&) —g =By —y)ll < eflxy =y (65)
Finally, by using the triangle inequality, we can combine and to show that
1%y =y +0VIEDI = %+ —y +0(g + By —y)) +0(Vf(x4) —g - B —y))|
< —y +i(g+ By —y)I+ [9(VF(x4) —g = BEy —y))ll
< anfxy =yl +azlxy -y
< (n + g%y =y,

as
Li+[Bllop

which means the condition in is satisfied. The proof is now complete. O

B.2 Proof of Lemmal[l]
We follow a similar proof strategy as Lemma 3 in [34]]. In the first case where k ¢ BB, by definition, the

line search subroutine accepts the initial step size 7, i.e., Ny = 7. In the second case where k € 55,
the line search subroutine backtracks and returns the auxiliary iterate X1, which is computed from
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(13) using the step size 7, = 7y /3. Since the step size 7jy, is rejected in our line search subroutine, it
implies that the pair (X1, 7Jx) does not satisfy (12)), i.e.,

1Xit1 — Yi + V(X1 > (a0 + a2)[Xet1 — Yil|- (66)

Moreover, since we compute X1 from (13)) using step size 7y, the pair (7, Xx+1) also satisfies the
condition in (11}, which means

[%k+1 — yi + k(VF(ye) + Br(Xpt1 — yu)ll < cal|Xe1 — yll- (67)
Hence, by using the triangle inequality, we can combine and to get
eIV f(Xk1) = V(i) — Be(Xi1 — ye)||
> [1%pkt1 — ¥ + 6V F X)) = [1Ret1 — ye + 3(VF(yr) + Be(Xet1 — )l
> (a1 + a2)||Xp1 — yrll — eal[Kes1 — vl
= aal[Xp 1 — Yl

which implies that

2B|Xk+1 — Vil
IV f(Xk+1) = VF(yr) = Be(Xi+1 — v
This proves the first inequality in (14).

To show the second inequality in (14)), first note that X1 and X are the inexact solutions of the
linear system of equations

ﬁk=5ﬁk>|

(I+mBr)(x —yr) = —7kgr and  (I+9Bg)(x — yr) = =78k,

respectively. Let X7, ; and X}, ; be the exact solutions of the above linear systems, that is, Xj , ; =
yr — e(I + 7xBx) " 'gx and X =y — (I + MBr) " 'gr. We first establish the following
inequality between ||X}_, | — y&|l and ||X}_,; — y&l:

ok 1 ook
X511 — Y&l < B”XkJrl — Ykl (68)
This follows from

~ % ~ ~ — ~ ~ — ﬁk Ak 1 ok
%51 =yrll = 176 T+ Br) gl < il (T+7:Br) ~ gl = ﬁkaXkH*}’kH = §||Xk+1*}’k||,

where we used the fact that (I + 7j;B) ™! < (I + 7 B) ! in the first inequality. Furthermore, we
can show that

(1 = a1 =yl < %00 = yill < (4 @)K = yill, (69)
(1 = a)[[Rps1 =yl < Kisr = vall < (14 o) [Rera = yrll- (70)

We will only prove in the following, as can be proved similarly. Note that since (7, X 1)
satisfies the condition in (11]), we can write

Xk+1 — yi + 0k(8r + Br(Xer1 — ye) Il = [[(T+ 0Br) (Xkv1 — X)) | < 1 l[Xnr1r — vl

Moreover, since By, = 0, we have [|X 1 —Xj 1 | < [(T+0:Br) (X1 =X 1)l < a1 |Xer1—yll-
Thus, by the triangle inequality, we obtain

%51 = ol < [Reir = ol + %1 = Ko ll < (14 @) [Reen =yl

%51 = Vel = Res1 =yl = X1 = Xl = (1= @) [Kera — vl
which proves (69). Finally, by combining (68)), and (70), we conclude that

14+ o

1 1
S _ < = % _ < = ||x* _ < 7 % _ )
e =yl < T Kb =94l € g Ik = yhll € g e =il

This completes the proof.
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C Hessian Approximation Update

In this section, we fully describe our Hessian approximation update in Section [3.2] We first prove
Lemmal2in Section[C.T.

C.1 Proof of Lemmal[2|

N-1
We decompose the sum 3, " - as
k

N-1 1 1
=A2+ P~ S W~ (71)

EY)
o Tk <"1 ke Tk 1<k<N-1,k¢B "k

Recall that we have 7j;, = n, for k ¢ B. Hence, we can further bound the last term by

=2

-1

1 1 1
DI T DI P S5
1<k<N-1,k¢B 'F  1<k<N-1k¢B 'F k=1 'k
1 1 1
LD —+ D 7
M cp<N—2keB T+l 1§k§N—2,k¢Bnk+1

Recall that we have n;11 = 7y if kK € B and ni11 = 7./ 3 otherwise. Hence, we further have

1 1 1

Z <=5+ Z 7 + Z 2
1<k<N—1,kgB 1<k<N-2,keB 'K+l 1<k<N-2kgB 'kt1
1 32
TSV S
1 i<k<N—2keB '*  1<k<N-2kgB 'k

1 1 2
SR D Y S
T j<k<n—1keB Tk 1<k<N-1,k¢B "k

S
=

I
ol
+

By moving the last term to the left-hand side and dividing both sides by 1 — 32, we obtain

1 1
S 2+ o= (72)

1<k<N-1,k¢B M cp<N=1keB Tk

> = <
Furthermore, since 1; > 7y, we have - o . Hence, by combining (71)) and (72)), we get

- _2- 52 1 1 2 - B2 232 1

TIO 1<k<N-—1,keB Ml 0<k<N-1,keB

where in the last inequality we used the fact that 7, = o¢ if 0 ¢ 5. Finally, follows from

Lemmal/l]and (73).

C.2 The computational cost of Euclidean projection

Recall that Z 2 {B ¢ Si : 0 X B < L1I}. As described in [34] Section D.1], the Euclidean
projection on Z has a closed form solution. Specifically, Given the input A € S¢, we first need
to perform the eigendecomposition A = VAV, where V is an orthogonal matrix and A =
diag(Aq, .. )\d) is a diagonal matrix. Then the Euclidean prOJectlon of A onto Z is given by
VAVT, Where A is a diagonal matrix with the diagonals being A, = rmn{Ll7 max{0, Ay }} for
1 < k < d. Since the eigendecomposition requires O(d?) arithmetic operations in general, the cost
of computing the Euclidean projection can be prohibitive.
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Algorithm 2 Projection-Free Online Learning

1: Input: Initial point wg € Br(0), step size p > 0,6 > 0
2: fort=0,1,... T — 1do
3:  Query the oracle (¢, s¢) < SEP(wy; dy)

4 if . < 1then # Casel: we have wy € C

5 Set x; <— w; and play the action x

6: Receive the loss £¢(x;) and the gradient g, = V(%)
7 Set gt — gt

8 else # Case II: we have w /v € C

9: Set x; < w/v: and play the action x;

10: Receive the loss £¢(x;) and the gradient g; = V(%)
11: Set g < g¢ + max{0, —(g:, x¢) }s:

12:  endif

13:  Update w41 < m (wie—pg:) # Euclidean projection onto Br(0)
14: end for

C.3 Online Learning with an Approximate Separation Oracle

To set the stage for our Hessian approximation matrix update, we first describe a projection-free
online learning algorithm in a general setup. Specifically, the online learning protocol is as follows:
For rounds t = 0,1,...,T — 1, a learner chooses an action x; € C from a convex set C and then
observes a loss function ¢; : R™ — R. We measure the performance of an online learning algorithm
by the dynamic regret |39} 42] defined by

T-1 T-1
D-Regr(ui,...,ur_1) = Z Oi(xy) — Z Oy (wy),
t= t=0

where {u;}7_, is a sequence of comparators. Moreover, we assume that the convex set C is contained
in the Euclidean ball By (0) for some R > 0, and we assume 0 € C without loss of generality.

Most existing online learning algorithms are projection-based, that is, they require computing the
Euclidean projection on the action set C. However, as we have seen in Section computing the
projection is computationally costly in our setting. Inspired by the work in [40]], we will describe an
online learning algorithm that relies on an approximate separation oracle defined in Definition 3]

Definition 3. The oracle SEP(w; §) takes w € Br(0) and 6 > 0 as input and returns a scalar vy > 0
and a vector s € R"™ with one of the following possible outcomes:

e Case I: v < 1 which implies that w € C;

* Case II: v > 1 which implies that w/~vy € C and (s,w —x) >y—1—-3 VxeC.

In summary, the oracle SEP(w; ¢) has two possible outcomes: it either certifies that w is feasible,
i.e., w € C, or it produces a scaled version of w that is in C and gives an approximate separating
hyperplane between w and the set C.

The full algorithm is shown in Algorithm[2] The key idea here is to introduce surrogate loss functions
ly(w) = (g, w) on the larger set B (0) for 0 < ¢ < T — 1, where g, is the surrogate gradient
to be defined later. On a high level, we will run online projected gradient descent with l, (w) to
update the auxiliary iterates {w; };>0 (note that the projection on Br(0) is easy to compute), and then
produce the actions {x; }+>¢ for the original problem by calling the SEP(wy; §) oracle in Definition 3]

The follow lemma shows that the immediate regret £,(w;) — £,(x) can serve as an upper bound on
0y (x¢) — £(x) for any x € C.
Lemma 10. Let {xt}tT;Ol be the iterates generated by Algorithm E Then we have x; € C for
t=0,1,...,T — 1. Also, for any x € C, we have

(8, %t — %) < (&, Wi — x) + max{0, —(g¢, x¢) }0¢ (714)

1 P~
b %HWHI — x5 + §|Igt|\§ + max{0, —(g:, x¢)}¢,  (75)

A
1k
kS

and
&l < llgell + (e, xe)lIse - (76)
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Subroutine 2 Online Learning Guided Hessian Approximation Update

1: Input: Initial matrix Bg € S%s.t. 0 < By < L1, step size p > 0, > 0, {q:} 7
2: Initialize: set Wo « £-(Bo — 511), Go = £ Vo(Bo) and Gy + Go

3: fort=1,...,T —1do

4:  Query the oracle (¢, St)  SEP(Wy; 64, qr)

5:  ify < 1then # Casel

6 Set By + W, and B, + 4B, + £11

7 Set Gt < L%Vét (Bt) and Gt < Gt

8 else # Case 11

9: SetBt (—Wt/’yt andBt < %Bt—F%I
10: Set Gt < L%V&(Bi) and ért — Gt + maX{O, —<C‘rz7 Bt>}St
11:  endif va ~
. d ; riort
12:  Update W41 VAW —pEie] (Wi—pGy) # Euclidean projection onto B, ;7(0)

13: end for

Proof. By the definition of SEP in Definition |3, we can see that x; € C forallt = 1,...,T. We
now show that both and hold. We distinguish two cases depending on the outcomes of

e If v; < 1, then we have x; = w; and g; = g;. In this case, and trivially hold.
o Ify, > 1, then x; = wy /7 and g; = g; + max{0, — (g, x;) }s;. We can then write

(81, Wi — x) = (g + max{0, —(g¢, X¢) }s¢, Wi — X)
gt VtXt — X> + maX{O, _<gt7 Xt>}<sta Wi — X>
g6, Xt — X) + (v — 1)(g¢, X¢) + max{0, — (g, x¢) } (12 — 1 — &)
g, Xt — x) — max{0, —(g¢, x¢) }or + (v — 1) max{0, (g¢, x¢) }
g, Xt — X> - max{07 _<gt7xt>}6t7
which leads to after rearranging. Also, by the triangle inequality we obtain

8¢l < llgell + max{0, —(ge, x¢) HIsell < llgell + [(ge, xe)lIsell,

which proves (76).

=
>
=
>

Finally, from the update rule of w;_ 1, for any x € C C Br(0) we have (w; — pgt — Wii1, Wi —
x) > 0, which further implies that

- - 1
<gt,Wt - X> < <gt7Wt - Wt+1> + ;<Wt — Wi, Wil — X> (77)
1 o 1 s 1 2
= (8¢, Wi — Wip1) + %Hwt - x5 - %Hle — x5 - %Hwt —wipillz (78)
1 1 P~
< %HW:& x|[|3 — %Hwﬂrl —XH%+§||gt||%~ (79)
Combining and leads to (75). O

C.4 Projection-free Hessian Approximation Update

Now we are ready to describe our Hessian approximation matrix update, which is an specific
instantiation of the general projection-free online learning algorithm described in Algorithm [2| The
full algorithm is described in Subroutine 2]

Recall that Z = {B € Si : 0 < B < LI} in our online learning problem in Section Since
the projection-free scheme in Subroutine [2 requires the set C to contain the origin, we consider the
transform B £ 2 (B — 4T) and define Z £ {B € §¢: -1 < B =T} = {B € S?: B, < 1}.
We note that 0 € Z and Z C B (0) ={W e $*: [W]p < V/d}. Moreover, we can see that
the approximate separation oracle SEP(W; ¢, ¢) defined in Deﬁnitionorresponds to the oracle in
Definition[3] We defer the specific implementation details to Section
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D Proof of Theorem

Regarding the choices of the hyper-parameters, we consider Algorithm [I] with the line search scheme
in Subroutine[ where a1, 2 € (0,1) with a1 + ag < 1 and 8 € (0,1), and with the Hessian
approximation update in Subroutine [2, where p = 158, Gt = P/2.5(t+1)log?(¢t+1) for t > 1, and

6t =1/(v/t + 21n(t + 2)) for t > 0. In the following, we first provide a proof sketch of TheoremU
The complete proofs of the lemmas shown below will be provided in the subsequent sections.

Proof Sketch. To begin with, throughout the proof, we assume that every call of the SEP oracle in
Definition [2]is successful during the execution of Algorithm|[I] Indeed, by using the union bound, we

can bound the failure probability by ZtT:_ll @ < £, @ < p. In particular, we note that
Subroutine[g]ensures that 0 < By < Ih1Iforany k > 0.

We first prove Part (a) of Theorem |1} which relies on the following lemma.

Lemma 11. For k € B, we have (;,(By) £ W < L2

We combine Lemma[2]and Lemma[I1]to derive

N—
2 — (2 2— 32 wi, — Bysi||? 2— 2 2— (%)L
> o< ot g o el < g A
SU-p T A-Pa3P 2 sl (1-F%0? " (1- 5035
By further using and the elementary inequality that va + b < y/a + /b, we obtain
CyLi||lzg — x*12  Csllzo — x*||?

N2 UON2'5 ’

where Cy = C} (1 52) > + (1(2 )53132 and C5 = Clm

Next, we divide the proof of Part (b) of Theorem [I]into the following steps.

Step 1: We first use regret analysis to control the cumulative loss ZtT:_Ol £;(By) incurred by our
online learning algorithm in Subroutine [2| In particular, we prove a dynamic regret bound, where we
compare the cumulative loss of our algorithm against the one achieved by the sequence {Ht}?:_ol

Lemma 12. We have

T-1 T—1 T—1 T—1
> (By) < 256Bo — Hollh +4 ) 6(Hy) +2L7 Y 07 +512L0Vd Y [Heyr — Hellp,

t=0 t=0 t=0 t=0

where H; 2 V2 f(y,).

Step 2: In light of Lemma E, it suffices to upper bound the cumulative loss Zf:_ol £;(H;) and the
path-length th:ol ||[H:t+1 — Hy||F in the following lemma. To achieve this, we use the stability
properties of our algorithm in and Lemmal|8] which is most technical part of the proof.
Lemma 13. We have

-1 s 71 Ay
> 4(Hy) < 7L2HZ0—X 1> and > [[Hyp —Hel|p < 02fL2(1+1og 7 >||z0_x I,
t=0 t=0
81)
2
where Cs is defined in and C3 = (tey)

B2(1-a1)?*(1-0?)"

Step 3: Thus, we obtain an upper bound on Zt o Et(Bt) by combining Lemma. 2|and Lemma.
Finally, in the following lemma, we prove an upper bound on 1 ~ by further using Lemma[and
Proposition [T}

25



759

760

761

762

763
764

765

766
767

768
769

770

771

772

773
774

775

776

777

778
779

781

782

783

Lemma 14. We have

1
Ly 1 2.5 2
1 1 oy [ max{zEs, 3N
E S N2<5 <M+ ClOLlLQdHZO — X || log < i/MO ,

where we define log™ (x) £ max{log(z), 0},

C " *
M = (TS + C7L? + C3||By — Hol|% 4 CoL3||z20 — x*||? + CioL1 Lad||zo — x*||,
0
and C; (1 =6, ...,10) are absolute constants given by
4C2(2 — %) 5C% 256C% C3Cs 512C5C%
Co=—"""1" 0, = Cs = , Cg = , Cio = —55—.
6 1 _ 62 ) 7 Oé%ﬁQ ) 8 0(%62 9 04%62 10 OK%BQ
Therefore, Part (b) of Theorem I]immediately follows from Proposition L]

In the remaining of this section, we present the proofs for the above lemmas that we used to prove the
results in Theorem [l

D.1 Proof of Lemma

Recall that w;, = Vf(&k+1) — VF(yr) and sy L Xp41 — yr for k € B. We can write
Vi(Xgt1) — VI(yr) = Hi(Xg+1 — yx) by using the fundamental theorem of calculus, where

H, = fol V2f(txps1 + (1 — t)yg)dt. Since we have 0 < V2f(x) < LI for all x € R? by
Assumption |I, it implies that 0 < H, < L,1. Moreover, since 0 = By, < LI, we further have
—IL41 < Hy — By, < L1, which yields |[Hy — By||op < L1. Thus, we have

[wi, = Bgspl| = (Hy, — Bg)(Xe1 — yu)ll < Lallxs, — x,
which proves that /;,(Bj,) < L2.

D.2 Proof of Lemma[12]

To prove Lemma[I2, we first present the following lemma showing a smooth property of the loss
function £j,. The proof is similar to [34, Lemma 15].

Lemma 15. For k € B, we have

1

(—sk(wip — Bsy)" — (Wi — Bsy)st) . (82)

Moreover, for any B € S%, it holds that
IVE(B)|lF < [VE(B)]l« < 2y/€k(B), (83)

where || - || and || - ||« denote the Frobenius norm and the nuclear norm, respectively.

Proof. Tt is straightforward to verify the expression in (82). The first inequality in follows from
the fact that || A || < ||A||. for any matrix A € S?. For the second inequality, note that

1
[V (B)] < T2 (lIsk(Wi — Bsg) ||« + (Wi — Bsg)si |«
2 2||Wk — BSk||
< ank — Bsg|l[[skl| = T sl = 2y/4;(B),

where in the first inequality we used the triangle inequality, and in the second inequality we used the
fact that the rank-one matrix uv ' has only one nonzero singular value ||ul|||v]| . O

We will also need the following helper lemma.
Lemma 16. If the real number x satisfies v < A + B/, then we have x < 2A + B2
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Proof. From the assumption, we have

(f—§)2<A+B2.

2
/ B2 B

Before proving Lemma|[I2] we also present the following lemma that bounds the loss in each round.

Hence, we obtain

O

Lemma 17. Forany H € Z, we have

((By) < 46,(H) + 64 |[W, — H|[} — 6412 [W oy — HJ3 + 20367,

Proof. By letting Xt = Bt, X = I:I £ L%(H — %I), g — Gt £ L%V&(Bt), gt = é’t, Wi = Wt
in Lemma|[10] we obtain:

(i) By € Z, which means that || By||op < 1.

(ii) It holds that

o - 1 - 1 . ~ .
(Gi,B; —H) < Q*pIIWt ~H|% - 2*p||Wt+1 —H|% + gHGtva + max{0, —(G¢, By) }oy,
(84)
IGelr < NIGellr + (G, B[St - (85)

First, note that ||S¢||r < 3 by Deﬁnitionand G, By)| < |Gil|+||Btllop < ||Gil|+. Together with
(83)), we get

~ 16
1GillF < [|GellF + 3]|Gell« < 4G« < fl\/ét(Bt)a (86)

where we used the fact that G; = L%V&(Bt) and Lemma E in the last inequality. Furthermore,
since /; is convex, we have

I I
ft(Bt) —gt(H) S <V£t(Bt)7Bt—H> = 7 <Gt,Bt—H>,

where we used G; = L%V&(Bt), B, £ L%(Bt — LiT), and H2 L%(H — LLT). Therefore, by
combining and we get

L% oy 2 L% T2 Prané 112 L%
((Be) — £(H) < LW, — % — L Woar — H3 + 202G 3 + 2L [Gels,  87)
8p 8p 8 4
L3 e LA 12
< §p||wt —Hlz — 8*p||Wt+1 —H||% + 32pl:(By) + L1/ £:(By)d:.  (88)
Note that ¢,(B;) appears on both sides of (88). By further applying Lemma we obtain
L% o2 L% o2 22
6(By) < 20,(H) + %”Wt —Hl% - 47)||Wt+1 — H[|% + 64pl,(By) + Li6;.

Since p = 1/128, by rearranging and simplifying terms in the above inequality, we obtain

£4(By) < 46,(H) + G4L2|W, — H|[% — 64L2 Wy — HI|% + 21357,
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Proof of Lemmal[I2] We let H; = V2 f(y;) fort = 0,1,...,T — 1. Thus, we get
04(By) < 44,(Hy) + 6417 | W, — Hy[|7 — 64L7(|[Woyq — Hy|| % + 21767
= 44,(H,) + 64L7 | W, — Hy |3 — 64L7[|[W 1 — Hyga |7 + 21767
+64L3 (W1 — Hep |3 — [Wega — Hil[3).
Furthermore, note that
Wi = Hig |7 = [Wep — Hi| 7
= (W1 —Hipallp + Wi = Hyl|#)([Wia — Hepal| = [Wisa — Hyl|)

. 8vd
< 4\/g||Ht+1 Ht”F = 7HHt+1 Hi|r,

where in the last inequality we used the fact that H,, }AItH, Wii1 € B, /5(0) and the triangle
inequality. Therefore, we get

0(By) < 40, (H,)+64L3|W—H,||2—64L2 |W 11 —H, 1 ||24+2L2624-512L,Vd|[H, 1 —H, || .

By summing the above inequality from¢ =0to 7T — 1, we get

T-1 T-1 T-1 T-1
> 0(By) <6ALT|[Wo — Holl7 +4 Y 6(Hy) +2LF Y 67 +512L1vVd Y | [[Hipy — Hylp.
t=0 t=0 t=0 t=0

Finally, we use the fact that Wo = 2 (Bo— LiT),and Hy 2 7 (Ho— LLT) to obtain Lemma O

D.3 Proof of Lemma (13|

By Assumption |Z, we have ||w; — Hysy|| = |V (Xer1) — Vf(ye) = VI(ye) ( Zir1 — yi)|| <
%Hit+l — ytHQ- Thus,

[w: — Hysy||?

+7L2
lIs¢]? B2(1 -

( 5
43 ar)? || X1 = yel s

L5,
6 (Hy) = < 2R —yel? <

where we used Lemmal|l|in the last inequality. Also, Since aj, > 7y, for all k& > 0, by we get

1
ZIIsz Yk\|2<z 2\\Xk+1 yill* < 7570 — x|
k=0

Hence, we have

9 N—1

(1 —|— a1 (14 1) 2L
Z& H;) S Bl —ae Z %41 — yil? < 452 E Z Rnt1 — yill®
keB

(1+ 041)2L5||Z0 —x*||?
B0 —a)?(1=02)

which proves the first inequality in (§1J).

Furthermore, by Assumption [2| we have

[Hep1—Hel|p =V f (yes1) = V2 (yo)llr < VAV F(yir1) = V2 (y) llop < VALa |[yer1 -yl

Hence, by using the triangle inequality, we can bound

T—1 N-1
Apn
S [Hless — Hullr < Ve Y i =yl < ViLaCa(1+10 52 ) oo = x°]

t=0 k=0

where we used Lemmal §]in the last inequality.
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D.4 Proof of Lemmal[id]

18 We combine Lemma[I2]and Lemma [I3]to get

Z Wi — Bsi |

T—
2 2 P 2 2
||Sk:||2 Z gt(Bt) < 256”B0 - HOHF + C3L2||ZO - X || + 2Ll Z §t
keB t=0 =0
An .
+ 51202L1L2d 1+ log T HZO — X ||
1
s19  Since §; = 1/(v/t + 21In(t + 2)), we have
T+1 T+1
1 1 1 1
= dt = +— - — <25.
; ! Ztln £~ 222 /2 tl?¢t 2?2 W2 In(T+1)~
s20 Hence, it further follows from (15) and Lemma 2] that
N® S 1
T < 407 Y =
k=0 'k

4012(2 — 52) 401 2 ﬂz HWk — BkskHz
(1 _ 52)03 + 1 _52 04252 Z

2
ies el

CTS + C7L7 + Cs||Bo — Hy |3 + Co L3 ||zo — x*||?
0

AN
+C10L1L2d<1+10g A )Zo—X ||

To simplify the notation, define

IN

821

M = 07 + O7L% + Cg”Bo - H0||2F + CQLSHZO - X*”2 + CIOL1L2dHZO — X ||
0
s22  Let A}, be the number that achieves the equality

5

*

N Ay
=M+ CuoLs Lad]zo — " [log 3.
823

We can see that Ay > A%;. Thus, we instead try to construct a lower bound on A
24 then log(A% /A1) < 0 and furthermore

o IF AN < Ay,
N5
<M = Ay> —N“
(Ay)? VM
825

Otherwise, assume that A%, > A;. Then log(A% /A1) > 0 and we first show an upper bound on
s2s Ay

N? A
—5 = M + CgL1 Lyd||zg — x*|| log N>M = Ay <7N25
(AN) Ay v M
This in turn leads to a lower bound on A%;:
5

A X = 2.5
= M 4 CgLy Lod||zg — x*||log =X < M + Cs Ly Lad||z — x*|| log clad o ,
(Ay)? Ay

827

VM
g8 where we also used the fact that A; = 7; > min{oo, 222}. Thus, we get
Lyar25\ \ 2
1 1 1 ) L Ly
AN < A = (M + C1oL1 Lad||zg — x*|| log ( iiMo ))
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Subroutine 3 LinearSolver(A, b; a)

1: Input: A cS4. beR,0<a<1

2: Initialize: so < 0, ro < b — Asg, po < ro
3: fork=0,1,... do

4 lerkHQ S aHsng then
5 Return s;

6: endif
7.
8

ok < (ri, Ary)/(Apr, Aprk)

: Sk+1 < Sk + kP
9: T+l < g — akApk
10:  Compute and store Arg1
11 Br < (rrs1, Argy1)/(re, Ary)
12: Prt1 ¢ Tit1 + BrPk
13:  Compute and store Apgy1 < Arigi1 + B Apk
14: end for

E Characterizing the Computational Cost

In this section, we first specify the implementation details of the LinearSolver oracle in Definition|l]
and the SEP oracle in Definition [2} Then in Section|E.3| we present the proof of Theorem 2|

E.1 Implementation of the LinearSolver Oracle

We implement the LinearSolver oracle by running the conjugate residual (CR) method [38]] to solve
the linear system As = b. In particular, we initialize the CT method with s = 0 and returns the
iterate sy, once we have ||As; — b|| < a|sg]|.

The following lemma provides the convergence guarantee of the CR method, which will be later used
in the proof of Theorem

Lemma 18. Ler s* be any optimal solution of As* = b and let {sy } be the iterates generated by
Subourtine3l Then we have

)‘maX(A)HS*”?.

= ||Asi — b|l2 <
[rllz = [|Asg —blls < e

E.2 Implementation of SEP Oracle

We implement the SEP oracle in Definition[2|by running he classical Lanczos method, with a random
start, where the initial vector is chosen randomly and uniformly from the unit sphere (see, e.g.,
[45,!46]). For completeness, the full algorithm is shown in Subroutine E}

To prove the correctness of our algorithm, we first recall a classical result in [41] on the convergence
behavior of the Lanczos method.

Proposition 3 ([41, Theorem 4.2]). Consider a symmetric matrix W and let \y (W) and X\q(W)
denote its largest and smallest eigenvalues, respectively. Then after k iterations of the Lanczos
method with a random start, we find unit vectors u") and u'? such that

]P)(<VV]_1(1)7 u(1)> < )\1(W) _ 6(/\1(W) _ )\d(W))) < 1.648\/g67ﬁ(2k71)’
P((Wu@, ul®) > A(W) + e(A1(W) = Ag(W))) < 1.648Vde VEF—D),

As a corollary, to ensure that, with probability at least 1 — q,

(Wl u) > A (W)=e(0 (W) =Xa(W) and (W, 0®) < 0 (W)+e(h (W)=Aa(W)),

the number of iterations can be bounded by [+e=1/?log(11d/q*) + 3.

Lemma 19. Let v and S be the output of SEP(W; 4, q) in SubroutineE. Then with probability at
least 1 — q, they satisfy one of the following properties:

* Casel: v < 1, then we have |W ||op, < 1;
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Subroutine 4 SEP(W: §, q)

: Input: W € S%,6 > 0,q € (0,1)
: Initialize: sample v; € R? uniformly from the unit sphere, 31 + 0, vo < 0

1d é-‘,d}

. Set the number of iterations N7 < min{ [Iog

cfork=1,...,N; do

Set wi <+ Wvi — Brve—1

Set g, + <Wk,Vk> and wg < Wi — Qi Vg
Set Brr1 < ||will and Vi1 <= Wi /Bra

: end for

: Form a tridiagonal matrix T < tridiag(B2:n,, @1:n,, B2:N, )

10: # Use the tridiagonal structure to compute eigenvectors of 'T

11: Compute (A1,z") + MaxEvec(T) and (A4, z(¥) < MinEvec(T)

12: Setu® « ZNl (1)vk and u® «+ ZNl (d>vk

13: Set Amax < max{\i, —Aa}

14: if Amax < 1/2then # CaseI: v <1, which implies ||W ||op < 1

15: Return v = 25\max and S =0

16: else if Amax > 2 then  # Case II: v > 1 and S defines a separating hyperplane
17: if )\1 > )\d then

18: Return v = 2\max and S = Su(1>( ))

19:  else R

20: Return v = 2A\pmax and S = 73u<d)(u(d))T
21: end if

22: else  # 1 < My <2

23:  Set the number of iterations N2 < min{ [ 1735 log 442d + %—‘ d}
24: fork=N;+1,...,N2 do

25: Set wy < Wvy — Bevie—1

26: Set i, (Wk,Vk> and wy < Wi — QpVi

27: Set Bk+1 < ||wi|| and vi+1 < Wi /Brt1

28: end for »  Lanczos method

29:  Forma tr1d1ag0nal matrix T <« tridiag(S2: N2s O1:N, B2:N5)

30:  Compute (A1,z") < MaxEvec(T) and (Mg, 2?) + MinEvec(T)
31 Seta® « M2 sy, anda@ N2 Wy,

32: Set Aax = max{:\l, 75\(1}

33:  if Amax < 1 — ¢ then

34: Return v = /\max +dand S =0

35: else if \; > )\d then

36 Return ¥ = Amax + 0 and S = a (@)’
37:  else _

38: Return ¥ = Amax + 0 and S = —a@ (@) "
39: end if

40: end if

* Case II: v > 1, then we have |W /7||op < (S, W —B) >~ — 1 forany

B such that |B||op < 1.

Proof. Note that in Subroutine 4] we first run the Lanczos method for [e_l/ ?log L5t + ﬂ iterations,

where € = i. Thus, by Proposition with probability at least 1 — ¢/2 we have
A2 (Wu® u®) > 0 (W) — %(MW) — Aa(W)), (89)
Aa 2 (Wul® u@) < Ag(W) + E(Al(m — Aa(W). (90)
Combining and (90), we get
SOMW) = (W) <A —Aa = A(W) = Aa(W) < 204 — ).
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By plugging the above inequality back into and (90), we further have

5\1Jr

=
2
IA

A (W) = Xa(W)) < At + = (A1 — M), 1)

Aa(W) > Aa = S (A(W) = Xa(W)) > Ag = S (A = Aa). 92)

==
M\HL\D\H

Let Aoy = max{jq, —5\d}. By and (92)), we can further bound the eigenvalues of W by

~ ~ o 1 o N
2)\max = 2)\max and )\d(W> > _)\max -3 2)\max = _2>\max- (93)

)\I(W) § 3\max + 2

N =

Hence, we can see that |[W ||, = max{\; (W), =Ag(W)} < 2A\ ... Now we distinguish three
cases.

(a) If Xmax < % then we are in Case I and the ExtEvec oracle outputs v = 25\max < 1and
S = 0. In this case, we indeed have |[W||op < v < 1.

(b) If S\max > 2, then we are in Case II. In addition, if 5\1 > —S\d, then the ExtEvec oracle
returns y = 25\max and S = 3u(1)(u(1))T. Similarly, if 75\,1 > 5\1, then the ExtEvec oracle
returns 7 = 2Amax and S = —3u@ (u(®) T Without loss of generality, consider the case
where A, > —Xg. Since [[Wlop < 2Amax = 7> we have [|[W /7]op < 1. Also, since u; is
a unit vector, we have ||S||z = 3||u(!)||? = 3. Finally, for any B such that |B||,, < 1, we
have

(S,W —B) = 3(u™)TWu® — 3(u®™)TBu® > 3\ —3> 2 pax — 1 =7 — 1,
where we used the fact that Xmax > 2 in the last inequality.

© If 5 < dex < 2, we continue to run the Lanczos method for a total number of

D=

H —1/2 log ¢ d ﬂ iterations, where e = 1. Thus, by Proposmonl w1th probability at
least 1 — q/2 we have

A2 (wWal a®y > A\ (W) — %5()\1(W) — Aa(W)), (94)
1

A 2 (WalD aldy < \y(W) + é5(A1(W) — Aa(W)). (95)
Let Amax = max{)\l,—)\d} Since we have \ (W) < 25\mdx < 4 and \y(W) >

—2Amax > —4, the above implies that \; > A\ (W) — & and Ay < A\g(W) + 4. Hence,

we can see that || W ||op, = max{A; (W), —Ag(W)} < Amax + 0. We further consider two
subcases.

(cl) If S\max < 1 — 4, then we are in Case I and the ExtEvec oracle outputs v = ;\max + 6
and S = 0. In this case, we indeed have |W{|op, < < 1.

(c2) If )\max > 1 — ¢, then we are in Case II. In addition, if )\1 > )\d, then the ExtEvec
oracle returns v = Amax + 0 and S = a )( (1))T Similarly, if —X4 > A1, then
the ExtEvec oracle returns 7y = Apay + 6 and S = —a(® (a(¥)T. Without loss of
generality, consider the case where A\; > —\,. Since [Wlop < Amax + 0 = 7, we
have |[W /v|lop < 1. Also, since 1(!) is a unit vector, we have ||S||r = |[aV||? = 1.
Finally, for any B such that || B||,, < 1, we have

(S, W —B) = @) Twa® — @) "Ba® > A\ —1=~7—-1-4.
This completes the proof. O
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E.3 Proof of Theorem2]

We divide the proof of Theorem [2]into the following three lemmas.

Lemma 20. [f we run Algorithm[l|as specified in Theorem|l|for N iterations, then the total number
of line search steps can be bounded by 2N + lOgl/ﬂ(UoLl/ag). As a corollary, the total number of

. . . ool
gradient queries is bounded by 3N, + logl/ﬁ( v ).

Proof. In our backtracking scheme, the number of steps in each iteration is given by log; 5 (nk/7x) +
1. Also note that ny1 < 7 /8 for all k£ > 0. Thus, we have

N-1

Nk g0
log A—&—l):N—i—log — +
,;( YO Y2 o

N—2 R
SN+10g1/ﬂ%+ <log1/5ﬁk+l>
k=0

< 2N — 1+ 1o _
€1/ N—1

Furthermore, since 7j;, > o3/ L for all k > 0, we arrive at the conclusion. O

Lemma 21. The total number of matrix-vector product evaluations in the LinearSolver oracle is

bounded by N, + C11v/ooL1 + Ci24/ %;x*”i where C11 and C15 are absolute constants.

Proof. The following proof loosely follows the strategy in [31]. We first bound the number of steps
required by Subroutine [3|before it terminates.

Lemma 22. Suppose A = 1. Then Subroutine E terminates after at most [ O‘—“)\max(A) — 1_‘

«
iterations.

Proof. Note that ||sg|l2 > ||s*|l2 — ||sk — s*||2- Also, since A > I, we have ||sy — s*||2 <
[|A(sk — s*)||2 = |Irk||2. Therefore, we have

a
[rxllz < eliskll2 lexllz < ells™[l2 = allrx2 Irllz < ——— 187l
By using Lemma , we only need k > /2H\ . (A) — 1 to achieve [|[As;, — b|| < aflsi|. O

Moreover, when the step size is smaller enough, we can show that Subroutine Will terminate in one
iteration.

Lemma 23. Let A =1+ nB. Whenn < 37-, Algorithmterminates in one iteration.

. T . . .
Proof. From the update rule of Subroutme we can compute that s; = 7|][\)AI?H2 b, which implies
2

JAYZbl2 bl _ b

”51” || H (A1/2b)TA(A1/2b) = /\max(A) = 1+77L1

On the other hand, we also have
[r1] < [[Ab —b| = 7|Bbl| < nLi|/b]. (96)
we have nL; <

[e3

Moreover, when ) < 57—, which implies that ||rq|| < al|s1]| O

_a_
14+nLy>
Now we upper bound the total number of matrix-vector products in Algorithm[l| When A = I+, By,
where 174 = 3 3°. We can store the vector B;b at the beginning and reuse it to compute s; when the
step size N4 < ;Tll And when B'np Ly > %, it holds that

o +2
L2 Bl Ly

1+ Bl <
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914 Thus, at the k-th iteration, the number of matrix-vector products can be bounded by

+1
MV, <1+ Z \/O[1 (1 +nxBiL1)

<1+ Z C“7—'—2\/ Bl L

- aq
i>0,nxB1> 57
(651) —+ 2 1
<1+
ar 1-+vB

915 Furthermore, we can bound that

miLy.

Zf<@+zf<r+ Z\F_m+f(( @)m o7

o6 Note that e < f(zny_1) — f(x*) < %. Hence, we have Ay_1 < @ Thus, we can
917 bound the total number of matrix-vector product evaluations by

N.—1
- o1 + 2 1 2(2 — \/B) LlHZO — X*”2
MV= 2, MVes Net =0 1—\/B< [T/ )

Ly||zo — x*||?
2¢ ’

= N+ Crivooli + Cho

918 where we define C7; = O‘;TQ " and Co = ’12:2 171\/3 \/2%?:/\%) O

919 Lemma 24. The total number of matrix-vector product evaluations in the SEP oracle is bounded by
20 O(NL?(log N)%5 log(%)).

921 Proof. Note that we have N; < Lm log 3 444 %—‘ in Subroutine where §; = 1/(v/t + 2log(t +
o2 2))and ¢, = p/(2.5(t + 1)log?(t + 1)). Thus, we have

= - 0.25 Va4 1 log2(t + 1
N — N, < Z t+2)0210g”?(t +2) log 2.5v44d(t + 1) log”(t + 1) 98)
t=0 t=0 2\f p
<N1 2/log N, log ) (99)
923 O

o2« F Experiments

925 In our experiments, we consider the logistic regression problem. Below we provide more details
926 about the data generation scheme as well as the implementation of Nesterov’s accelerated gradient
927 method, BFGS, and our proposed A-QPNE algorithm.

o8 Dataset generation. The dataset consists of n data points {(a;, y;)}?;, where a; € R? is the i-th
920 feature vector and y; € {—1, 1} is its corresponding label. The labels {y; }?_, are generated by

y; =sign((a;,x*)), i=1,2,...,n

90 where af € RY™1 and x* € R?"! are the underlying true feature vector and the underlying true
931 parameter, respectively. Moreover, each entry of a} and x* is drawn independently according to the
932 standard normal distribution A(0, 1) Note that the true feature vectors {a}}?* ; are not given in our
o33 dataset; instead, we generate {a;}}"_; by addlng noises and appending an extra dimension to {a} }?_;.
3¢ Specifically, we let a; = [af +n; +1;1] T € R%, where n; ~ N(0,02I) is the i.i.d. Gaussian noise
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vector and 1 € R%~! denotes the all-one vector. In our experiment, we set n = 2,000, d = 150 and
c=0.8.

NAG. We implemented a monotone variant of the Nesterov accelerated gradient method as described
in [43| Section 10.7.4]. Moreover, we determine the step size using a backtracking line search scheme.

BFGS. We implemented the classical BFGS algorithm, where the step size is determined by the
Moré-Thuente line search scheme.

A-QPNE (our method). We implemented our proposed A-QPNE method following the pseudocode
in Algorithm [T] where the line search scheme is given in Subroutine[I]and the Hessian approximation
update is given in Subroutine[2. Moreover, the implementations of the LinearSolver oracle and the
SEP oracle are given by Subroutines [3|and 4} respectively.
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