
A More detailed comparisons with existing baselines490

This section provides the reader with a more in-depth comparison with similar architectures. We491

cover BRecT [20] in Section A.1 and GSS-Hybrid [24] in Section A.2.492

A.1 Comparison with Block Recurrent Transformer (BRecT)493

The Block Transformer layer (i.e Slide:12L) also processes keys and values from the previous window494

stored in a differentiable cache. This is implemented similarly to the sliding window attention pattern495

suggested in [20] and was originally introduced by Transformer-XL [8]. Using a causal mask, at496

every token inference step, the attention mechanism is applied to blocks of tokens of size W and is497

partially extended to the cached keys and values from the previous block with the sliding window.498

BRecT, as explained in [20], uses a non-differentiable cache that is carried from one sequence of size499

L to the next2. The last recurrent states of a sequence are stored in a non-differentiable cache and fed500

to the next training step on the following sequence in the document as a warm-start. We do not pass501

such a representation, since to compute the output of the convolution, we need access to the whole502

sequence. We believe that this is an one advantage that BRecT has over our method, especially for503

very long examples that split into ordered sequences of length L, since the cache carried from one504

sequence to the next can provide very useful long range information and (weak) access to the whole505

past. Since we need the whole sequence to compute SSM states, history beyond L may be lost in the506

process. We believe that BST can further be improved by adding non-differentiable sequence cache507

for very long documents.508

While in other architectures, the history between blocks of tokens is not modeled, both BST and509

BRecT use a mechanism to model previous block context. The authors of BRecT experiment with510

various sequential gating mechanisms to condense the information from past blocks. With BST, we511

use SSM to provide context from previous blocks to the current block as explained in Section 3.2.512

A.2 Comparison with the Transformer GSS-Hybrid513

GSS-Hybrid [24] is a SSM-Transformer hybrid architecture that we first describe in Section 4.1. The514

architecture is significantly different from BRT. GSS-Hybrid is primarily composed of Gated State515

Space (GSS) layers and has a few interleaved Transformer layers at every 4th layer starting with the516

2nd layer. BRT on the other hand is mainly composed of Block Transformer layers and has Block517

State Transformer layers at layer positions {1, 7, 9} for the ⇠200M model and {1, 5, 7, 9} for the518

⇠400M model. Our hybrid does not stack SSM and Transformer layers like the GSS-Hybrid but rather519

replaces the recurrence in BRecT with an SSM such as S4. In BRT, the SSM generates states for520

each Block Transformer representations and we then use cross-attention to mix the states and the521

self-attention outputs. We also use a simpler SSM. The authors in [24] initially built GSS, a gated522

version of DSS [15], to (1) reduce SSM parameter dimensions, (2) stabilize training of the SSM and523

(3) allow better length generalization. However, when experimenting with SSMs such as S4 or DSS,524

we found that the gating was not necessary to achieve all three objectives stated above. We decided525

that using GSS’s Gated Attention Unit [19] was therefore not needed when integrating SSM states526

into the attention mechanism. We also reiterate that the authors in [24] used hyperparameter search527

to get the best performance while we did not.528

B Evaluating Length Generalization capabilities529

We present our length generalization analysis and report perplexity in Figure 4. Our models and530

baselines all have ⇠400M parameters, are trained on a sequence length of 4k and tested on sequences531

with lower and higher sequence lengths of {512, 16k, 65k}.532

We notice that all models have similar perplexity for sequence lengths of 512. Both BST:SH:S4-L533

and GSS-Hybrid-L generalize well on 16k and 65k sequence lengths for PG19 and arXiv. For GitHub,534

GSS-Hybrid-L and BST:MF:unstruct-L perplexities increase drastically, potentially due to noise in the535

GitHub dataset. For GitHub again, BRecT:fixed:skip-L performs very well at higher sequence lengths.536

We hypothesize that the block recurrent model’s access to the entire past, via non-differentiable cache537

2In our work and in [20], a document is split into multiple sequences of size L and each sequence is split into
multiple blocks of size W

13



Figure 4: Length Generalization for sequence lengths {512, 16k, 65k} on PG19 (left), GitHub (middle) and
arXiv (right). BST:SH:S4-L generalizes better than any other baselines, including GSS-Hybrid-L that uses GSS,
a structured SSM. GSS-Hybrid-L numbers are from [24].

of representations across sequences, helps retain a “memory” of dependencies between each code538

file in the GitHub dataset. Interestingly, we also note that BST:MF:unstruct-L and BRecT:fixed:skip-L539

outperform other methods on PG19 up to a sequence length of 16K. Perplexity performance on PG19540

is perhaps less reliant on long term relationships between tokens, which can explain the performance541

of models that have no explicit built-in mechanisms for length generalization.542

The analysis also allows us to draw a clear distinction between structured and unstructured SSMs543

integrated in hybrid architectures. As previously mentioned in Section 3.1, SSMs such as GSS, DSS544

and S4 use a structured kernel K, built from learned matrices A, B and C for any sequence length L545

in Equation 3. Since K is extendable to any arbitrary sequence length L, both BST:SH:S4-L and GSS-546

Hybrid-L have a build-in mechanism for length generalization that the unstructured BST:MF:unstruct-L547

model does not. BST:MF:unstruct-L performs best on the training sequence of 4K and is on-par for548

512 with perplexity increasing for unseen 16K and 65K sequence lengths. BST:SH:S4-L has by far549

the best perplexity for 65K sequence lengths on PG19, GitHub and arXiv.550

C Ablation Studies551

In the following section, we perform ablations to investigate (1) the placement of a single SSM layer552

in Table 2 in the overall architecture, (2) the effects of the number of SSM layers added in Table 3,553

and (3) the size D of the SSM state in Table 4. For the ablations, we use the ⇠200M parameter554

BST:SH:S4, since it is the fastest model, and assess various configurations on PG19.555

Table 2: A single BST at various
layer index.

Layer index Perplexity

3 12.41
7 11.92
9 11.88

12 12.03

Table 3: Multiple BST layers at
various locations.

Num layers Perplexity

2 11.69
3 11.57
4 11.21
5 11.20

Table 4: Increasing BST’s S4 model
state size D.

State Size Perplexity Step Time

8 11.95 ⇥0.7
16 11.57 ⇥1.0
32 11.55 ⇥1.8
64 11.54 ⇥3.2

In Table 2, we experiment adding a single BST layer at layer indices 3, 6, 9, 12. We notice that a556

single BST layer with state size D = 16 located closer to the middle of the whole Block Transformer557

stack, at index = 9, has the greatest effect on perplexity. This finding is inline with findings in prior558

work [36, 20].559

In Table 3, we test if adding multiple BST layers yields improvements on performance. We start with560

BST layers with state size D = 16 at indices 0, 9. We follow by adding another BST layer at index 7561

for a total of three BST layers and then another at index 5, followed by another at index 12. Adding562

more BST layers lowers perplexity. However, the results seem to plateau at 5 BST layers. We note563

also that there is a 3.5% training step time increase for each added layer.564

14



In Table 4, we train our models with different state sizes D. For the state size ablation, we use565

three BST layers at indices 0, 7, 9. We find that increasing D improves perplexity to the detriment of566

training speed (step time). For this reason, we chose D = 16 for Table 1 BST results.567

D Limitations568

While BST’s SSM layer allows the model to unroll and parallelize the recurrence that models long-569

term context between blocks of tokens, the SSM variants are reliant on efficient FFT operations. We570

have found that the FFT operation is an important speed bottleneck on TPUs that needs to be resolved571

to better scale BST to multiple layers and larger models. While we are still investigating the reasons,572

we found that JAX FFT was x4 faster on GPUs. Further, new SSM variants such as S5 [30] bypass573

FFT operations using a binary associative operator3. Our implementation is modular enough that we574

can simply plug in S5 or use other FFT implementations.575

One of our assumption is that BST’s SSM layer is able to capture the right long-term dependency for576

each block. The SSM recurrence at step T = t provides a summarized representation of previous577

steps for T = 0 to T = t� 1. However, a single vector representation may not be powerful enough578

to support all important long-term dependencies. Despite the perplexity improvements on long-range579

language modeling tasks, this assumption needs to be tested on other long range classification tasks580

such as Long Range Arena [32] as well. It is possible that our model can perform better if we feed to581

the attention layer W SSM representations that are chosen by a top-k retrieval operation, similar to582

the one in Memorizing Transformer [36].583

E JAX Implementation of BST584

Pseudocode 1 contains a function that implements convolution of multiple filters over the same input585

sequence using FFT and inverse FFT operations. Pseudocodes 2, 3 and 4 respectively implement586

context state collection of BST variants: Single-Head (SH), Multi-Head (MH) and Multi-Filter (MF).587

Finally, Pseudocode 5 runs the Block Transformer sublayer in parallel by feeding the context states588

to their corresponding block.589
590 """Unstructured filters and convolutions."""591

592

import jax593

from jax import numpy as jnp594

from einops import rearrange595

596

win_length � ��� � (w)597

seq_length � ���� � (l)598

599

def get_filters_unstruct(channels):600

"""Returns trainable filters and biases.601

602

Args:603

channels: number of filters.604

605

Returns:606

h: filter of shape (seq_length, channels, dim)607

b: bias of shape (channels, dim)608

"""609

t � jnp.linspace(�.�, �.�, seq_length)610

h � jnp.exp(- alpha * t) * dense(positional_emb(t))611

b � get_bias()612

return h, b613

614

def multichannel_convolution(u, h, b):615

"""Multichannel convolution function.616

617

Args:618

3In JAX, this is equivalent to using jax.lax.associative_scan.

15



u: input of shape (seq_length, dim)619

h: filters of shape (seq_length, channels, dim)620

b: bias of shape (channels, dim)621

"""622

h � rearrange(h, "l c d -� c d l")623

624

fft_size � seq_length * �625

u_f � jnp.fft.rfft(x, n�fft_size)626

h_f � jnp.fft.rfft(h, n�fft_size)627

628

y � jnp.fft.irfft(h_f * x_f, n�fft_size, norm�"forward")[629

..., :seq_length] � (c, d, l)630

y � y � x * b[..., None] � (c, d, l)631

y � rearrange(y, "c d l -� l d c")632

return y633634

Pseudocode 1: Unstructured filters and convolutions.

635 """Context state collection for BST-SH variant."""636

637

num_heads � � � (h)638

num_states � �� � (s)639

640

� (SH): Single-Head641

def SH_context_states(u):642

"""Single-Head Context Collection."""643

h, b � get_filters_[unstruct/s�](channels��)644

y_� � multichannel_convolution(u, h, b)645

� y_�: (l, d, �)646

647

� lift to multiple heads648

y_h � dense(y_�)649

� y_h: (l, d, h)650

651

context_states � jnp.split(652

y_h, seq_length // win_length, axis��)653

return context_states � (l/w, w, d, h)654655

Pseudocode 2: Context state collection for BST-SH variants.

656 """Context state collection for BST-MH variant."""657

658

� (MH): Multi-Head659

def MH_context_states(u):660

"""Multi-Head Context Collection."""661

h, b � get_filters_[unstruct/s�](channels�num_heads)662

y_h � multichannel_convolution(u, h, b)663

� y_h: (l, d, h)664

665

context_states � jnp.split(666

y_h, seq_length // win_length, axis��)667

return context_states � (l/w, w, d, h)668669

Pseudocode 3: Context state collection for BST-MH variants.

670 """Context state collection for BST-MF variant."""671

672

� (MF): Multi-Filter673

def MF_context_states(u):674

"""Multi-Filter Context Collection."""675

h, b � get_filters_[unstruct/s�](channels�num_states)676

y_s � multichannel_convolution(u, h, b)677

16



� y_s: (l, d, s)678

context_states � jnp.split(679

y_s, seq_length // win_length, axis��)680

� context_states: (l/w, w, d, s)681

682

� collect the last context states683

context_states � context_states[:, -�, ...] � (l/w, d, s)684

context_states � rearrange(685

context_states, "lw d s -� lw s d")686

687

� shift context states corresponding to windows688

context_states � jnp.roll(context_states, �, axis��)689

690

� replace the initial window with trainable weights691

init_context � get_init_context(num_states) � (d, s)692

context_states[�] � init_context693

694

� lift to multiple heads695

context_states � dense(context_states)696

697

return context_states � (l/w, s, d, h)698699

Pseudocode 4: Context state collection for BST-MF variants.

700 """Block-State Transformer Layer."""701

702

� Block Transformers are non-recurrent and parallelizable.703

block_transformer � jax.vmap(BRecT.nonrecurrent_cell)704

705

def BST(u):706

"""Block-State Transformer Layer."""707

global MF � True if Multi-Filter, False otherwise (SH/MH)708

709

� split inputs into windows (l/w, w, d)710

u � jnp.split(u, seq_length // win_length, axis��)711

712

� collect context states from SSM outputs713

context_states � [SH/MH/MF]_context_states(u)714

715

� pass the contexts in place of recurrent states716

y � block_transformer(717

token_embeddings�u,718

recurrent_state�context_states,719

use_cross_attn_causal_mask�not MF,720

use_cross_positional_emb�MF, � context IDs721

)722

723

return rearrange(y, "lw w d -� (lw w) d") � (l, d)724725

Pseudocode 5: Block-State Transformer Layer.

17


