
Appendix for A Unified Detection Framework for
Inference-Stage Backdoor Defenses

In Section 1, we present the formal proofs for the theoretical results discussed in Section 3 of the
main text, specifically Theorem 1, 2, and 3. Furthermore, we provide a comprehensive listing of
the detailed configurations used in the experimental study, along with a brief introduction to all the
datasets, in Section 2. We also include the omitted empirical results from the main text, focusing on
the CIFAR10 [1] and IMDB (NLP) [2] datasets, which are presented in Section 3. Additionally, we
conduct an ablation study to explore the impact of different model architectures, such as VGG19 [3],
which is discussed in Section 4. Furthermore, we conduct an additional ablation study to examine
the effects of varying poisoning ratios, as presented in Section 5. We perform an ablation study to
investigate the choice of the hyperparameter β, and the results are provided in Section 6. We further
subject our proposed methods to backdoor attacks specifically tailored to target our techniques in
Section 7. Finally, We further compare our methods with some recent backdoor defenses including
both inference-stage and training-stage methods in Section 8.

1 Proof
In this section, we include the proof of the main results in Section 3.2 and 3.3 of the main text.

1.1 Proof for Section 3.2
In this section, we present the proof of Theorem 1. For the convenience of the reader, we attach the
pseudo-code of Algorithm 1 below. Please note that the thresholding value λα,s is selected to satisfy
the condition

F̂CLEAN(λα,s) = 1− α+
√
(log(2/δ)/(2n)), (1)

where δ ∈ (0, 1) is the violation rate describing the probability that the (FPR) exceeds α, and F̂CLEAN
is the empirical cumulative distribution function of the scores on the validation data {s(T (Xi))}ni=1.
In the case where

√
(log(2/δ)/(2n)) > α, we set the thresholding value τ to be the maximum of

{s(T (Xi))}ni=1.

The main text briefly touches upon the central concept found in the conformal prediction literature. It
states that by employing a suitable score function, the empirical rank or quantile of the distribution
will eventually approach the population counterpart. This convergence is ensured by the uniform
convergence of cumulative distribution functions (CDFs). Consequently, to establish the proof for
Theorem 1, we will first present the subsequent outcome, which accurately measures the uniform
convergence of CDFs.

Lemma 1 (Dvoretzky–Kieffer–Wolfowitz inequality). Given a natural number n, let
X1, X2, . . . , Xn be real-valued independent and identically distributed random variables with cumu-
lative distribution function F (·). Let Fn(·) denote the associated empirical distribution function.

The interval that contains the true CDF, F (x), with probability 1− δ is specified as

Fn(x)− ε ≤ F (x) ≤ Fn(x) + ε where ε =

√
ln 2

δ

2n
.

Theorem 1 (False positive rate of Algorithm 1). Given any pre-trained backdoored classifier f ,
suppose that the validation dataset DVal and the test data (Xtest, Ytest) are IID drawn from the clean
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Algorithm 1 Conformal Backdoor Detection (CBD)

Input: querying input Xtest, clean validation dataset DVal = {(Xi, Yi)}ni=1, transformation method T (·), score
function s(T (·)), desired false positive rate α ∈ (0, 1), violation rate δ ∈ (0, 1)

1: Receiving a future query sample Xtest
2: for i = 1 to n do
3: Calculate si = s(T (Xi)) // xi ∈ DVal

4: end for
5: Select the decision threshold λα,s according to Equation (1).
6: Determine if Xtest is a clean sample if s(T (Xtest)) ≤ λα,s

Output: The decision if the sample Xtest is a clean or backdoor sample

data distribution PCLEAN. Given any δ ∈ (0, 1), for any score function and transformation method
s(T (·)), such that the resulting scores {s(T (Xi))}ni=1 remain IID with a continuous distribution, the
associated backdoor conformal detector g(·; s, λα,s) as specified in Algorithm 1 satisfies

P
(
g(Xtest; s, λα,s) = 1 (Backdoor Sample) | DVal) ≤ α,

with probability at lease 1− δ for any α ∈ (0, 1) such that α >
√
(log(2/δ)/(2n)).

Proof. Note that Xtest is drawn from the clean data distribution and we have

P(g(Xtest; s, λα) = 1(Backdoor Sample) | DVal)

= EXtest1{g(Xtest; s, λα) = 1 | DVal}
= EXtest1{s(T (Xtest)) ≥ λα | DVal} (2)

= EXtest1{FCLEAN(s(T (Xtest))) ≥ FCLEAN(λα) | DVal} (3)

= P(FCLEAN(s(T (Xtest))) ≥ FCLEAN(λα) | DVal)

≤ P(FCLEAN(s(T (Xtest))) ≥ F̂CLEAN(λα)− ε | DVal) (ε =

√
ln 2

δ

2n
) (4)

= 1− (1− α+ ε− ε) (5)
= α,

holds with probability at least 1 − δ. The equation (2) is because of the decision rule as specified
in Algorithm 1. Additionally, the FCLEAN in Equation (3) represents the CDF of s(T (Xtest)), while
F̂CLEAN in (4) denotes the empirical CDF obtained from DVal. The inequality in Equation (4) arises
from the DKW inequality specified in Lemma 1. Furthermore, the equation (5) is based on the fact
that the CDF follows a uniform distribution (a result of the probability integral transformation) and
the selection of the thresholding value specified in Equation (1).

1.2 Proof for Section 3.3
This section will present the proofs for Theorem 2 and 3, as outlined in Section 3.3 of the main text.
These results are intimately connected to the renowned Neyman-Pearson Lemma within the context
of statistical hypothesis testing and binary classification problems. To provide the necessary context,
we will begin with a brief introduction to the Neyman-Pearson classification framework.

1.2.1 Neyman-Pearson Classification
Consider a random pair (X,Y ), where X ∈ X ⊂ Rd is a d-dimensional vector of features, and
Y ∈ {0, 1} represents the class label of X . A classifier g : X → {0, 1} from a data input belongs to X
to 0, 1. The overall classification error of f is denoted as R(g) = E1{g(X) ̸= Y } = P{g(X) ̸= Y }.
By applying the law of total probability, R(g) can be decomposed into a weighted average of the
type I error R0(g) = P{g(X) ̸= Y | Y = 0} and the type II error R1(g) = P{g(X) ̸= Y | Y = 1},
given by

R(g) = π0R0(g) + π1R1(g)
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where π0 = P(Y = 0) and π1 = P(Y = 1). While the classical paradigm minimizes R(·), the
Neyman-Pearson (NP) paradigm seeks to minimize R1 while controlling R0 under a user-specified
level α. The (level-α) NP oracle classifier is thus

g∗α ∈ argmin
R0(g)≤α

R1(g)

where the significance level α reflects the level of conservativeness towards type I error. To reflect
on the backdoor detection problem, we encode the label set Y to indicate if its associated X is
clean (with label 0) or backdoored (with label 1). The classifier g in the NP classification context
corresponds to the detector g in our framework. The following result, a direct consequence of the
famous Neyman-Pearson Lemma [4], gives the solution of g∗α.

Lemma 2 (NP oracle classifier [5]). Let P1 and P0 be two probability measures with densities p1
and p0 respectively. Under mild continuity assumption, the NP oracle classifier is given by

g∗α(x) = 1

{
p1(x)

p0(x)
> Cα

}
for some threshold Cα such that P0{p1(X)/p0(X) > Cα} ≤ α and P1{p1(X)/p0(X) > Cα} ≥ α.

1.2.2 Proof for Theorem 2

Proof. By the definition of the Attacker’s Goal, as specified in Section 3, the attacker faces a problem
of the following:

max
η1,f poi

PXY∼PCLEAN(f
poi(η1(X)) = η2(Y ))

subject to |PXY∼PCLEAN(f
poi(X) ̸= Y )− PXY∼PCLEAN(f

cl(X) ̸= Y )| ≤ ε.

Also, we assume that the (A) marginal clean data is normally distributed with mean 0 and covariance
Σ, (B) the attacker employs a linear classifier fθ(x) = 1{θ⊤x > 0} for θ ∈ Rd, and (C) the attacker
applies the backdoor transformation η1(x) = x+ γ, where γ ∈ Tc ≜ {u ∈ Rd | ∥u∥2 = c, c > 0}.

Firstly, it is straightforward to check that, per the Attacker’s Goal above, the attacker cannot obtain a
backdoor classifier with θ∗ = 0, as in this scenario, the corresponding backdoor accuracy:

PX∼N (γ,Σ)(X
⊤θ∗ > 0)

would be zero regardless of the backdoor trigger η1(x) = x+ γ for γ ∈ Tc. Next, for any non-zero
θ∗ ∈ Rd, suppose that there exist γ1, γ∗ ∈ Tc such that (γ1, θ∗) and (γ∗, θ∗) are both the solutions
of the Attacker’s Goal.

As a result, both
PX∼N (γ∗,Σ)(X

⊤θ∗ > 0)

and
PX̃∼N (γ1,Σ)(X̃

⊤θ∗ > 0)

are maximized, and equal, subject to γ1, γ
∗ ∈ Tc.

On the other hand, given the classifier θ∗, for any γ ∈ Tc, we have the backdoor accuracy under θ∗:

PX∼N (γ,Σ)(X
⊤θ∗ > 0),

= PZ(Z > 0), Z ∼ N (γ⊤θ∗, θ∗Σ(θ∗)⊤),

= 1− Φ(− γ⊤θ∗

(θ∗Σ(θ∗)⊤)1/2
), Φ(·) CDF of the standard normal distribution

= Φ(
γ⊤θ∗

(θ∗Σ(θ∗)⊤)1/2
),

is maximized if and only if γ = cθ∗/∥θ∗∥ (θ∗ ̸= 0) due to the Cauchy-Schwarz inequality. As
a result, we have γ1 = γ∗. Hence, the optimal backdoor trigger γ∗ corresponds to the backdoor
classifier θ∗ is unique and admits the form of γ∗ = cθ∗/∥θ∗∥.
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1.2.3 Proof of Theorem 3

Proof. Following the same setup in Theorem 2 and from the result in Theorem 2, the attacker knows
both the clean and backdoor distribution. Hence, we conclude the result by the Neyman Pearson
Lemma and the Lemma 2.

2 Experiments Configurations
2.1 Data Description
CIFAR10: The CIFAR-10 dataset is a highly popular dataset in the field of machine learning research.
It consists of 60,000 color images, each with a resolution of 32x32 pixels. The dataset is divided into
10 classes, with 6,000 images per class. Specifically, there is a training set with 50,000 images and a
test set with 10,000 images.

GTSRB: The GTSRB dataset, known as the German Traffic Sign Recognition Benchmark, has
gained popularity in the field of Backdoor Learning. It consists of a total of 60,000 images distributed
among 43 different classes, with varying resolutions ranging from 32x32 to 250x250 pixels. The
dataset is split into a training set containing 39,209 images and a test set containing 12,630 images.

Tiny ImageNet: Tiny ImageNet is comprised of a collection of 100,000 images belonging to 200
classes. Each class consists of 500 images, with 64x64 dimensions, resulting in colored images. The
dataset is further divided into subsets, with 500 training images, 50 validation images, and 50 test
images allocated for each class.

SST-2: The dataset used in our study is a modified version of the Stanford sentiment analysis dataset,
specifically the 2-class variant known as SST-2. The SST-2 dataset consists of 9,613 samples, while
another variant called SST-5 contains 11,855 reviews. Additionally, the SST dataset includes phrases
associated with each of the sentences.

IMDB: The dataset used in our work is a binary dataset comprising of 12,500 movie reviews in each
class. The reviews are multi-sentence and are presented in the form of long sentences. For our study,
we have extracted the first 200 words from each review.

2.2 Packages used for generating backdoor attacks/data/models
In this section, we provide a detailed description of the experimental setup. To conduct our exper-
iments, we utilized three open-source backdoor packages, the specifics of which are summarized
in Table 1. For most computer vision (CV) backdoor attacks, we implemented them using both
the Backdoor ToolBox [6] and the BackdoorBench [7] to ensure the consistency of our results.
In the case of WaNet and SSBA, the BackdoorBench [8] package offered implementations for
CIFAR-10, GTSRB, and Tiny ImageNet, so we utilized their package to obtain the latent representa-
tions. Regarding the TacT, Adaptive Patch, and Adaptive Blend, the Backdoor ToolBox package
offered implementations for CIFAR-10, GTSRB, so we utilized their package to obtain the latent
representations. Lastly, for NLP backdoor attacks, we relied on the OpenBackdoor package, which
is specifically designed for NLP backdoors.

The results in the main text are directly obtained by running the Default scripts for the three
packages, as specified in Table 2. Ablation studies on different model architectures and poisoning
rates are included in Section 4 and 5, respectively.

2.3 On the selection of Hyperparameters
Within this section, we provide an outline for the selection of the shrinkage parameter β utilized in
the Shrunk-Covariance Mahalanobis. The primary motivation behind employing SCM is to address
the issue of unstable estimation in the inverse of the sample covariance matrix, which can result in
non-IID property of samples within DVal and future test data. Such non-IIDness can override the
order information for those samples, affecting the FPR as described in Theorem 1.

To ensure the IID property of the samples within DVal as well as future test samples, we propose
the following approach for selecting the shrinkage parameter β. Firstly, we partition DVal into two
mutually exclusive datasets, namely D1 and D2, with the size of D1 greater than that of D2. Next, we
compute the Shrunk-Covariance Mahalanobis (SCM) scores based on D1 and perform a search for an
appropriate value of β̂ that ensures the SCM scores, sβ̂(D1), for the samples within D1 and sβ̂(D2)
are IID samples. To verify the IID property, we conduct a Two-sample Kolmogorov-Smirnov Test
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Table 1: Open-source packages applied in our work
Backdoor ToolBox [6] BackdoorBench [7] OpenBackdoor [8]

BadNets ✔ ✔
Blended ✔ ✔

TrojanNN ✔
SIG ✔ ✔

Dynamic ✔ ✔
TacT ✔

WaNet ✔
SSBA ✔

Adaptive-Blend ✔
Adaptive-Patch ✔

SOS ✔
LWP ✔

Table 2: Open-source packages used for the results in the main text
Backdoor ToolBox [6] BackdoorBench [7] OpenBackdoor [8]

BadNets ✔
Blended ✔

TrojanNN ✔
SIG ✔

Dynamic ✔
TacT ✔

WaNet ✔
SSBA ✔

Adaptive-Blend ✔
Adaptive-Patch ✔

SOS ✔
LWP ✔

with a decision rule based on a p-value of 0.05. We repeat the above procedure ten times and observe
that for CV (NLP) attacks, β̂ = 0.5 (0.7) satisfies the aforementioned requirement. Consequently, we
set β = 0.5 for all CIFAR10, GTSRB experiments (for Tiny ImageNet: β = 0.1), and β = 0.7 for
all NLP experiments. Ablation studies investigating different values of β are included in Appendix 6.

3 Omitted Experimental Results in Main Text
3.1 Results on the FPR for CIFAR10
This section presents the results of the False Positive Rate (FPR) analysis conducted on CIFAR10.
Figure 1 illustrates the performance of our proposed CBD-SCM. Notably, our method consistently
achieves FPR values that align with the theoretical upper bounds.

3.2 Results on the detection power (ROC) for IMDB Dataset
We assess the detection performance of our proposed method on IMDB (NLP) using the base uncased-
BERT model. Specifically, we generate ROC curves for our methods under two advanced backdoor
attacks, as illustrated in Figure 2. The results indicate that our method outperforms all other methods.
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Figure 1: The mean FPRs of our proposed method on CIFAR10 are shown in each plot, which is
independently replicated 10 times. The solid line represents the mean value, and the standard errors
are < 0.01 for all cases. Our method’s FPRs consistently match the theoretical upper bounds.

Figure 2: ROC of our SCM method on IMDB NLP. Our proposed method consistently outperforms
all other methods.

4 Ablation Study: Different model architectures

In this section, we demonstrate the performance of our proposed methods using the VGG 19 model.
The dimension of the avgpool layer in VGG 19 is 25088, which is impractically large. Therefore,
we utilize the classifier layer with a dimension of 4096 for practical purposes. We have observed that
the empirical FPR performance of our method consistently aligns with the theoretical bounds in all
cases. Consequently, we omit the results for FPR performance and focus on reporting the results for
detection power (AUCROC, ROC) in the following subsections.

4.1 Detection Power on CIFAR10

We assess the detection performance of our proposed method on CIFAR10 using VGG 19. We present
the ROC curves for our method in Figure 3 and 4. It is evident that our SCM method consistently
outperforms other methods in all attack scenarios. Specifically, for certain advanced attacks such as
the Dynamic and WaNet, we observe a remarkable improvement of approximately 200% in terms of
AUCROC.

4.2 Detection Power on GTSRB

We evaluate the detection performance of our proposed method on GTSRB using the VGG 19 model.
The ROC curves for our method are displayed in Figure 5 and 6. It is evident from the results that our
SCM method consistently outperforms other methods in the majority of attack scenarios. Notably,
for advanced attacks like SSBA, we observe a significant improvement in terms of AUCROC.

6



CIFAR10

Figure 3: ROC of our method on CIFAR10 with VGG19. Our proposed method consistently
outperforms other methods.

Figure 4: ROC of our method on CIFAR10 with VGG19. Our proposed method consistently
outperforms other methods.GTSRB

Figure 5: ROC of our method on GTSRB with VGG19.

5 Ablation Study: Different poisoning ratios

In this section, we provide the results obtained by using different poisoning ratios. The summary of
the results for CIFAR10 can be found in Table 3. It is observed that the detection performance of our
method exhibits minimal variations across different poisoning ratios. This finding further reinforces
the robustness and universal effectiveness of our method.
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GTSRB

Figure 6: ROC of our method on GTSRB with VGG19.

Table 3: AUCROC score of our method on CIFAR10
Poisoning Ratio → 0.3% 1% 5%

BadNets 0.99 0.99 0.99
Blended 0.96 0.96 0.96
WaNet 0.88 0.91 0.94
SSBA 0.92 0.95 0.97

6 Ablation Study: Different choices of β
In this section, we provide empirical studies on the effect of using different β. Specifically, we select
β ∈ {0.3, 0.4, 0.6, 0.7}.

6.1 Performances on FPR for CIFAR10
This section presents the results of the False Positive Rate (FPR) analysis conducted on CIFAR10
with different choices over β. Figure 7, 8, 9, 10 illustrate the FPR performance of our proposed
CBD-SCM, with β = 0.3, 0.4, 0.6, 0.7 respectively. Our method consistently achieves FPR values
that align with the theoretical upper bounds.

6.2 Performances on detection power (AUCROC, ROC) for CIFAR10
We assess the detection performance of our proposed method on CIFAR10 with different choices
over β. Figure 11, 12, 13, 14 illustrate the ROC of our proposed SCM, with β = 0.3, 0.4, 0.6, 0.7
respectively. The AUCROC scores exhibit minimal variations when different values of β are used,
indicating the consistent and robust effectiveness of our method. This observation reinforces the
stability and universality of our selected β = 0.5 as reported in the main text.
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Figure 7: The mean FPRs of our proposed method with β = 0.3 on CIFAR10 are shown in each
plot, which is independently replicated 10 times. The solid line represents the mean value, and the
standard errors are < 0.01 for all cases.
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Figure 8: The mean FPRs of our proposed method with β = 0.4 on CIFAR10 are shown in each
plot, which is independently replicated 10 times. The solid line represents the mean value, and the
standard errors are < 0.01 for all cases.
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Figure 9: The mean FPRs of our proposed method with β = 0.6 on CIFAR10 are shown in each
plot, which is independently replicated 10 times. The solid line represents the mean value, and the
standard errors are < 0.01 for all cases.
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Figure 10: The mean FPRs of our proposed method with β = 0.7 on CIFAR10 are shown in each
plot, which is independently replicated 10 times. The solid line represents the mean value, and the
standard errors are < 0.01 for all cases.
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Figure 11: ROC of our method on CIFAR10 with β = 0.3
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Figure 12: ROC of our method on CIFAR10 with β = 0.4
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Figure 13: ROC of our method on CIFAR10 with β = 0.6
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Figure 14: ROC of our method on CIFAR10 with β = 0.7
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Figure 15: The mean FPRs of our proposed method with β = 0.3 on GTSRB are shown in each
plot, which is independently replicated 10 times. The solid line represents the mean value, and the
standard errors are < 0.01 for all cases.

6.3 Performances on FPR for GTSRB
This section presents the results of the False Positive Rate (FPR) analysis conducted on GTSRB
with different choices over β. Figure 15, 16, 17, 18 illustrate the FPR performance of our proposed
CBD-SCM, with β = 0.3, 0.4, 0.6, 0.7 respectively. Our method consistently achieves FPR values
that align with the theoretical upper bounds.

6.4 Performances on detection power (AUCROC, ROC) for GTSRB
We assess the detection performance of our proposed method on GTSRB with different choices over
β. Figure 19, 20, 21 illustrate the ROC of our proposed SCM, with β = 0.3, 0.4, 0.6 respectively.
The AUCROC scores exhibit minimal variations when different values of β are used, indicating
the consistent and robust effectiveness of our method. This observation reinforces the stability and
universality of our selected β = 0.5 as reported in the main text.
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Figure 16: The mean FPRs of our proposed method with β = 0.4 on GTSRB are shown in each
plot, which is independently replicated 10 times. The solid line represents the mean value, and the
standard errors are < 0.01 for all cases.
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Figure 17: The mean FPRs of our proposed method with β = 0.6 on GTSRB are shown in each
plot, which is independently replicated 10 times. The solid line represents the mean value, and the
standard errors are < 0.01 for all cases.
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Figure 18: The mean FPRs of our proposed method with β = 0.7 on GTSRB are shown in each
plot, which is independently replicated 10 times. The solid line represents the mean value, and the
standard errors are < 0.01 for all cases.
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Figure 19: ROC of our method on GTSRB with β = 0.3
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Figure 20: ROC of our method on GTSRB with β = 0.4
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Figure 21: ROC of our method on GTSRB with β = 0.6
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7 Performances under additional types of backdoor attacks
We evaluate our methods against backdoor attacks intentionally designed to challenge our defenses,
such as LIRA [9] and M-attack (a custom-designed attack). These attacks are specifically crafted
to diminish the distinction in latent spaces of the backdoored models by imposing regularization on
the distances. LIRA employs Wasserstein distances, while M-attack utilizes Mahalanobis distances,
to measure the dissimilarity between clean data and backdoor attacks. In Table 4, our methods
consistently outperform state-of-the-art defenses, although there is a slight performance dip compared
to diverse attack scenarios like BadNets and SSBA. Nevertheless, this outcome is reasonable since no
defense can be universally effective against all attack variations.

Table 4: AUCROC score of our method on GTSRB against LIRA and M-attack.
Defenses → SCM (Ours) FREQ SCALEUP

LIRA 0.86 0.71 0.79
M-attack 0.82 0.80 0.71

8 Comparison with other defenses
8.1 Performances comparison with recent detection-based backdoor defenses
We evaluate our methods alongside two recently developed detection-based defenses designed to
counteract CV backdoor attacks: SCALEUP and FREQ. The summarized results are presented in
Table 5 below. Our observations consistently demonstrate that our methods outperform SCALEUP
and FREQ.

Table 5: AUCROC score of our method on GTSRB. The bestperforming method(s) are indicated in
boldface.

Defenses → SCM (Ours) FREQ SCALEUP ABL SPECTRE

BadNets 0.99 0.91 0.86 0.97 0.96
SSBA 0.99 0.51 0.72 0.81 0.56

Adaptive Patch 0.87 0.49 0.55 0.72 0.70
Adaptive Blend 0.99 0.56 0.51 0.59 0.62

8.2 Performances comparison with purifying-based training-stage backdoor defenses
We assess our methods in conjunction with two training-stage backdoor defenses, SPECTRE and
ABL. As emphasized in the main text, these methods, while sharing the concept of distinguishing
between clean and backdoor attacks, significantly differ from ours in terms of the threat model,
methodology, and evaluation metrics. To ensure a fair comparison, we report the AUCROC scores
for distinguishing between clean and backdoor data. The summarized results are presented in Table 5.
Our observations consistently demonstrate that our methods outperform ABL and SPECTRE.
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