
Appendix482

A Optimal Monteiro-Svaiter Acceleration Framework483

In this section, we present some general results that hold for the Monteiro-Svaiter Acceleration484

framework. In particular, in the first part of this section (Section A.1), we present the proof of485

Proposition 1.486

A.1 Proof of Proposition 1487

To begin with, we establish a potential function for Algorithm 1, as shown in Proposition 2. The488

result is similar to Proposition 1 in [31], but for completeness we present its proof loosely following489

the strategy in [44, Theorem 5.3]. To simplify the notations, we use f
⇤ to denote the optimal f(x⇤).490

Proposition 2. Consider the iterates generated by Algorithm 1. If f is convex, then491

Ak+1(f(xk+1)� f
⇤) +

1

2
kzk+1 � x

⇤
k
2
 Ak(f(xk)� f

⇤) +
1

2
kzk � x

⇤
k
2
. (21)

Moreover, let � = ↵1 + ↵2 and we have492

N�1X

k=0

a
2
k

⌘2k

kx̂k+1 � ykk
2


1

1� �2
kz0 � x

⇤
k
2
. (22)

Proof. Since f is convex, it holds that493

f(xk)� f(x̂k+1)� hrf(x̂k+1),xk � x̂k+1i � 0,

f(x⇤)� f(x̂k+1)� hrf(x̂k+1),x
⇤
� x̂k+1i � 0.

By summing up the two inequalities with weights ak and Ak respectively, we get494

Ak(f(xk)�f
⇤)� (Ak+ak)(f(x̂k+1)�f

⇤)�akhrf(x̂k+1),x
⇤
� x̂k+1�

Ak

ak
(x̂k+1�xk)i � 0.

(23)
Let z̃k+1 = x̂k+1 +

Ak
ak

(x̂k+1 � xk). By rearranging the terms, (23) can be rewritten as495

(Ak + ak)(f(x̂k+1)� f
⇤)�Ak(f(xk)� f

⇤)  akhrf(x̂k+1), z̃k+1 � x
⇤
i. (24)

Moreover, note that the update rule for zk+1 in both (9) and (10) can be written as496

zk+1 � zk = �
⌘̂k

⌘k
akrf(x̂k+1). (25)

Also, since we also have zk = yk + Ak
ak

(yk � xk) from (2), we can write497

z̃k+1 � zk =


x̂k+1 +

Ak

ak
(x̂k+1 � xk)

�
�


yk +

Ak

ak
(yk � xk)

�

=
Ak + ak

ak
(x̂k+1 � yk) =

ak

⌘k
(x̂k+1 � yk), (26)

where we used the fact that (Ak + ak)⌘k = a
2
k in the last equality (cf. (2)). Hence, combining (25)498

and (26) leads to499

kz̃k+1�zk+1k = kz̃k+1 � zk�(zk+1�zk)k =
ak

⌘k
kx̂k+1�yk+⌘̂krf(x̂k+1)k  �

ak

⌘k
kx̂k+1�ykk.

(27)
where we used (8) in the last inequality. In the following, we distinguish two cases depending on500

⌘̂k = ⌘k or ⌘̂k < ⌘k. In both cases, we shall prove that501

Ak+1(f(xk+1)�f
⇤)+

1

2
kzk+1�x

⇤
k
2
 Ak(f(xk)�f

⇤)+
1

2
kzk�x

⇤
k
2
�
(1� �

2)a2k
2⌘2k

kx̂k+1�ykk
2
.

(28)

13

If this is true, then Proposition 2 immediately follows. Indeed, since � < 1, the last term in the502

right-hand side of (28) is negative, which implies (21). Moreover, (22) follows from summing the503

inequality in (28) from k = 0 to N � 1.504

Case I: ⌘̂k = ⌘k. Since by (9) we have xk+1 = x̂k+1 and Ak+1 = Ak + ak, (24) becomes505

Ak+1(f(xk+1)� f
⇤)�Ak(f(xk)� f

⇤)  akhrf(xk+1), z̃k+1 � x
⇤
i.

Using zk+1 = zk � akrf(xk+1) in (9), we have506

Ak+1(f(xk+1)� f
⇤)�Ak(f(xk)� f

⇤)

 hzk � zk+1, z̃k+1 � x
⇤
i

= hzk � zk+1, z̃k+1 � zk+1i+ hzk � zk+1, zk+1 � x
⇤
i

=
XXXXXXX
1

2
kzk � zk+1k

2 +
1

2
kz̃k+1 � zk+1k

2
�

1

2
kz̃k+1 � zkk

2

+
1

2
kzk � x

⇤
k
2
�

1

2
kzk+1 � x

⇤
k
2
�

XXXXXXX
1

2
kzk � zk+1k

2


1

2
kzk � x

⇤
k
2
�

1

2
kzk+1 � x

⇤
k
2
�

(1� �
2)a2k

2⌘2k
kxk+1 � ykk

2
,

(29)

where we used (26) and (27) in the last inequality. This immediately leads to (28) after rearranging507

the terms.508

Case II: ⌘̂k < ⌘k. Since 0 < �k < 1 and xk+1 = (1��k)Ak

Ak+�kak
xk + �k(Ak+ak)

Ak+�kak
x̂k+1 according to (10),509

by Jensen’s inequality we have (Ak + �kak)f(xk+1)  �k(Ak + ak)f(x̂k+1) + (1� �k)Akf(xk),510

which further implies that511

(Ak+�kak)(f(xk+1)�f
⇤)�Ak(f(xk)�f

⇤)  �k(Ak+ak)(f(x̂k+1)�f
⇤)��kAk(f(xk)�f

⇤).

Moreover, since Ak+1 = Ak + �kak by (10), together with (24) we obtain512

Ak+1(f(xk+1)� f
⇤)�Ak(f(xk)� f

⇤)  �kakhrf(x̂k+1), z̃k+1 � x
⇤
i.

Using zk+1 = zk � �kakrf(x̂k+1) in (10), we follow the same reasoning as in (29) to get:513

Ak+1(f(xk+1)� f
⇤)�Ak(f(xk)� f

⇤)

 hzk � zk+1, z̃k+1 � x
⇤
i

= hzk � zk+1, z̃k+1 � zk+1i+ hzk � zk+1, zk+1 � x
⇤
i

=
XXXXXXX
1

2
kzk � zk+1k

2 +
1

2
kz̃k+1 � zk+1k

2
�

1

2
kz̃k+1 � zkk

2

+
1

2
kzk � x

⇤
k
2
�

1

2
kzk+1 � x

⇤
k
2
�

XXXXXXX
1

2
kzk � zk+1k

2


1

2
kzk � x

⇤
k
2
�

1

2
kzk+1 � x

⇤
k
2
�

(1� �
2)a2k

2⌘2k
kx̂k+1 � ykk

2
,

which also leads to (28).514

Next, we prove a lower bound on AN . Recall that B denotes the set of iteration indices where the515

line search scheme backtracks, i.e., B , {k : ⌘̂k < ⌘k}.516

Lemma 3. For any N � 0, it holds that517

AN �
1

4

✓p
⌘̂0 +

X

1kN�1,k/2B

p
⌘̂k

◆2

. (30)

Proof. To begin with, according to the update rule of Ak+1 in (9) and (10) and the expression of ak518

in (2), the sequence {Ak} follows the dynamic:519

Ak+1 =

⇢
Ak + ak, if ⌘̂k = ⌘k (k /2 B);
Ak + �kak, if ⌘̂k < ⌘k (k 2 B),

where �k =
⌘̂k

⌘k
and ak =

⌘k +
p
⌘2k + 4⌘kAk

2
.

Since we initialize A0 = 0, we have a0 = ⌘0. We further have A1 = ⌘̂0, since we get A1 =520

A0 + a0 = ⌘̂0 if 0 /2 B, while we get A1 = A0 + �0a0 = ⌘̂0

⌘0
⌘0 = ⌘̂0 if 0 2 B. Moreover:521

14

• In Case I where k /2 B, we have522

Ak+1 = Ak + ak = Ak +
⌘k +

p
⌘2k + 4⌘kAk

2
� Ak +

⌘k

2
+
p
⌘kAk �

✓p
Ak +

p
⌘k

2

◆2

,

which further implies that
p
Ak+1 �

p
Ak +

p
⌘k

2 =
p
Ak +

p
⌘̂k

2 .523

• In Case II where k 2 B, we have Ak+1 = Ak + �kak � Ak, which implies that
p
Ak+1 �

p
Ak.524

Considering the above, we obtain
p
AN �

p
A1 +

P
1kN�1,k/2B

p
⌘̂k

2 , which leads to (30).525

Lemma 3 provides a lower bound on AN in terms of the step sizes ⌘̂k in those iterations where the526

line search scheme does not backtrack, i.e., k /2 B. The following lemma shows how we can further527

prove a lower bound in terms of all the step sizes {⌘̂k}N�1
k=0 .528

Lemma 4. We have529

X

1kN�1,k2B

p
⌘̂k 

1

1�
p
�

0

@
p

⌘̂0 +
X

1kN�1,k/2B

p
⌘̂k

1

A . (31)

As a corollary, we have530

p
⌘̂0 +

X

1kN�1,k/2B

p
⌘̂k �

1�
p
�

2�
p
�

N�1X

k=0

p
⌘̂k. (32)

Proof. When the line search scheme backtracks, i.e., k 2 B, we have ⌘̂k  �⌘k. Therefore,531

X

1kN�1,k2B

p
⌘̂k 

X

1kN�1,k2B

p
�⌘k 

N�1X

k=1

p
�⌘k =

p
�⌘1 +

N�2X

k=1

p
�⌘k+1. (33)

Moreover, in the update of Algorithm 1, we have ⌘k+1 = ⌘̂k/� if k /2 B (cf. Line 8) and ⌘k+1 = ⌘̂k532

otherwise (cf. Line 13). This implies that ⌘1  ⌘̂0/� and we further have533

p
�⌘1 +

N�2X

k=1

p
�⌘k+1 =

p
�⌘1 +

X

1kN�2,k/2B

p
�⌘k+1 +

X

1kN�2,k2B

p
�⌘k+1



p
⌘̂0 +

X

1kN�2,k/2B

p
⌘̂k +

X

1kN�2,k2B

p
�⌘̂k



p
⌘̂0 +

X

1kN�1,k/2B

p
⌘̂k +

X

1kN�1,k2B

p
�⌘̂k. (34)

We combine (33) and (34) to get534

X

1kN�1,k2B

p
⌘̂k 

p
⌘̂0 +

X

1kN�1,k/2B

p
⌘̂k +

X

1kN�1,k2B

p
�⌘̂k.

By rearranging the terms and simple algebraic manipulation, we obtain (31) as desired. Finally, (32)535

follows by adding
p
⌘̂0 +

P
1kN�1,k/2B

p
⌘̂k to both sides of (31).536

Now we are ready to prove Proposition 1.537

Proof of Proposition 1. By Proposition 2, the potential function �k , Ak(f(xk)�f
⇤)+ 1

2kzk�x
⇤
k
2538

is non-increasing in each iteration. Hence, via a recursive augment we have AN (f(xN) � f
⇤) 539

�N  · · ·  �0 = 1
2kz0 � x

⇤
k
2, which yields f(xN) � f

⇤


kz0�x⇤k2

2AN
. Moreover, combining540

Lemma 3 and (32) in Lemma 4 leads to the second inequality in Proposition 1.541

15

A.2 Additional Supporting Lemmas542

A crucial part of our analysis is to bound the path length of the sequence {yk}
N
k=0. This is done in543

Lemma 8. To achieve this goal we first present the results in Lemmas 5-7, which provide the required544

ingredients for proving the claim in Lemma 8. In our first intermediate result, we establish uniform545

upper bounds for the error terms kzk � x
⇤
k and kxk � x

⇤
k.546

Lemma 5. Recall that � = ↵1 + ↵2. For all k � 0, we have kzk � x
⇤
k  kz0 � x

⇤
k and547

kxk � x
⇤
k 

q
2

1��2 kz0 � x
⇤
k.548

Proof. To begin with, it follows from (21) in Proposition 2 that549

1

2
kzk�x

⇤
k
2
 Ak(f(xk)�f

⇤)+
1

2
kzk�x

⇤
k
2
 A0(f(x0)�f

⇤)+
1

2
kz0�x

⇤
k
2 =

1

2
kz0�x

⇤
k
2
.

Hence, we get kzk � x
⇤
k  kz0 � x

⇤
k for any k � 0. To show the second inequality, we distinguish550

two cases and in both cases we will prove that551

Ak+1kxk+1�x
⇤
k
2
 Akkxk�x

⇤
k
2+(Ak+1�Ak)

2�2
a
2
k

⌘2k

kx̂k+1�ykk
2+2(Ak+1�Ak)kzk+1�x

⇤
k
2
.

(35)
Case I: ⌘̂k = ⌘k. Recall that in the proof of Proposition 2 we defined z̃k+1 = x̂k+1+

Ak
ak

(x̂k+1�xk).552

Since xk+1 = x̂k+1, we have xk+1 = Ak
Ak+ak

xk + ak
Ak+ak

z̃k+1 and by Jensen’s inequality553

kxk+1 � x
⇤
k
2


Ak

Ak + ak
kxk � x

⇤
k
2 +

ak

Ak + ak
kz̃k+1 � x

⇤
k
2
.

Furthermore, we have554

kz̃k+1�x
⇤
k
2
 2kz̃k+1�zk+1k

2+2kzk+1�x
⇤
k
2


2�2
a
2
k

⌘2k

kx̂k+1�ykk
2+2kzk+1�x

⇤
k
2
, (36)

where we used (27) in the last inequality. By combining the above two inequalities, we obtain555

(Ak + ak)kxk+1 � x
⇤
k
2
 Akkxk � x

⇤
k
2 + ak

2�2
a
2
k

⌘2k

kx̂k+1 � ykk
2 + 2akkzk+1 � x

⇤
k
2
, (37)

which leads to (35) (note that Ak+1 = Ak + ak in Case I).556

Case II: Since xk+1 = (1��k)Ak

Ak+�kak
xk + �k(Ak+ak)

Ak+�kak
x̂k+1 and x̂k+1 = Ak

Ak+ak
xk + ak

Ak+ak
z̃k+1, we557

have558

xk+1 =
Ak

Ak + �kak
xk +

�kak

Ak + �kak
z̃k+1.

Similarly, by Jensen’s inequality we have559

(Ak + �kak)kxk+1 � x
⇤
k
2
 Akkxk � x

⇤
k
2 + �kakkz̃k+1 � x

⇤
k
2
.

Combining this inequality with (36), we obtain560

(Ak+�kak)kxk+1�x
⇤
k
2
 Akkxk�x

⇤
k
2+�kak

2�2
a
2
k

⌘2k

kx̂k+1�ykk
2+2�kakkzk+1�x

⇤
k
2
. (38)

which leads to (35) (note that Ak+1 = Ak + �kak in Case II).561

Now by summing (35) over k = 0, . . . , N � 1, we get562

ANkxN � x
⇤
k
2


N�1X

k=0

(Ak+1 �Ak)
2�2

a
2
k

⌘2k

kx̂k+1 � ykk
2 +

N�1X

k=0

2(Ak+1 �Ak)kzk+1 � x
⇤
k
2

(39)

 2�2
N�1X

k=0

(Ak+1 �Ak)
N�1X

k=0

a
2
k

⌘2k

kx̂k+1 � ykk
2 + 2kz0 � x

⇤
k
2
N�1X

k=0

(Ak+1 �Ak)

(40)


2�2

1� �2
ANkz0 � x

⇤
k
2 + 2ANkz0 � x

⇤
k
2 (41)

=
2AN

1� �2
kz0 � x

⇤
k
2
. (42)

16

Hence, this implies that kxk � x
⇤
k
2


2
1��2 kz0 � x

⇤
k
2 for any k � 0.563

A key term appearing in several of our bounds is ak+1

Ak+1+ak+1
. In the next lemma, we establish an564

upper bound for this ratio based on a factor of its previous value, for both cases of our algorithm.565

Lemma 6. Without loss of generality assume � > 1/5. In Case I we have ak+1

Ak+1+ak+1


1p
�

ak
Ak+ak

.566

Otherwise, in Case II we have ak+1

Ak+1+ak+1


2
p
�p

�+1
ak

Ak+ak
.567

Proof. By the choice of ak in (2) we have ⌘k(Ak + ak) = a
2
k for all k � 0. As a result, we have568

ak

Ak + ak
=

⌘k

ak
=

2⌘k

⌘k +
p
⌘2k + 4⌘kAk

=
2

1 +
q
1 + 4Ak

⌘k

, (43)

and similarly569

ak+1

Ak+1 + ak+1
=

2

1 +
q

1 + 4Ak+1

⌘k+1

. (44)

In Case I, we have ⌘k+1 = ⌘k/� and Ak+1 � Ak. Hence, it implies that Ak+1/⌘k+1 � �Ak/⌘k,570

which leads to571

ak+1

Ak+1 + ak+1


2

1 +
q
1 + 4�Ak

⌘k


2

p
� +

q
� + 4�Ak

⌘k

=
1
p
�

2

1 +
q

1 + 4Ak
⌘k

=
1
p
�

ak

Ak + ak
.

where the second inequality follows from the fact that �  1.572

In Case II, we have ⌘k+1 = ⌘̂k = �k⌘k and Ak+1 = Ak + �kak. Since we also have ak � ⌘k and573

�k  �, we obtain Ak+1/⌘k+1 � Ak/(�k⌘k) + 1 � Ak/(�⌘k) + 1. Hence,574

ak+1

Ak+1 + ak+1


2

1 +
q
5 + 4Ak

�⌘k


2

1 + 1p
�

q
1 + 4Ak

⌘k


2
p
�

p
� + 1

2

1 +
q

1 + 4Ak
⌘k

=
2
p
�

p
� + 1

ak

Ak + ak
,

where we used � > 1/5 in the second inequality and the fact that 1 + 1p
�
x �

p
�+1

2
p
�
(1 + x) for575

x � 1 in the last inequality.576

Next, as a corollary of Lemma 6, we establish an upper bound on the series
PN�1

k=0
ak

Ak+ak
. Moreover,577

we use this result to establish an upper bound for
PN�1

k=0 kx̂k+1 � ykk.578

Lemma 7. We have579

N�1X

k=0

ak

Ak + ak


1 + 2
p
� � �

p
� � �

✓
1 + log

AN

A1

◆
. (45)

Moreover,580

N�1X

k=0

kx̂k+1 � ykk 

s
1

1� �2

1 + 2
p
� � �

p
� � �

✓
1 + log

AN

A1

◆
kz0 � x

⇤
k. (46)

Proof. Given the initial values of Ak and ak we have581

N�1X

k=0

ak

Ak + ak
= 1 +

N�1X

k=1

ak

Ak + ak
= 1 +

X

k2B,k�1

ak

Ak + ak
+

X

k/2B,k�1

ak

Ak + ak
(47)

17

Note that using the result in Lemma 6582

X

k2B,k�1

ak

Ak + ak


N�2X

k=0

ak+1

Ak+1 + ak+1
(48)

=
X

k/2B,k�0

ak+1

Ak+1 + ak+1
+

X

k2B,k�0

ak+1

Ak+1 + ak+1
(49)



X

k/2B,k�0

1
p
�

ak

Ak + ak
+

X

k2B,k�0

2
p
�

p
� + 1

ak

Ak + ak
(50)


1
p
�
+

X

k/2B,k�1

1
p
�

ak

Ak + ak
+

X

k2B,k�1

2
p
�

p
� + 1

ak

Ak + ak
. (51)

Hence, if we move the last term in the above upper bound to the left hand side and rescale both sides583

of the resulted inequality we obtain584

X

k2B,k�1

ak

Ak + ak


1 +
p
�

p
� � �

✓
1 +

X

k/2B,k�1

ak

Ak + ak

◆
. (52)

Now, if we replace the above upper bound into (47) we obtain585

N�1X

k=0

ak

Ak + ak


1 + 2
p
� � �

p
� � �

✓
1 +

X

k/2B,k�1

ak

Ak + ak

◆
. (53)

Moreover, note that for k /2 B, we have Ak+1 = Ak + ak. Hence,586

X

k/2B,k�1

ak

Ak + ak
=

X

k/2B,k�1

✓
1�

Ak

Ak+1

◆


X

k/2B,k�1

(log(Ak+1)� log(Ak))



N�1X

k=1

(log(Ak+1)� log(Ak)) = log
AN

A1
.

Now if we replace the above upper bound, i.e., log AN
A1

with
P

k/2B,k�1
ak

Ak+ak
into the expression in587

the right-hand side of (53) we obtain the result in (45).588

Next, note that by Cauchy-Schwarz inequality, we have589

N�1X

k=0

kx̂k+1 � ykk 

vuut
N�1X

k=0

⌘2k

a2k

N�1X

k=0

a2k

⌘2k

kx̂k+1 � ykk
2 

vuut 1

1� �2

N�1X

k=0

⌘2k

a2k

kz0 � x
⇤
k,

where the last inequality follows from (22). Moreover, based on the expression for ak in (2) and the590

result in (45) that we just proved, we have591

N�1X

k=0

⌘
2
k

a2k

=
N�1X

k=0

a
2
k

(Ak + ak)2


N�1X

k=0

ak

Ak + ak


1 + 2
p
� � �

p
� � �

✓
1 + log

AN

A1

◆
.

Combining the two inequalities above leads to (46).592

Now we are ready to present and prove Lemma 8 which characterizes a bound on the path length of593

the sequence {yk}
N
k=0594

Lemma 8. Consider the iterates generated by Algorithm 1. Then for any N ,595

N�1X

k=0

kyk+1 � ykk  C2

✓
1 + log

AN

A1

◆
kz0 � x

⇤
k. (54)

where596

C2 = 2

s
1

1� �2

1 + 2
p
� � �

p
� � �

+
1
p
�

✓
1 +

r
2

1� �2

◆
1 + 2

p
� � �

p
� � �

(55)

18

Proof. By the triangle inequality, we have597

kyk � yk+1k  kx̂k+1 � ykk+ kx̂k+1 � yk+1k. (56)
We again distinguish two cases.598

Case I: ⌘̂k = ⌘k. In this case x̂k+1 = xk+1 and yk+1 = Ak+1

Ak+1+ak+1
xk+1 +

ak+1

Ak+1+ak+1
zk+1, hence599

kx̂k+1�yk+1k = kxk+1�yk+1k =
ak+1kzk+1 � xk+1k

Ak+1 + ak+1


1
p
�

✓
1+

r
2

1� �2

◆
akkz0 � x

⇤
k

Ak + ak
,

(57)
where we used Lemma 6 and the fact that kzk+1 � xk+1k  kzk+1 � x

⇤
k + kxk+1 � x

⇤
k 600

(1 +
q

2
1��2)kz0 � x

⇤
k in the last inequality. Therefore, using (56) and the above bound we have601

kyk � yk+1k  kx̂k+1 � ykk+
1
p
�

✓
1 +

r
2

1� �2

◆
ak

Ak + ak
kz0 � x

⇤
k. (58)

Case II: ⌘̂k < ⌘k. Since xk+1 = Ak
Ak+�kak

xk+
�kak

Ak+�kak
z̃k+1 and x̂k+1 = Ak

Ak+ak
xk+

ak
Ak+ak

z̃k+1,602

we get603

x̂k+1 =
Ak

Ak + ak

⇣
xk+1+

�kak

Ak
(xk+1�z̃k+1)

⌘
+

ak

Ak + ak
z̃k+1 =

Ak + �kak

Ak + ak
xk+1+

(1� �k)ak
Ak + ak

z̃k+1.

Thus, given the above equality and the expression for yk+1, i.e., yk+1 = Ak+1

Ak+1+ak+1
xk+1 +604

ak+1

Ak+1+ak+1
zk+1, we have605

kx̂k+1 � yk+1k 
(1� �k)ak
Ak + ak

kz̃k+1 � zk+1k+

����
(1� �k)ak
Ak + ak

�
ak+1

Ak+1 + ak+1

���� kzk+1 � xk+1k.

(59)
Moreover, based on the result in (27), we can upper bound kz̃k+1 � zk+1k by �

ak
⌘k
kx̂k+1 � ykk606

which implies that607

(1� �k)ak
Ak + ak

kz̃k+1�zk+1k  �
(1� �k)a2k
⌘k(Ak + ak)

kx̂k+1�ykk = �(1� �k)kx̂k+1�ykk  kx̂k+1�ykk

where the equality holds due to the definition of ak, and the last inequality holds as both �k and � are608

in (0, 1). On the other hand, note that609

(1� �k)ak
Ak + ak

�
ak+1

Ak+1 + ak+1


(1� �k)ak
Ak + ak


ak

Ak + ak
, (60)

ak+1

Ak+1 + ak+1
�

(1� �k)ak
Ak + ak


2
p
�ak

p
� + 1(Ak + ak)

�
(1� �k)ak
Ak + ak


ak

Ak + ak
. (61)

where in the second bound we used the result in Lemma 6 and the fact that 2sqrt�p
�+1

< 1. Hence, we610

get611

kx̂k+1�yk+1k  kx̂k+1�ykk+
akkzk+1 � xk+1k

Ak + ak
 kx̂k+1�ykk+

✓
1+

r
2

1� �2

◆
akkz0 � x

⇤
k

Ak + ak
,

(62)
where the last inequality follows from the fact kzk+1 � xk+1k  kzk+1 � x

⇤
k+ kxk+1 � x

⇤
k and612

the bounds in Lemma 5. Now by applying the above upper bound into (56) we obtain that613

kyk � yk+1k  2kx̂k+1 � ykk+

✓
1 +

r
2

1� �2

◆
ak

Ak + ak
kz0 � x

⇤
k. (63)

Considering the upper bounds established for kyk � yk+1k in case I (equation (58)) and case II614

(equation (63)), we can conclude that615

kyk � yk+1k  2kx̂k+1 � ykk+
1
p
�

✓
1 +

r
2

1� �2

◆
ak

Ak + ak
kz0 � x

⇤
k. (64)

Finally, Lemma 8 follows from summing (64) over k = 0 to N � 1 and the result of Lemma 7.616

19

Subroutine 1 Backtracking line search

1: Input: iterate y 2 Rd, gradient g 2 Rd, Hessian approximation B 2 Sd
+, initial trial step size ⌘ > 0

2: Parameters: line search parameters � 2 (0, 1), ↵1 � 0 and ↵2 > 0 such that ↵1 + ↵2 < 1
3: Set ⌘̂ ⌘
4: Compute s+ LinearSolver(I+ ⌘̂B,�⌘̂g;↵1) and x̂+ y + s+
5: while kx̂+ � y + ⌘̂rf(x̂+)k2 > (↵1 + ↵2)kx̂+ � yk2 do
6: Set x̃+ x̂+ and ⌘̂ �⌘̂
7: Compute s+ LinearSolver(I+ ⌘̂B,�⌘̂g;↵1) and x̂+ y + s+
8: end while
9: if ⌘̂ = ⌘ then

10: Return ⌘̂ and x̂+

11: else
12: Return ⌘̂, x̂+ and x̃+

13: end if

B Line Search Subroutine617

In this section, we provide further details on our line search subroutine in Section 3.1. For complete-618

ness, the pseudocode of our line search scheme is shown in Subroutine 1. In Section B.1, we prove619

that Subrountine 1 will always terminate in a finite number of steps. In Section B.2, we provide the620

proof of Lemma 1.621

B.1 The line search subroutine terminates properly622

Recall that in our line search scheme, we keep decreasing the step size ⌘̂ by a factor of � until we623

find a pair (⌘̂, x̂+) satisfying (12) (also see Lines 5 and 6 in Subroutine 1). In the following lemma,624

we show that when the step size ⌘̂ is smaller than a certain threshold, then the pair (⌘̂, x̂+) satisfies625

both conditions in (11) and (12), which further implies that Subroutine 1 will stop in a finite number626

of steps.627

Lemma 9. Suppose Assumption 1 holds. If ⌘̂ <
↵2

L1+kBkop
and x̂+ is computed according to (13),628

then the pair (⌘̂, x̂+) satisfies the conditions in (11) and (12).629

Proof. By Definition 1, the pair (⌘̂, x̂+) always satisfies the condition in (11) when x̂+ is computed630

from (13). Hence, in the following we only need to prove that the condition in (12) also holds. Recall631

that g = rf(y). By Assumption 1, the function f is L1-smooth and thus we have632

krf(x̂+)� gk = krf(x̂+)�rf(y)k  L1kx̂+ � yk.

Moreover, by using the triangle inequality, we get633

krf(x̂+)� g �B(x̂+ � y)k  krf(x̂+)� gk+ kB(x̂+ � y)k  (L1 + kBkop)kx̂+ � yk.

Hence, if ⌘̂ 
↵2

L1+kBkop
, we have634

⌘̂krf(x̂+)� g �B(x̂+ � y)k  ↵2kx̂+ � yk. (65)

Finally, by using the triangle inequality, we can combine (11) and (65) to show that635

kx̂+ � y + ⌘̂rf(x̂+)k = kx̂+ � y + ⌘̂(g +B(x̂+ � y)) + ⌘̂(rf(x̂+)� g �B(x̂+ � y))k

 kx̂+ � y + ⌘̂(g +B(x̂+ � y))k+ k⌘̂(rf(x̂+)� g �B(x̂+ � y))k

 ↵1kx̂+ � yk+ ↵2kx̂+ � yk

 (↵1 + ↵2)kx̂+ � yk,

which means the condition in (12) is satisfied. The proof is now complete.636

B.2 Proof of Lemma 1637

We follow a similar proof strategy as Lemma 3 in [34]. In the first case where k /2 B, by definition, the638

line search subroutine accepts the initial step size ⌘k, i.e., ⌘̂k = ⌘k. In the second case where k 2 B,639

the line search subroutine backtracks and returns the auxiliary iterate x̃k+1, which is computed from640

20

(13) using the step size ⌘̃k , ⌘̂k/�. Since the step size ⌘̃k is rejected in our line search subroutine, it641

implies that the pair (x̃k+1, ⌘̃k) does not satisfy (12), i.e.,642

kx̃k+1 � yk + ⌘̃krf(x̃k+1)k > (↵1 + ↵2)kx̃k+1 � ykk. (66)

Moreover, since we compute x̃k+1 from (13) using step size ⌘̃k, the pair (⌘̃k, x̃k+1) also satisfies the643

condition in (11), which means644

kx̃k+1 � yk + ⌘̃k(rf(yk) +Bk(x̃k+1 � yk))k  ↵1kx̃k+1 � ykk. (67)

Hence, by using the triangle inequality, we can combine (66) and (67) to get645

⌘̃kkrf(x̃k+1)�rf(yk)�Bk(x̃k+1 � yk)k

� kx̃k+1 � yk + ⌘̃krf(x̃k+1)k � kx̃k+1 � yk + ⌘̃k(rf(yk) +Bk(x̃k+1 � yk))k

> (↵1 + ↵2)kx̃k+1 � ykk � ↵1kx̃k+1 � ykk

= ↵2kx̃k+1 � ykk,

which implies that646

⌘̂k = �⌘̃k >
↵2�kx̃k+1 � ykk

krf(x̃k+1)�rf(yk)�Bk(x̃k+1 � yk)k
.

This proves the first inequality in (14).647

To show the second inequality in (14), first note that x̃k+1 and x̂k+1 are the inexact solutions of the648

linear system of equations649

(I+ ⌘̃kBk)(x� yk) = �⌘̃kgk and (I+ ⌘̂kBk)(x� yk) = �⌘̂kgk,

respectively. Let x̃⇤
k+1 and x̂

⇤
k+1 be the exact solutions of the above linear systems, that is, x̃⇤

k+1 =650

yk � ⌘̃k(I + ⌘̃kBk)�1
gk and x̂

⇤
k+1 = yk � ⌘̂k(I + ⌘̂kBk)�1

gk. We first establish the following651

inequality between kx̃
⇤
k+1 � ykk and kx̂

⇤
k+1 � ykk:652

kx̃
⇤
k+1 � ykk 

1

�
kx̂

⇤
k+1 � ykk. (68)

This follows from653

kx̃
⇤
k+1�ykk = k⌘̃k(I+⌘̃kBk)

�1
gkk  ⌘̃kk(I+⌘̂kBk)

�1
gkk =

⌘̃k

⌘̂k
kx̂

⇤
k+1�ykk =

1

�
kx̂

⇤
k+1�ykk,

where we used the fact that (I+ ⌘̃kBk)�1
� (I+ ⌘̂kBk)�1 in the first inequality. Furthermore, we654

can show that655

(1� ↵1)kx̂k+1 � ykk  kx̂
⇤
k+1 � ykk  (1 + ↵1)kx̂k+1 � ykk, (69)

(1� ↵1)kx̃k+1 � ykk  kx̃
⇤
k+1 � ykk  (1 + ↵1)kx̃k+1 � ykk. (70)

We will only prove (69) in the following, as (70) can be proved similarly. Note that since (⌘̂k, x̂k+1)656

satisfies the condition in (11), we can write657

kx̂k+1 � yk + ⌘̂k(gk +Bk(x̂k+1 � yk))k = k(I+ ⌘̂kBk)(x̂k+1 � x̂
⇤
k+1)k  ↵1kx̂k+1 � ykk.

Moreover, since Bk ⌫ 0, we have kx̂k+1�x̂
⇤
k+1k  k(I+⌘̂kBk)(x̂k+1�x̂

⇤
k+1)k  ↵1kx̂k+1�ykk.658

Thus, by the triangle inequality, we obtain659

kx̂
⇤
k+1 � ykk  kx̂k+1 � ykk+ kx̂

⇤
k+1 � x̂k+1k  (1 + ↵1)kx̂k+1 � ykk.

kx̂
⇤
k+1 � ykk � kx̂k+1 � ykk � kx̂

⇤
k+1 � x̂k+1k � (1� ↵1)kx̂k+1 � ykk.

which proves (69). Finally, by combining (68), (69) and (70), we conclude that660

kx̃k+1 � ykk 
1

1� ↵1
kx̃

⇤
k+1 � ykk 

1

(1� ↵1)�
kx̂

⇤
k+1 � ykk 

1 + ↵1

(1� ↵1)�
kx̂k+1 � ykk.

This completes the proof.661

21

C Hessian Approximation Update662

In this section, we fully describe our Hessian approximation update in Section 3.2. We first prove663

Lemma 2 in Section C.1.664

C.1 Proof of Lemma 2665

We decompose the sum
PN�1

k=0
1
⌘̂2
k

as666

N�1X

k=0

1

⌘̂2k

=
1

⌘̂20

+
X

1kN�1,k2B

1

⌘̂2k

+
X

1kN�1,k/2B

1

⌘̂2k

(71)

Recall that we have ⌘̂k = ⌘k for k /2 B. Hence, we can further bound the last term by667

X

1kN�1,k/2B

1

⌘̂2k

=
X

1kN�1,k/2B

1

⌘2k



N�1X

k=1

1

⌘2k

=
1

⌘21

+
X

1kN�2,k2B

1

⌘2k+1

+
X

1kN�2,k/2B

1

⌘2k+1

.

Recall that we have ⌘k+1 = ⌘̂k if k 2 B and ⌘k+1 = ⌘̂k/� otherwise. Hence, we further have668

X

1kN�1,k/2B

1

⌘̂2k


1

⌘21

+
X

1kN�2,k2B

1

⌘2k+1

+
X

1kN�2,k/2B

1

⌘2k+1

=
1

⌘21

+
X

1kN�2,k2B

1

⌘̂2k

+
X

1kN�2,k/2B

�
2

⌘̂2k


1

⌘21

+
X

1kN�1,k2B

1

⌘̂2k

+
X

1kN�1,k/2B

�
2

⌘̂2k

.

By moving the last term to the left-hand side and dividing both sides by 1� �
2, we obtain669

X

1kN�1,k/2B

1

⌘̂2k


1

1� �2

0

@ 1

⌘21

+
X

1kN�1,k2B

1

⌘̂2k

1

A . (72)

Furthermore, since ⌘1 � ⌘̂0, we have 1
⌘2
1


1
⌘̂2
0

. Hence, by combining (71) and (72), we get670

N�1X

k=0

1

⌘̂2k


2� �

2

1� �2

✓
1

⌘̂20

+
X

1kN�1,k2B

1

⌘̂2k

◆


2� �
2

(1� �2)�2
0

+
2� �

2

1� �2

X

0kN�1,k2B

1

⌘̂2k

, (73)

where in the last inequality we used the fact that ⌘̂k = �0 if 0 /2 B. Finally, (16) follows from671

Lemma 1 and (73).672

C.2 The computational cost of Euclidean projection673

Recall that Z , {B 2 Sd+ : 0 � B � L1I}. As described in [34, Section D.1], the Euclidean674

projection on Z has a closed form solution. Specifically, Given the input A 2 Sd, we first need675

to perform the eigendecomposition A = V⇤V
>, where V is an orthogonal matrix and ⇤ =676

diag(�1, . . . ,�d) is a diagonal matrix. Then the Euclidean projection of A onto Z is given by677

V⇤̂V
>, where ⇤̂ is a diagonal matrix with the diagonals being �̂k = min{L1,max{0,�k}} for678

1  k  d. Since the eigendecomposition requires O(d3) arithmetic operations in general, the cost679

of computing the Euclidean projection can be prohibitive.680

22

Algorithm 2 Projection-Free Online Learning
1: Input: Initial point w0 2 BR(0), step size ⇢ > 0, � > 0
2: for t = 0, 1, . . . T � 1 do
3: Query the oracle (�t, st) SEP(wt; �t)
4: if �t  1 then # Case I: we have wt 2 C
5: Set xt wt and play the action xt

6: Receive the loss `t(xt) and the gradient gt = r`t(xt)
7: Set g̃t gt

8: else # Case II: we have wt/�t 2 C
9: Set xt wt/�t and play the action xt

10: Receive the loss `t(xt) and the gradient gt = r`t(xt)
11: Set g̃t gt +max{0,�hgt,xti}st
12: end if
13: Update wt+1 R

max{kwt�⇢g̃tk2,R} (wt�⇢g̃t) # Euclidean projection onto BR(0)
14: end for

C.3 Online Learning with an Approximate Separation Oracle681

To set the stage for our Hessian approximation matrix update, we first describe a projection-free682

online learning algorithm in a general setup. Specifically, the online learning protocol is as follows:683

For rounds t = 0, 1, . . . , T � 1, a learner chooses an action xt 2 C from a convex set C and then684

observes a loss function `t : Rn
! R. We measure the performance of an online learning algorithm685

by the dynamic regret [39, 42] defined by686

D-RegT (u1, . . . ,uT�1) ,
T�1X

t=0

`t(xt)�
T�1X

t=0

`t(ut),

where {ut}
T
t=1 is a sequence of comparators. Moreover, we assume that the convex set C is contained687

in the Euclidean ball BR(0) for some R > 0, and we assume 0 2 C without loss of generality.688

Most existing online learning algorithms are projection-based, that is, they require computing the689

Euclidean projection on the action set C. However, as we have seen in Section C.2, computing the690

projection is computationally costly in our setting. Inspired by the work in [40], we will describe an691

online learning algorithm that relies on an approximate separation oracle defined in Definition 3.692

Definition 3. The oracle SEP(w; �) takes w 2 BR(0) and � > 0 as input and returns a scalar � > 0693

and a vector s 2 Rn with one of the following possible outcomes:694

• Case I: �  1 which implies that w 2 C;695

• Case II: � > 1 which implies that w/� 2 C and hs,w � xi � � � 1� � 8x 2 C.696

In summary, the oracle SEP(w; �) has two possible outcomes: it either certifies that w is feasible,697

i.e., w 2 C, or it produces a scaled version of w that is in C and gives an approximate separating698

hyperplane between w and the set C.699

The full algorithm is shown in Algorithm 2. The key idea here is to introduce surrogate loss functions700

˜̀
t(w) = hg̃t,wi on the larger set BR(0) for 0  t  T � 1, where g̃t is the surrogate gradient701

to be defined later. On a high level, we will run online projected gradient descent with ˜̀
t(w) to702

update the auxiliary iterates {wt}t�0 (note that the projection on BR(0) is easy to compute), and then703

produce the actions {xt}t�0 for the original problem by calling the SEP(wt; �) oracle in Definition 3.704

The follow lemma shows that the immediate regret ˜̀t(wt)� ˜̀
t(x) can serve as an upper bound on705

`t(xt)� `t(x) for any x 2 C.706

Lemma 10. Let {xt}
T�1
t=0 be the iterates generated by Algorithm 2. Then we have xt 2 C for707

t = 0, 1, . . . , T � 1. Also, for any x 2 C, we have708

hgt,xt � xi  hg̃t,wt � xi+max{0,�hgt,xti}�t (74)


1

2⇢
kwt � xk

2
2 �

1

2⇢
kwt+1 � xk

2
2 +

⇢

2
kg̃tk

2
2 +max{0,�hgt,xti}�t, (75)

and709

kg̃tk  kgtk+ |hgt,xti|kstk. (76)

23

Subroutine 2 Online Learning Guided Hessian Approximation Update

1: Input: Initial matrix B0 2 Sd s.t. 0 � B0 � L1I, step size ⇢ > 0, � > 0, {qt}T�1
t=1

2: Initialize: set W0 2
L1

(B0 � L1
2 I), G0 2

L1
r`0(B0) and G̃0 G0

3: for t = 1, . . . , T � 1 do
4: Query the oracle (�t,St) SEP(Wt; �t, qt)
5: if �t  1 then # Case I
6: Set B̂t Wt and Bt L1

2 B̂t +
L1
2 I

7: Set Gt 2
L1
r`t(Bt) and G̃t Gt

8: else # Case II
9: Set B̂t Wt/�t and Bt L1

2 B̂t +
L1
2 I

10: Set Gt 2
L1
r`t(Bt) and G̃t Gt +max{0,�hGt,Bti}St

11: end if
12: Update Wt+1

p
d

max{
p
d,kWt�⇢G̃tkF } (Wt�⇢G̃t) # Euclidean projection onto Bp

d(0)

13: end for

Proof. By the definition of SEP in Definition 3, we can see that xt 2 C for all t = 1, . . . , T . We710

now show that both (74) and (76) hold. We distinguish two cases depending on the outcomes of711

SEP(wt; �t).712

• If �t  1, then we have xt = wt and g̃t = gt. In this case, (74) and (76) trivially hold.713

• If �t > 1, then xt = wt/�t and g̃t = gt +max{0,�hgt,xti}st. We can then write714

hg̃t,wt � xi = hgt +max{0,�hgt,xti}st,wt � xi

= hgt, �txt � xi+max{0,�hgt,xti}hst,wt � xi

� hgt,xt � xi+ (�t � 1)hgt,xti+max{0,�hgt,xti}(�t � 1� �t)

= hgt,xt � xi �max{0,�hgt,xti}�t + (�t � 1)max{0, hgt,xti}

� hgt,xt � xi �max{0,�hgt,xti}�t,

which leads to (74) after rearranging. Also, by the triangle inequality we obtain715

kg̃tk  kgtk+max{0,�hgt,xti}kstk  kgtk+ |hgt,xti|kstk,

which proves (76).716

Finally, from the update rule of wt+1, for any x 2 C ⇢ BR(0) we have hwt � ⇢g̃t �wt+1,wt+1 �717

xi � 0, which further implies that718

hg̃t,wt � xi  hg̃t,wt �wt+1i+
1

⇢
hwt �wt+1,wt+1 � xi (77)

= hg̃t,wt �wt+1i+
1

2⇢
kwt � xk

2
2 �

1

2⇢
kwt+1 � xk

2
2 �

1

2⇢
kwt �wt+1k

2
2 (78)


1

2⇢
kwt � xk

2
2 �

1

2⇢
kwt+1 � xk

2
2 +

⇢

2
kg̃tk

2
2. (79)

Combining (74) and (79) leads to (75).719

C.4 Projection-free Hessian Approximation Update720

Now we are ready to describe our Hessian approximation matrix update, which is an specific721

instantiation of the general projection-free online learning algorithm described in Algorithm 2. The722

full algorithm is described in Subroutine 2.723

Recall that Z = {B 2 Sd+ : 0 � B � L1I} in our online learning problem in Section 3.2. Since724

the projection-free scheme in Subroutine 2 requires the set C to contain the origin, we consider the725

transform B̂ , 2
L1

�
B�

L1
2 I
�

and define Ẑ , {B̂ 2 Sd : �I � B̂ � I} = {B̂ 2 Sd : kB̂kop  1}.726

We note that 0 2 Ẑ and Ẑ ⇢ Bp
d(0) = {W 2 Sd : kWkF 

p
d}. Moreover, we can see that727

the approximate separation oracle SEP(W; �, q) defined in Definition 2 corresponds to the oracle in728

Definition 3. We defer the specific implementation details to Section E.2.729

24

D Proof of Theorem 1730

Regarding the choices of the hyper-parameters, we consider Algorithm 1 with the line search scheme731

in Subroutine 1, where ↵1,↵2 2 (0, 1) with ↵1 + ↵2 < 1 and � 2 (0, 1), and with the Hessian732

approximation update in Subroutine 2, where ⇢ = 1
128 , qt = p/2.5(t+1) log2(t+1) for t � 1, and733

�t = 1/(
p
t+ 2 ln(t+ 2)) for t � 0. In the following, we first provide a proof sketch of Theorem 1.734

The complete proofs of the lemmas shown below will be provided in the subsequent sections.735

Proof Sketch. To begin with, throughout the proof, we assume that every call of the SEP oracle in736

Definition 2 is successful during the execution of Algorithm 1. Indeed, by using the union bound, we737

can bound the failure probability by
PT�1

t=1 qt 
p
2.5

P1
t=2

1
t log2 t  p. In particular, we note that738

Subroutine 2 ensures that 0 � Bk � L1I for any k � 0.739

We first prove Part (a) of Theorem 1, which relies on the following lemma.740

Lemma 11. For k 2 B, we have `k(Bk) , kwk�Bkskk2

kskk2  L
2
1.741

We combine Lemma 2 and Lemma 11 to derive742

N�1X

k=0

1

⌘̂2k


2� �

2

(1� �2)�2
0

+
2� �

2

(1� �2)↵2
2�

2

X

k2B

kwk �Bkskk
2

kskk
2


2� �

2

(1� �2)�2
0

+
(2� �

2)L2
1

(1� �2)↵2
2�

2
N.

By further using (15) and the elementary inequality that
p
a+ b 

p
a+

p
b, we obtain743

f(xN)� f(x⇤) 
C4L1kz0 � x

⇤
k
2

N2
+

C5kz0 � x
⇤
k
2

�0N
2.5

, (80)

where C4 = C1

q
2��2

(1��2)�2
0
+ (2��2)

(1��2)↵2
2�

2 and C5 = C1

q
2��2

(1��2)�2
0

744

Next, we divide the proof of Part (b) of Theorem 1 into the following steps.745

Step 1: We first use regret analysis to control the cumulative loss
PT�1

t=0 `t(Bt) incurred by our746

online learning algorithm in Subroutine 2. In particular, we prove a dynamic regret bound, where we747

compare the cumulative loss of our algorithm against the one achieved by the sequence {Ht}
T�1
t=0 .748

Lemma 12. We have749

T�1X

t=0

`t(Bt)  256kB0 �H0k
2
F + 4

T�1X

t=0

`t(Ht) + 2L2
1

T�1X

t=0

�
2
t + 512L1

p

d

T�1X

t=0

kHt+1 �HtkF ,

where Ht , r
2
f(yt).750

Step 2: In light of Lemma 12, it suffices to upper bound the cumulative loss
PT�1

t=0 `t(Ht) and the751

path-length
PT�1

t=0 kHt+1 � HtkF in the following lemma. To achieve this, we use the stability752

properties of our algorithm in (22) and Lemma 8, which is most technical part of the proof.753

Lemma 13. We have754

T�1X

t=0

`t(Ht) 
C3

4
L
2
2kz0�x

⇤
k
2 and

T�1X

t=0

kHt+1�HtkF  C2

p

dL2

✓
1+log

AN

A1

◆
kz0�x

⇤
k,

(81)
where C2 is defined in (55) and C3 = (1+↵1)

2

�2(1�↵1)2(1��2) .755

Step 3: Thus, we obtain an upper bound on
PT�1

t=0 `t(Bt) by combining Lemma 12 and Lemma 13.756

Finally, in the following lemma, we prove an upper bound on 1
AN

by further using Lemma 2 and757

Proposition 1.758

25

Lemma 14. We have759

1

AN


1

N2.5

M + C10L1L2dkz0 � x

⇤
k log+

max{ L1

↵2�
,

1
�0
}N

2.5

p
M

!! 1
2

,

where we define log+(x) , max{log(x), 0},760

M =
C6

�2
0

+ C7L
2
1 + C8kB0 �H0k

2
F + C9L

2
2kz0 � x

⇤
k
2 + C10L1L2dkz0 � x

⇤
k,

and Ci (i = 6, . . . , 10) are absolute constants given by761

C6 =
4C2

1 (2� �
2)

1� �2
, C7 =

5C6

↵2
2�

2
, C8 =

256C6

↵2
2�

2
, C9 =

C3C6

↵2
2�

2
, C10 =

512C2C6

↵2
2�

2
.

Therefore, Part (b) of Theorem 1 immediately follows from Proposition 1.762

In the remaining of this section, we present the proofs for the above lemmas that we used to prove the763

results in Theorem 1.764

D.1 Proof of Lemma 11765

Recall that wk , rf(x̃k+1) � rf(yk) and sk , x̃k+1 � yk for k 2 B. We can write766

rf(x̃k+1) � rf(yk) = H̄k(x̃k+1 � yk) by using the fundamental theorem of calculus, where767

H̄k =
R 1
0 r

2
f(tx̃k+1 + (1 � t)yk) dt. Since we have 0 � r

2
f(x) � L1I for all x 2 Rd by768

Assumption 1, it implies that 0 � H̄k � L1I. Moreover, since 0 � Bk � L1I, we further have769

�L1I � H̄k �Bk � L1I, which yields kH̄k �Bkkop  L1. Thus, we have770

kwk �Bkskk = k(H̄k �Bk)(x̃k+1 � yk)k  L1kx̃k � xkk,

which proves that `k(Bk)  L
2
1.771

D.2 Proof of Lemma 12772

To prove Lemma 12, we first present the following lemma showing a smooth property of the loss773

function `k. The proof is similar to [34, Lemma 15].774

Lemma 15. For k 2 B, we have775

r`k(B) =
1

kskk
2

�
�sk(wk �Bsk)

T
� (wk �Bsk)s

T
k

�
. (82)

Moreover, for any B 2 Sd, it holds that776

kr`k(B)kF  kr`k(B)k⇤  2
p
`k(B), (83)

where k · kF and k · k⇤ denote the Frobenius norm and the nuclear norm, respectively.777

Proof. It is straightforward to verify the expression in (82). The first inequality in (83) follows from778

the fact that kAkF  kAk⇤ for any matrix A 2 Sd. For the second inequality, note that779

kr`k(B)k⇤ 
1

kskk
2

�
ksk(wk �Bsk)

T
k⇤ + k(wk �Bsk)s

T
kk⇤
�


2

kskk
2
kwk �Bskkkskk =

2kwk �Bskk

kskk
= 2
p
`k(B),

where in the first inequality we used the triangle inequality, and in the second inequality we used the780

fact that the rank-one matrix uv
> has only one nonzero singular value kukkvk .781

We will also need the following helper lemma.782

Lemma 16. If the real number x satisfies x  A+B
p
x, then we have x  2A+B

2.783

26

Proof. From the assumption, we have784

✓
p
x�

B

2

◆2

 A+
B

2

4
.

Hence, we obtain785

x 

 r
A+

B2

4
+

B

2

!2

 2A+B
2
.

786

Before proving Lemma 12, we also present the following lemma that bounds the loss in each round.787

Lemma 17. For any H 2 Z , we have788

`t(Bt)  4`t(H) + 64L2
1kWt � Ĥk

2
F � 64L2

1kWt+1 � Ĥk
2
F + 2L2

1�
2
t .

Proof. By letting xt = B̂t, x = Ĥ , 2
L1

(H�
L1
2 I), gt = Gt , 2

L1
r`t(Bt), g̃t = G̃t, wt = Wt789

in Lemma 10, we obtain:790

(i) B̂t 2 Ẑ , which means that kB̂tkop  1.791

(ii) It holds that792

hGt, B̂t � Ĥi 
1

2⇢
kWt � Ĥk

2
F �

1

2⇢
kWt+1 � Ĥk

2
F +

⇢

2
kG̃tk

2
F +max{0,�hGt, B̂ti}�t,

(84)

kG̃tkF  kGtkF + |hGt, B̂ti|kStkF . (85)

First, note that kStkF  3 by Definition 2 and |hGt, B̂ti|  kGtk⇤kB̂tkop  kGtk⇤. Together with793

(85), we get794

kG̃tkF  kGtkF + 3kGtk⇤  4kGtk⇤ 
16

L1

p
`t(Bt), (86)

where we used the fact that Gt =
2
L1

r`t(Bt) and Lemma 15 in the last inequality. Furthermore,795

since `t is convex, we have796

`t(Bt)� `t(H)  hr`t(Bt),Bt �Hi =

✓
L1

2

◆2

hGt, B̂t � Ĥi,

where we used Gt =
2
L1

r`t(Bt), B̂t , 2
L1

(Bt �
L1
2 I), and Ĥ , 2

L1
(H �

L1
2 I). Therefore, by797

combining (84) and (86) we get798

`t(Bt)� `t(H) 
L
2
1

8⇢
kWt � Ĥk

2
F �

L
2
1

8⇢
kWt+1 � Ĥk

2
F +

⇢

8
L
2
1kG̃tk

2
F +

L
2
1

4
kGtk⇤�t (87)


L
2
1

8⇢
kWt � Ĥk

2
F �

L
2
1

8⇢
kWt+1 � Ĥk

2
F + 32⇢`t(Bt) + L1

p
`t(Bt)�t. (88)

Note that `t(Bt) appears on both sides of (88). By further applying Lemma 16, we obtain799

`t(Bt)  2`t(H) +
L
2
1

4⇢
kWt � Ĥk

2
F �

L
2
1

4⇢
kWt+1 � Ĥk

2
F + 64⇢`t(Bt) + L

2
1�

2
t .

Since ⇢ = 1/128, by rearranging and simplifying terms in the above inequality, we obtain800

`t(Bt)  4`t(H) + 64L2
1kWt � Ĥk

2
F � 64L2

1kWt+1 � Ĥk
2
F + 2L2

1�
2
t .

801

27

Proof of Lemma 12. We let Ht = r
2
f(yt) for t = 0, 1, . . . , T � 1. Thus, we get802

`t(Bt)  4`t(Ht) + 64L2
1kWt � Ĥtk

2
F � 64L2

1kWt+1 � Ĥtk
2
F + 2L2

1�
2
t

= 4`t(Ht) + 64L2
1kWt � Ĥtk

2
F � 64L2

1kWt+1 � Ĥt+1k
2
F + 2L2

1�
2
t

+ 64L2
1

�
kWt+1 � Ĥt+1k

2
F � kWt+1 � Ĥtk

2
F

�
.

Furthermore, note that803

kWt+1 � Ĥt+1k
2
F � kWt+1 � Ĥtk

2
F

= (kWt+1 � Ĥt+1kF + kWt+1 � ĤtkF)(kWt+1 � Ĥt+1kF � kWt+1 � ĤtkF)

 4
p

dkĤt+1 � ĤtkF =
8
p
d

L1
kHt+1 �HtkF ,

where in the last inequality we used the fact that Ĥt, Ĥt+1,Wt+1 2 Bp
d(0) and the triangle804

inequality. Therefore, we get805

`t(Bt)  4`t(Ht)+64L2
1kWt�Ĥtk

2
F�64L2

1kWt+1�Ĥt+1k
2
F+2L2

1�
2
t+512L1

p

dkHt+1�HtkF .

By summing the above inequality from t = 0 to T � 1, we get806

T�1X

t=0

`t(Bt)  64L2
1kW0 � Ĥ0k

2
F + 4

T�1X

t=0

`t(Ht) + 2L2
1

T�1X

t=0

�
2
t + 512L1

p

d

T�1X

t=0

kHt+1 �HtkF .

Finally, we use the fact that W0 , 2
L1

(B0�
L1
2 I), and Ĥ0 , 2

L1
(H0�

L1
2 I) to obtain Lemma 12.807

D.3 Proof of Lemma 13808

By Assumption 2, we have kwt � Htstk = krf(x̃t+1) � rf(yt) � rf(yt)(x̃t+1 � yt)k 809
L2
2 kx̃t+1 � ytk

2. Thus,810

`t(Ht) =
kwt �Htstk

2

kstk
2


L
2
2

4
kx̃t+1 � ytk

2


(1 + ↵1)2L2
2

4�2(1� ↵1)2
kx̂t+1 � ytk

2
,

where we used Lemma 1 in the last inequality. Also, Since ak � ⌘k for all k � 0, by (22) we get811

N�1X

k=0

kx̂k+1 � ykk
2


N�1X

k=0

a
2
k

⌘2k

kx̂k+1 � ykk
2


1

1� �2
kz0 � x

⇤
k
2
.

Hence, we have812

T�1X

t=0

`t(Ht) 
(1 + ↵1)2L2

2

4�2(1� ↵1)2

X

k2B
kx̂k+1 � ykk

2


(1 + ↵1)2L2
2

4�2(1� ↵1)2

N�1X

k=0

kx̂k+1 � ykk
2


(1 + ↵1)2L2

2kz0 � x
⇤
k
2

4�2(1� ↵1)2(1� �2)
,

which proves the first inequality in (81).813

Furthermore, by Assumption 2, we have814

kHt+1�HtkF =kr
2
f(yt+1)�r

2
f(yt)kF 

p

dkr
2
f(yt+1)�r

2
f(yt)kop

p

dL2kyt+1�ytk.

Hence, by using the triangle inequality, we can bound815

T�1X

t=0

kHt+1 �HtkF 

p

dL2

N�1X

k=0

kyk+1 � ykk 

p

dL2C2

✓
1 + log

AN

A1

◆
kz0 � x

⇤
k,

where we used Lemma 8 in the last inequality.816

28

D.4 Proof of Lemma 14817

We combine Lemma 12 and Lemma 13 to get818

X

k2B

kwk �Bkskk
2

kskk
2

=
T�1X

t=0

`t(Bt)  256kB0 �H0k
2
F + C3L

2
2kz0 � x

⇤
k
2 + 2L2

1

T�1X

t=0

�
2
t

+ 512C2L1L2d

✓
1 + log

AN

A1

◆
kz0 � x

⇤
k.

Since �t = 1/(
p
t+ 2 ln(t+ 2)), we have819

T�1X

t=0

�
2
t =

T+1X

t=2

1

t ln2 t


1

2 ln2 2
+

Z T+1

2

1

t ln2 t
dt =

1

2 ln2 2
+

1

ln 2
�

1

ln(T + 1)
 2.5.

Hence, it further follows from (15) and Lemma 2 that820

N
5

A2
N

 4C2
1

N�1X

k=0

1

⌘̂2k


4C2

1 (2� �
2)

(1� �2)�2
0

+
4C2

1 (2� �
2)

(1� �2)↵2
2�

2

X

k2B

kwk �Bkskk
2

kskk
2


C6

�2
0

+ C7L
2
1 + C8kB0 �H0k

2
F + C9L

2
2kz0 � x

⇤
k
2

+ C10L1L2d

✓
1 + log

AN

A1

◆
kz0 � x

⇤
k.

To simplify the notation, define821

M =
C6

�2
0

+ C7L
2
1 + C8kB0 �H0k

2
F + C9L

2
2kz0 � x

⇤
k
2 + C10L1L2dkz0 � x

⇤
k.

Let A⇤
N be the number that achieves the equality822

N
5

(A⇤
N)2

= M + C10L1L2dkz0 � x
⇤
k log

A
⇤
N

A1
.

We can see that AN � A
⇤
N . Thus, we instead try to construct a lower bound on A

⇤
N . If A⇤

N  A1,823

then log(A⇤
N/A1)  0 and furthermore824

N
5

(A⇤
N)2

 M) A
⇤
N �

1
p
M

N
2.5

.

Otherwise, assume that A⇤
N > A1. Then log(A⇤

N/A1) > 0 and we first show an upper bound on825

A
⇤
N :826

N
5

(A⇤
N)2

= M + C8L1L2dkz0 � x
⇤
k log

A
⇤
N

A1
� M) A

⇤
N 

1
p
M

N
2.5

.

This in turn leads to a lower bound on A
⇤
N :827

N
5

(A⇤
N)2

= M + C8L1L2dkz0 � x
⇤
k log

A
⇤
N

A1
 M + C8L1L2dkz0 � x

⇤
k log

max{ L1

↵2�
,

1
�0
}N

2.5

p
M

!
,

where we also used the fact that A1 = ⌘̂1 � min{�0,
↵2�
L1

}. Thus, we get828

1

AN


1

A⇤
N


1

N2.5

M + C10L1L2dkz0 � x

⇤
k log

max{ L1

↵2�
,

1
�0
}N

2.5

p
M

!! 1
2

.

29

Subroutine 3 LinearSolver(A,b;↵)

1: Input: A 2 Sd
+, b 2 Rd, 0 < ↵ < 1

2: Initialize: s0 0, r0 b�As0, p0 r0
3: for k = 0, 1, . . . do
4: if krkk2  ↵kskk2 then
5: Return sk
6: end if
7: ↵k hrk,Arki/hApk,Apki
8: sk+1 sk + ↵kpk

9: rk+1 rk � ↵kApk

10: Compute and store Ark+1

11: �k hrk+1,Ark+1i/hrk,Arki
12: pk+1 rk+1 + �kpk

13: Compute and store Apk+1 Ark+1 + �kApk

14: end for

E Characterizing the Computational Cost829

In this section, we first specify the implementation details of the LinearSolver oracle in Definition 1830

and the SEP oracle in Definition 2. Then in Section E.3, we present the proof of Theorem 2.831

E.1 Implementation of the LinearSolver Oracle832

We implement the LinearSolver oracle by running the conjugate residual (CR) method [38] to solve833

the linear system As = b. In particular, we initialize the CT method with s0 = 0 and returns the834

iterate sk once we have kAsk � bk  ↵kskk.835

The following lemma provides the convergence guarantee of the CR method, which will be later used836

in the proof of Theorem 2.837

Lemma 18. Let s⇤ be any optimal solution of As
⇤ = b and let {sk} be the iterates generated by838

Subourtine 3. Then we have839

krkk2 = kAsk � bk2 
�max(A)ks⇤k2

(k + 1)2
.

E.2 Implementation of SEP Oracle840

We implement the SEP oracle in Definition 2 by running he classical Lanczos method, with a random841

start, where the initial vector is chosen randomly and uniformly from the unit sphere (see, e.g.,842

[45, 46]). For completeness, the full algorithm is shown in Subroutine 4.843

To prove the correctness of our algorithm, we first recall a classical result in [41] on the convergence844

behavior of the Lanczos method.845

Proposition 3 ([41, Theorem 4.2]). Consider a symmetric matrix W and let �1(W) and �d(W)846

denote its largest and smallest eigenvalues, respectively. Then after k iterations of the Lanczos847

method with a random start, we find unit vectors u(1) and u
(d) such that848

P(hWu
(1)

,u
(1)

i  �1(W)� ✏(�1(W)� �d(W)))  1.648
p

de
�
p
✏(2k�1)

,

P(hWu
(d)

,u
(d)

i � �d(W) + ✏(�1(W)� �d(W)))  1.648
p

de
�
p
✏(2k�1)

,

As a corollary, to ensure that, with probability at least 1� q,849

hWu
(1)

,u
(1)

i > �1(W)�✏(�1(W)��d(W)) and hWu
(d)

,u
(d)

i < �n(W)+✏(�1(W)��d(W)),

the number of iterations can be bounded by d
1
4✏

�1/2 log(11d/q2) + 1
2e.850

Lemma 19. Let � and S be the output of SEP(W; �, q) in Subroutine 4. Then with probability at851

least 1� q, they satisfy one of the following properties:852

• Case I: �  1, then we have kWkop  1;853

30

Subroutine 4 SEP(W; �, q)

1: Input: W 2 Sd, � > 0, q 2 (0, 1)
2: Initialize: sample v1 2 Rd uniformly from the unit sphere, �1 0, v0 0

3: Set the number of iterations N1 min
nl

log 11d
q2

+ 1
2

m
, d
o

4: for k = 1, . . . , N1 do
5: Set wk Wvk � �kvk�1

6: Set ↵k hwk,vki and wk wk � ↵kvk

7: Set �k+1 kwkk and vk+1 wk/�k+1

8: end for
9: Form a tridiagonal matrix T tridiag(�2:N1 ,↵1:N1 ,�2:N1)

10: # Use the tridiagonal structure to compute eigenvectors of T
11: Compute (�̂1, z

(1)) MaxEvec(T) and (�̂d, z
(d)) MinEvec(T)

12: Set u(1)
PN1

k=1 z
(1)
k vk and u(d)

PN1
k=1 z

(d)
k vk

13: Set �̂max max{�̂1,��̂d}
14: if �̂max  1/2 then # Case I: �  1, which implies kWkop  1
15: Return � = 2�̂max and S = 0
16: else if �̂max � 2 then # Case II: � > 1 and S defines a separating hyperplane
17: if �̂1 > ��̂d then
18: Return � = 2�̂max and S = 3u(1)(u(1))>

19: else
20: Return � = 2�̂max and S = �3u(d)(u(d))>

21: end if
22: else # 1

2 < �̂max < 2

23: Set the number of iterations N2 min
nl

1
4
p
2�

log 44d
q2

+ 1
2

m
, d
o

24: for k = N1 + 1, . . . , N2 do
25: Set wk Wvk � �kvk�1

26: Set ↵k hwk,vki and wk wk � ↵kvk

27: Set �k+1 kwkk and vk+1 wk/�k+1

28: end for
29: Form a tridiagonal matrix T tridiag(�2:N2 ,↵1:N2 ,�2:N2)
30: Compute (�̃1, z̃

(1)) MaxEvec(T) and (�̃d, z̃
(d)) MinEvec(T)

31: Set ũ(1)
PN2

k=1 z̃
(1)
k vk and ũ(d)

PN2
k=1 z̃

(d)
k vk

32: Set �̃max = max{�̃1,��̃d}
33: if �̃max  1� � then
34: Return � = �̃max + � and S = 0
35: else if �̃1 � ��̃d then
36: Return � = �̃max + � and S = ũ(1)(ũ(1))>

37: else
38: Return � = �̃max + � and S = �ũ(d)(ũ(d))>

39: end if
40: end if

Lanczos methodLanczos method

• Case II: � > 1, then we have kW/�kop  1, kSkF = 3 and hS,W � B̂i � � � 1 for any854

B̂ such that kB̂kop  1.855

Proof. Note that in Subroutine 4, we first run the Lanczos method for
l
✏
�1/2 log 11d

q2 + 1
2

m
iterations,856

where ✏ = 1
4 . Thus, by Proposition 3, with probability at least 1� q/2 we have857

�̂1 , hWu
(1)

,u
(1)

i � �1(W)�
1

4
(�1(W)� �d(W)), (89)

�̂d , hWu
(d)

,u
(d)

i  �d(W) +
1

4
(�1(W)� �d(W)). (90)

Combining (89) and (90), we get858

1

2
(�1(W)� �d(W))  �̂1 � �̂d) �1(W)� �d(W)  2(�̂1 � �̂d).

31

By plugging the above inequality back into (89) and (90), we further have859

�1(W)  �̂1 +
1

4
(�1(W)� �d(W))  �̂1 +

1

2
(�̂1 � �̂d), (91)

�d(W) � �̂d �
1

4
(�1(W)� �d(W)) � �̂d �

1

2
(�̂1 � �̂d). (92)

Let �̂max = max{�̂1,��̂d}. By (91) and (92), we can further bound the eigenvalues of W by860

�1(W)  �̂max +
1

2
· 2�̂max = 2�̂max and �d(W) � ��̂max �

1

2
· 2�̂max = �2�̂max. (93)

Hence, we can see that kWkop = max{�1(W),��d(W)}  2�̂max. Now we distinguish three861

cases.862

(a) If �̂max 
1
2 , then we are in Case I and the ExtEvec oracle outputs � = 2�̂max  1 and863

S = 0. In this case, we indeed have kWkop  �  1.864

(b) If �̂max � 2, then we are in Case II. In addition, if �̂1 � ��̂d, then the ExtEvec oracle865

returns � = 2�̂max and S = 3u(1)(u(1))>. Similarly, if ��̂d > �̂1, then the ExtEvec oracle866

returns � = 2�̂max and S = �3u(d)(u(d))>. Without loss of generality, consider the case867

where �̂1 � ��̂d. Since kWkop  2�̂max = �, we have kW/�kop  1. Also, since u1 is868

a unit vector, we have kSkF = 3ku(1)
k
2 = 3. Finally, for any B̂ such that kB̂kop  1, we869

have870

hS,W � B̂i = 3(u(1))>Wu
(1)

� 3(u(1))>B̂u
(1)

� 3�̂max � 3 � 2�̂max � 1 = � � 1,

where we used the fact that �̂max � 2 in the last inequality.871

(c) If 1
2 < �̂max < 2, we continue to run the Lanczos method for a total number of872 l

1
4✏

�1/2 log 11d
q2 + 1

2

m
iterations, where ✏ = 1

8�. Thus, by Proposition 3, with probability at873

least 1� q/2 we have874

�̃1 , hWũ
(1)

, ũ
(1)

i � �1(W)�
1

8
�(�1(W)� �d(W)), (94)

�̃d , hWũ
(d)

, ũ
(d)

i  �d(W) +
1

8
�(�1(W)� �d(W)). (95)

Let �̃max = max{�̃1,��̃d}. Since we have �1(W)  2�̂max  4 and �d(W) �875

�2�̂max � �4, the above implies that �̃1 � �1(W) � � and �̃d  �d(W) + �. Hence,876

we can see that kWkop = max{�1(W),��d(W)}  �̂max + �. We further consider two877

subcases.878

(c1) If �̃max  1� �, then we are in Case I and the ExtEvec oracle outputs � = �̃max + �879

and S = 0. In this case, we indeed have kWkop  �  1.880

(c2) If �̃max > 1� �, then we are in Case II. In addition, if �̃1 � ��̃d, then the ExtEvec881

oracle returns � = �̃max + � and S = ũ
(1)(ũ(1))>. Similarly, if ��̃d > �̃1, then882

the ExtEvec oracle returns � = �̃max + � and S = �ũ
(d)(ũ(d))>. Without loss of883

generality, consider the case where �̃1 � ��̃d. Since kWkop  �̃max + � = �, we884

have kW/�kop  1. Also, since ũ
(1) is a unit vector, we have kSkF = kũ

(1)
k
2 = 1.885

Finally, for any B̂ such that kB̂kop  1, we have886

hS,W � B̂i = (ũ(1))>Wũ
(1)

� (ũ(1))>B̂ũ
(1)

� �̃max � 1 = � � 1� �.

This completes the proof.887

32

E.3 Proof of Theorem 2888

We divide the proof of Theorem 2 into the following three lemmas.889

Lemma 20. If we run Algorithm 1 as specified in Theorem 1 for N iterations, then the total number890

of line search steps can be bounded by 2N + log1/�(�0L1/↵2). As a corollary, the total number of891

gradient queries is bounded by 3N✏ + log1/�(
�0L1
↵2

).892

Proof. In our backtracking scheme, the number of steps in each iteration is given by log1/�(⌘k/⌘̂k)+893

1. Also note that ⌘k+1  ⌘̂k/� for all k � 0. Thus, we have894

N�1X

k=0

✓
log1/�

⌘k

⌘̂k
+ 1

◆
= N + log1/�

�0

⌘̂0
+

N�2X

k=0

log1/�
⌘k+1

⌘̂k+1

 N + log1/�
�0

⌘̂0
+

N�2X

k=0

✓
log1/�

⌘̂k

⌘̂k+1
+ 1

◆

 2N � 1 + log1/�
�0

⌘̂N�1

Furthermore, since ⌘̂k � ↵2�/L1 for all k � 0, we arrive at the conclusion.895

Lemma 21. The total number of matrix-vector product evaluations in the LinearSolver oracle is896

bounded by N✏ + C11
p
�0L1 + C12

q
L1kz0�x⇤k2

2✏ , where C11 and C12 are absolute constants.897

Proof. The following proof loosely follows the strategy in [31]. We first bound the number of steps898

required by Subroutine 3 before it terminates.899

Lemma 22. Suppose A ⌫ I. Then Subroutine 3 terminates after at most
lq

↵+1
↵ �max(A)� 1

m
900

iterations.901

Proof. Note that kskk2 � ks
⇤
k2 � ksk � s

⇤
k2. Also, since A ⌫ I, we have ksk � s

⇤
k2 902

kA(sk � s
⇤)k2 = krkk2. Therefore, we have903

krkk2  ↵kskk2 (krkk2  ↵ks
⇤
k2 � ↵krkk2 (krkk2 

↵

↵+ 1
ks

⇤
k2.

By using Lemma 18, we only need k �

q
↵+1
↵ �max(A)� 1 to achieve kAsk � bk  ↵kskk.904

Moreover, when the step size is smaller enough, we can show that Subroutine 3 will terminate in one905

iteration.906

Lemma 23. Let A = I+ ⌘B. When ⌘ 
↵

2L1
, Algorithm 3 terminates in one iteration.907

Proof. From the update rule of Subroutine 3, we can compute that s1 = b>Ab
kAbk2

2
b, which implies908

ks1k = kbk ·
kA

1/2
bk

2

(A1/2b)>A(A1/2b)
�

kbk

�max(A)
�

kbk

1 + ⌘L1
.

On the other hand, we also have909

kr1k  kAb� bk = ⌘kBbk  ⌘L1kbk. (96)

Moreover, when ⌘ 
↵

2L1
, we have ⌘L1 

↵
1+⌘L1

, which implies that kr1k  ↵ks1k.910

Now we upper bound the total number of matrix-vector products in Algorithm 1. When A = I+⌘+Bk911

where ⌘+ = ⌘k�
i. We can store the vector Bkb at the beginning and reuse it to compute s1 when the912

step size ⌘+ <
↵1
2L1

. And when �
i
⌘kL1 �

↵1
2 , it holds that913

1 + �
i
⌘kL1 

↵1 + 2

↵1
�
i
⌘kL1.

33

Thus, at the k-th iteration, the number of matrix-vector products can be bounded by914

MVk  1 +
X

i�0,⌘k�i� ↵1
2L1

r
↵1 + 1

↵1
(1 + ⌘k�

iL1)

 1 +
X

i�0,⌘k�i� ↵1
2L1

↵1 + 2

↵1

p
�i⌘kL1

 1 +
↵1 + 2

↵1

1

1�
p
�

p
⌘kL1.

Furthermore, we can bound that915

N�1X

k=0

p
⌘k 

p
�0 +

N�1X

k=1

p
⌘k 

p
�0 +

1
p
�

N�2X

k=0

p
⌘̂k 

p
�0 +

2(2�
p
�)

p
�(1�

p
�)

p
AN�1 (97)

Note that ✏ < f(xN�1) � f(x⇤)  kz0�x⇤k2

2AN�1
. Hence, we have AN�1 

kz0�x⇤k2

2✏ . Thus, we can916

bound the total number of matrix-vector product evaluations by917

MV =
N✏�1X

k=0

MVk  N✏ +
↵1 + 2

↵1

1

1�
p
�

p

�0L1 +
2(2�

p
�)

p
�(1�

p
�)

r
L1kz0 � x⇤k2

2✏

!
,

= N✏ + C11

p
�0L1 + C12

r
L1kz0 � x⇤k2

2✏
,

where we define C11 = ↵1+2
↵1

1
1�

p
�

and C12 = ↵1+2
↵1

1
1�

p
�

2(2�
p
�)p

�(1�
p
�)

.918

Lemma 24. The total number of matrix-vector product evaluations in the SEP oracle is bounded by919

O
�
N

1.25
✏ (logN✏)0.5 log

�p
dN✏
p

��
.920

Proof. Note that we have Nt 

l
1

4
p
2�t

log 44d
q2t

+ 1
2

m
in Subroutine 4, where �t = 1/(

p
t+ 2 log(t+921

2)) and qt = p/(2.5(t+ 1) log2(t+ 1)). Thus, we have922

N =
T�1X

t=0

Nt 

T�1X

t=0

(t+ 2)0.25 log0.5(t+ 2)

2
p
2

log
2.5

p
44d(t+ 1) log2(t+ 1)

p
(98)

= O

N

1.25
✏

p
logN✏ log

p
dN✏

p

!
. (99)

923

F Experiments924

In our experiments, we consider the logistic regression problem. Below we provide more details925

about the data generation scheme as well as the implementation of Nesterov’s accelerated gradient926

method, BFGS, and our proposed A-QPNE algorithm.927

Dataset generation. The dataset consists of n data points {(ai, yi)}ni=1, where ai 2 Rd is the i-th928

feature vector and yi 2 {�1, 1} is its corresponding label. The labels {yi}ni=1 are generated by929

yi = sign(ha⇤i ,x
⇤
i), i = 1, 2, . . . , n,

where a
⇤
i 2 Rd�1 and x

⇤
2 Rd�1 are the underlying true feature vector and the underlying true930

parameter, respectively. Moreover, each entry of a⇤i and x
⇤ is drawn independently according to the931

standard normal distribution N (0, 1). Note that the true feature vectors {a⇤i }ni=1 are not given in our932

dataset; instead, we generate {ai}ni=1 by adding noises and appending an extra dimension to {a
⇤
i }

n
i=1.933

Specifically, we let ai = [a⇤i + ni + 1; 1]> 2 Rd, where ni ⇠ N (0,�2
I) is the i.i.d. Gaussian noise934

34

vector and 1 2 Rd�1 denotes the all-one vector. In our experiment, we set n = 2, 000, d = 150 and935

� = 0.8.936

NAG. We implemented a monotone variant of the Nesterov accelerated gradient method as described937

in [43, Section 10.7.4]. Moreover, we determine the step size using a backtracking line search scheme.938

BFGS. We implemented the classical BFGS algorithm, where the step size is determined by the939

Moré–Thuente line search scheme.940

A-QPNE (our method). We implemented our proposed A-QPNE method following the pseudocode941

in Algorithm 1, where the line search scheme is given in Subroutine 1 and the Hessian approximation942

update is given in Subroutine 2. Moreover, the implementations of the LinearSolver oracle and the943

SEP oracle are given by Subroutines 3 and 4, respectively.944

35

