
A Proof of Theorem 1405

We reiterate the setup and notation introduced in the paper here for ease of reference.406

Notation [N ] denotes the set of natural number {1, 2, ..., N}. Id denotes the (vector-valued)407

identity function. We write two functions f, g agreeing for all points in set P as f ≡P g. Finally,408

we write the total derivative of a vector-valued function f by all its inputs z as ∂f
∂z , i.e. the Jacobian409

matrix with entries ∂fi
∂zj

.410

Setup We are given two arbitrary distributions P,Q over latents z = (z1, ...,zK) ∈ Z . Each411

latent zk describes one of the K components of the final data point x produced by the ground-truth412

data-generating process f . A model f̂ is trained to fit the data-generating process on samples of P ;413

the aim is to derive conditions on P and f̂ that are sufficient for f̂ to then also fit f on Q.414

We assume that f , f̂ are chosen such that we can find at least one compositional representations415

(Definition 1) for either function that shares a common composition function C and factorization of416

the latent space Z1 × · · · × ZK = Z .417

Proof of Theorem 1. For f̂ to generalize to Q, we need to show fitting f on P implies also fitting it418

on Q, in other words419

f ≡
P
f̂ =⇒ f ≡

Q
f̂ (8)

Step 1. Since C is the same for both functions, we immediately get420

φ ≡
Q
φ̂ =⇒ f ≡

Q
f̂ , (9)

i.e. it suffices to show that the component functions generalize. Note, however, that since C is not421

generally assumed to be invertible, we do not directly get that agreement of f , f̂ on P also implies422

agreement of their component functions φ, φ̂ on P .423

Step 2. We require P to have compositional support w.r.t. Q (Definition 2 and Assumption (A2)).424

The consequence of this assumption is that any point q = (q1, ..., qK) ∈ Q can be constructed from425

components of the K support points pk =
(
pk
1 , ...,p

k
K

)
∈ P subject to pk

k = qk as426

q =
(
p1
1, ...,p

K
K

)
. (10)

A trivial consequence, then, is that points x̃ ∈ X̃ in component space corresponding to points in Q in427

latent space can always be mapped back to latents in P428

φ(q) =
(
φ1(q1), ...,φK(qK)

)
=
(
φ1

(
p
(1)
1

)
, ...,φK

(
p
(K)
K

))
(11)

because each component function φk only depends on the latents zk of a single component. This is429

also the case for the component functions φ̂ of f̂ so that we get430

φ ≡
P
φ̂ =⇒ φ ≡

Q
φ̂. (12)

Step 3. We now only need to show that φ ≡
P

φ̂ follows from f ≡
P

f̂ . As noted above, this is431

not guaranteed to be the case, as C is not generally invertible (e.g. in the presence of occlusions).432

We, therefore, need to consider when a unique reconstruction of the component functions φ (and433

correspondingly φ̂) is possible, based on only the observations x = f(z) on Q.434

As explained in the main paper, we can reason about how a change in the latents zk of some slot435

affects the final output, which we can express through the chain rule as436

∂f

∂zk
(z)︸ ︷︷ ︸

N×D

=
∂C

∂φk

(
φ(z)

)
︸ ︷︷ ︸

N×M

∂φk

∂zk
(zk)︸ ︷︷ ︸

M×D

∀k ∈ [K]. (13)
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Here, N is the dimension of the final output (e.g. 64× 64× 3 for RGB images), M is the dimension437

of a component’s representation x̃k (e.g. also 64× 64× 3 for RGB images), and D is the dimension438

of a component’s latent description zk (e.g. 5: x-position, y-position, shape, size, hue for sprites).439

Note that we can look at the derivative component-wise because each component function φk only440

depends on the latents zk of its component. However, the combination function still depends on the441

(hidden) representation of all components, and therefore ∂C
∂φk

is a function of all φ and the entire z.442

In equation 13, the left-hand side (LHS) ∂f
∂zk

can be computed from the training, as long as suppP443

is an open set. On the right-hand side (RHS), the functional form of ∂C
∂φk

is known since C is444

given, but since φ(z) is still unknown, the exact entries of this Jacobian matrix are unknown. As445

such, equation 13 defines a system of partial differential equations (PDEs) for the set of component446

functions φ with independent variables z.447

Before we can attempt to solve this system of PDEs, we simplify it by isolating ∂φk

∂zk
. Since all terms448

are matrices, this is equivalent to solving a system of linear equations. For N = M , ∂C
∂φk

is square,449

and we can solve by taking its inverse as long as the determinant is not zero. In the general case of450

N ≥ M , however, we have to resort to the pseudoinverse to write451

∂φk

∂zk

∗
=

(
∂C

∂φk

⊤ ∂C

∂φk

)−1
∂C

∂φk

⊤ ∂f

∂zk
∀k ∈ [K], (14)

which gives all solutions ∂φk

∂zk

∗
if any exist. This system is overdetermined, and a (unique) solution452

exists if ∂C
∂φk

has full (column) rank. In other words, to execute this simplification step on P , we453

require that for all z ∈ P the M column vectors of the form454 (
∂C1

∂φkm

(
φ(z)

)
, ...,

∂CN

∂φkm

(
φ(z)

))⊤

∀m ∈ [M ] (15)

are linearly independent. Each entry of a column vector describes how all entries Cn of the final455

output (e.g. the pixels of the output image) change with a single entry φkm of the intermediate456

representation of component k (e.g. a single pixel of the component-wise image). It is easy to see457

that if even a part of the intermediate representation is not reflected in the final output (e.g. in the458

presence of occlusions, when a single pixel of one component is occluded), the entire corresponding459

column is zero, and the matrix does not have full rank.460

To circumvent this issue, we realize that the LHS of equation 14 only depends on the latents zk of a461

single component. Hence, for a given latent z and a slot index k, the correct component function will462

have the same solution for all points in the set463

P ′(z, k) = {p ∈ suppP |pk = zk} . (16)

We can interpret these points as the intersection of P with a plane in latent space at zk (e.g. all latent464

combinations in the training set in which one component is fixed in a specific configuration). We can465

then define a modified composition function C̃ that takes z and a slot index k as input and produces466

a “superposition” of images corresponding to the latents in the subset as467

C̃ (z, k) =
∑

p∈P ′(z,k)

C
(
φ(p)

)
. (17)

Essentially, we are condensing the information from multiple points in the latent space into a single468

function. This enables us to write a modified version of equation 13 as469 ∑
p∈P ′(z,k)

∂f

∂zk
(p) =

∑
p∈P ′(z,k)

∂C

∂φk

(
φ(p)

)∂φk

∂zk
(zk) =

∂C̃

∂φk

(z, k)
∂φk

∂zk
(zk) ∀k ∈ [K] (18)

Now we can solve for ∂φk

∂zk
as in equation 14, but this time require only that ∂C̃

∂φk
has full (column)470

rank for a unique solution to exist, i.e.471

rank
∂C̃

∂φk

(z, k) =
∑

p∈P ′(z,k)

∂C

∂φk

(
φ(p)

)
= M ∀z ∈ P ∀k ∈ [K]. (19)
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In general, this condition is easier to fulfill since full rank is not required in any one point but over472

a set of points. For occlusions, for example, any pixel of one slot can be occluded in some points473

p ∈ P ′, as long as it is not occluded in all of them. We can interpret this procedure as “collecting474

sufficient information” such that an inversion of the generally non-invertible C becomes feasible475

locally.476

The requirement that suppP has to be an open set, together with the full rank condition on the477

Jacobian of the composition function condensed over multiple points, C̃, is termed sufficient support478

in the main paper (Definition 3 and Assumption (A3)). As explained here, this allows for the479

reconstruction of ∂φk

∂zk
from the observations, i.e.480

f ≡
P
f̂ =⇒ ∂φ

∂z
≡
P

∂φ̃

∂z
. (20)

Step 4. The above step only gives us agreement of the derivative of the component functions, ∂φk

∂zk
,481

not agreement of the functions themselves. As explained above, the solution to the linear system of482

equations 14 constitutes a system of partial differential equations (PDEs) in the set of component483

functions φ with independent variables z. We can see that this system has the form484

∂iφ(z) = ai

(
z,φ(z)

)
, (21)

where i ∈ [L] = [K ×D] is an index over the flattened dimensions K and D such that ∂iφ denotes485
∂φ
∂zL

(which is essentially one column of ∂φk

∂zk
aggregated over all k) and ai is the combination of486

corresponding terms from the LHS. If this system allows for more than one solution, we cannot487

uniquely reconstruct the component functions from their derivatives.488

If we have access to some initial point, however, for which we know φ(0) = φ0, we can write489

φ(z1, ..., zL)−φ∗ =
(
φ(z1, ..., zL)− φ(0, z2, ..., zL)

)
+
(
φ(0, z2, ..., zL)− φ(0, 0, z3, ..., zL)

)
+ ...

+
(
φ(0, ..., 0, zL)− φ(0, ..., 0)

)
.

(22)

In each line of this equation, only a single zi =: t is changing; all other z1, ..., zL are fixed. Any490

solution of 22, therefore, also has to solve the L ordinary differential equations (ODEs) of the form491

∂tφ(z1, ..., zi−1, t, zi+1, ..., zL) = ai

(
z1, ..., zi−1, t, zi+1, ..., zL,φ(z1, ..., zi−1, t, zi+1, ..., zL)

)
,

(23)
which have a unique solution if ai is Lipschitz in φ and continuous in zi, as guaranteed by (A1).492

Therefore, 22 has at most one solution. This reference point does not have to be in z = 0, as a simple493

coordinate transform will yield the same result for any point in P . It is therefore sufficient that there494

exists some point p0 ∈ P for which φ(p0) = φ̂(p0) to obtain the same unique solution for φ and495

φ̂, which is exactly what (A4) states. Overall, this means that agreement of the derivatives of the496

component functions also implies agreement of the component functions themselves, i.e.497

∂φ

∂z
≡
P

∂φ̃

∂z
=⇒ φ ≡

P
φ̂ (24)

Step 5. Finally, we can conclude the model f̂ fitting the ground-truth generating process f on the498

training distribution P , through 20, 24, 12, 9, implies the model generalizing to Q as well. In other499

words, equation 8 holds.500

501

B Details about the compositional functions502

As explained in equation 7 in section 4, the composition function is implemented as a soft pixel-wise503

addition in most experiments. The use of the sigmoid function σ(·) in the composition504

x = σ(x̃1) · x̃1 + σ(−x̃1) · x̃2 (25)
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was necessary for training stability. With this formulation, sprites can also overlap somewhat505

transparently, which is not desired and leads to small reconstruction artifacts for some specific506

samples. Implementing the composition with a step function as507

x = step(x̃1) · x̃1 + step(−x̃1) · x̃2 (26)

instead would be more faithful to the ground-truth data-generating process, but is hard to train with508

gradient descent.509

Note that both formulations could easily be extended to more than one sprite by simply repeating the510

composition operation with any additional sprite.511

In section 4, we also looked at a model that implements the composition through alpha compositing512

instead (see also Table 1, #11). Here, each component’s intermediate representation is an RGBa513

image. The components are then overlaid on an opaque black background using the composition514

function515

xα = x1,α + (1− x1,α) · x2,α (27)

xRGB = x1,α · x1,RGB + (1− x1,α) ·
x2,α

xα
· x2,RGB. (28)

While this yields a compositional function, the sufficient support condition (Definition 3) is generally516

not fulfilled on the sprites data. The reason is that in fully transparent pixels (α = 0), changing the517

RGB value is not reflected in the output. Conversely, if a pixel is black, changing its alpha value518

will not affect how it is blended over a black background. As a result, most columns in the Jacobian519
∂C
∂φk

(see also equation 15) will be zero. Since the intermediate representations of each sprite will520

contain a lot of black or transparent pixels (the entire background), the rank of the Jacobian here will521

be low. In this case, the workaround from equation 17 does not help since the low rank is not a result522

of another component in the foreground but of the specific parameterization of each component itself.523

As stated in the main paper, the fact that this parameterization still produces good results and524

generalizes well is an indicator that there might be another proof strategy or workaround that avoids525

this specific issue.526
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