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Abstract

In many real-world settings exact perturbation sets to be used by an adversary
are not plausibly available to a learner. While prior literature has studied both
scenarios with completely known and completely unknown perturbation sets, we
propose an in-between setting of learning with respect to a class of perturbation sets.
We show that in this setting we can improve on previous results with completely
unknown perturbation sets, while still addressing the concerns of not having perfect
knowledge of these sets in real life. In particular, we give the first positive results for
the learnability of infinite Littlestone classes when having access to a perfect-attack
oracle. We also consider a setting of learning with abstention, where predictions
are considered robustness violations, only when the wrong label prediction is made
within the perturbation set. We show there are classes for which perturbation-set
unaware learning without query access is possible, but abstention is required.

1 Introduction

Adversarial perturbations, imperceivably small manipulations to input instances that cause unexpected
failures of learned predictors, pose significant safety concerns for their employment. The phenomenon,
first exposed a decade ago in image classification tasks [Szegedy et al., 2014], has since received
substantial attention, both in the practical and theoretical machine learning research communities.
Studies in both lines of research often skip over the question of how to suitably model “imperceivable
perturbations” and rather investigate how to defend against various (fixed) types of attacks. In
theoretical studies, this is typically modeled by defining an adversarial loss that, in addition to
misclassification, penalizes the existence of a perturbed instance on which a classifier assigns a
different label. This type of loss definition then crucially depends on a given perturbation type, that is
some function u : X → 2X that assigns every domain instance a set of points that would be viewed
as an admissible perturbation (often balls of some radius with respect to some norm are considered).

However, in most realistic settings, exact perturbation sets to be used by an adversary are not plausibly
available to a learner. Moreover, it has been shown that encouraging robustness with respect to a
perturbation type that is not suitable for the task easily degrades classification accuracy [Tsipras et al.,
2019, Zhang et al., 2019, Yang et al., 2020]. In response, some work has then explored the question
of learnability when the perturbation type is not known at all in advance [Montasser et al., 2021],
but information about possible perturbations can be accessed through queries. It is not difficult to be
convinced though that without any restrictions or knowledge of the perturbations to be used, robust
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learning from samples only is impossible. Even for a small collection of possible perturbation types,
as soon as these induce inconsistencies between optimal predictors a sample based learner cannot be
simultaneously successful with respect to all options.

In this work we explore a middle ground between fixed and unknown perturbation types, which we
term learning with uncertain perturbation sets. We will assume that the true perturbation type is
a member of a fixed class of perturbation types. One can think of this as knowing that we should
encourage robustness with respect to some type of norm induced ball, but may not be certain about
which type of norm or which radius is most suitable for the task. We then study which structures
(on the interplay between perturbation type class and the class of predictors to be learned) allow for
PAC-type learnability guarantees.

Given a class U of perturbation types and hypothesis class H, we define an H-induced partial order
on U . We show that when U is actually totally ordered in this sense, statistical (PAC) learning is
possible in the realizable case as soon as H has finite VC-dimension. U being totally ordered applies
to a wide variety of settings, for example the case where the various perturbation types are balls in
some metric space while the radius varies over U (and actually also does not need to be constant
over domain X for each u ∈ U). However, we also show that, without the realizability assumption
learning from samples alone is not feasible, even when U is totally ordered with respect to H.

We thus explore two natural remedies: (1) We allow the learner to interact with a perfect attack oracle
[Montasser et al., 2021]. Given an instance x and classifier f , such an oracle certifies robustness or
provides an adversarial perturbation of x for f . Previous work on learning with unknown perturbation
sets has employed such an oracle and shown learnability for classes with finite Littlestone dimension
[Montasser et al., 2021]. In this work, we show that provided certain structures (U being totally
ordered or a finite union of totally ordered perturbation type classes) learning with a perfect attack
oracle becomes feasible for all classes of finite VC-dimension (which is a much wider space of
natural hypothesis classes than those of finite Littlestone dimension). (2) We allow the learner to
output a classifier that sometimes abstains from prediction. For this, we define a modification of
the adversarial loss, where a hypothesis does not suffer loss when it abstains on an instance that
was actually manipulated. We show that this again yields learnability for VC-classes when the
perturbation type class is a finite union of totally ordered classes. We then consider the case in which
H has finite disagreement-coefficient [Hanneke, 2007] and show that such H can be learned with
respect to every class of perturbation types. And finally, we define a notion of (ϵ,H)-cover for a class
of perturbation types U , introduce learners for this kind of cover and show that a class H is robustly
learnable with respect to U if there is a finite-disagreement-cover learner for (H,U).
Our results on learning with abstentions show that different strategies for guarantees for different kinds
of robustness (for example different types of perturbation sets) can be combined into an abstention
learner that only predicts in the agreement region. The guarantees for each learning strategy then
yield a guarantee for the combined classifier that depends on the number of strategies used. This
highlights a different aspect to the power of abstention in adversarially robust learning from what has
been established in prior work [Balcan et al., 2020, 2023]. We show that abstentions can also be used
to address uncertainty in perturbation types.

1.1 Related work

Providing PAC type learning guarantees under adversarial robustness requirements has received an
enormous amount of research attention in the past decade [Feige et al., 2015, Cullina et al., 2018,
Wang et al., 2018, Awasthi et al., 2019, Montasser et al., 2019, Attias et al., 2019, Montasser et al.,
2020, Ashtiani et al., 2020, Montasser et al., 2021, Gourdeau et al., 2021, 2022, Montasser et al.,
2022, Attias and Hanneke, 2022, Attias et al., 2022, Bhattacharjee et al., 2021, Awasthi et al., 2022b,a,
2023, Mao et al., 2023]. We will focus here on aspects within this literature that are most relevant to
our settings.

Most prior works study the sample complexity of adversarial robustness with respect to a fixed type
of adversarial perturbation (often a metric ball with a certain radius). However, recent research has
developed frameworks of analysis that go beyond learning with respect to a fixed type of perturbations.
It has been argued that the “correct” type of admissible adversarial perturbations (which originally
were “imperceivable” modifications to input instances that lead to misclassification by a learned
predictor) should depend on the underlying data-generating process [Bhattacharjee and Chaudhuri,
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2021, Chowdhury and Urner, 2022]. These studies define a notion of “adaptive robustness” with
respect to which a predictor should be evaluated. The drawback of these notions is that the correct
perturbation type is not available to the learner and thus a predictor cannot be straightforwardly
evaluated with respect to this loss. A different way of relaxing the assumption of a fixed, known
perturbation type is provided in the framework of tolerance [Ashtiani et al., 2023, Bhattacharjee et al.,
2023]. Here, a learner is evaluated with respect to some fixed perturbation type, while being compared
to the optimal achievable loss with respect to a larger perturbation type, relaxing the requirement for
the learner and reflecting that the exact relevant perturbation type is typically not known (or even
uniquely existing).

Most relevant to our work is a recent study on PAC learning with respect to unknown perturbation
sets [Montasser et al., 2021]. This work provides learning guarantees for the case that the robustness
requirement will be with respect to an entirely unknown perturbation type without any prior knowledge
about the nature of these perturbations. Those learning bounds assume access to a perfect attack
oracle (as we do in some parts of this work), and require the class to have finite Littlestone dimension.
In this work, we show that adding some structure to the class of perturbation types (as well as the
promise that the true perturbation type will be a member of this class), allows for sample and query
complexity bounds that are independent of the hypothesis class’s Littlestone dimension.

Finally, there is a long line of work studying the benefits of abstentions for classification tasks [Bartlett
and Wegkamp, 2008, El-Yaniv and Wiener, 2010, Wiener and El-Yaniv, 2015, Yuan and Wegkamp,
2010, Zhang and Chaudhuri, 2016]. Some recent studies have also shown that the ability to abstain
from prediction for manipulated instances can be beneficial for adversarial robustness requirements
[Balcan et al., 2020, 2023]. However, the former studies a different setting for the generation of
adversarial perturbations, and the latter considers fixed perturbation types.

1.2 Overview of results

In Section 2, we define our setup, introduce the notions of learnability and loss we investigate and
provide an overview of the different kinds of prior knowledge and oracle access we employ. In
particular, we there define our partial order on classes of perturbation types.

In Section 3 we analyze perturbation type classes for which this order is a total order. Theorem 1
states that every hypothesis class with finite VC dimension can be robustly learned in the realizable
case with respect to any totally ordered perturtbation type class. We then prove that this result cannot
be extended to the agnostic case (Observation 1). This motivates investigating the benefits of a perfect
attack oracle. Theorem 2 shows that the impossibility can be overcome with access to a perfect attack
oracle and provides a finite sample and oracle-query bound for the agnostic case.

In Section 4, we investigate classes of perturbation types U that are not necessarily totally ordered. We
first extend our previous results on learning with access to a perfect-attack-oracle to the case where
U is a union of finitely many totally ordered perturbation classes (Theorem 3). We then establish
that there are classes of perturbation types and hypothesis classes which cannot be learned without
abstention, even with access to a perfect attack oracle (Observation 3), but which can be learned with
abstention without the need for access to a perfect-attack-oracle (Observation 4). This motivates our
investigations into learning with respect to our adversarial abstention loss (Definition 5).

We show that in the realizable case, every hypothesis class with finite VC-dimension can be learned
with respect to a finite union of totally ordered perturbation types in Theorem 4. We then consider the
case in which H has finite disagreement-coefficient and show that such H can be learned with respect
to every class of perturbation types (Theorem 5). Lastly, we define a notion of (ϵ,H)-cover for a class
of perturbation types U , which states that for every u ∈ U there is a close-to-optimal hypothesis for
u in the cover (Definition 7) and introduce the notion of learners for this kind of cover (Definition 8).
We then generalize our previous results by showing that a class H is robustly learnable with respect
to U if there is a finite-disagreement-cover learner for (H,U) (Theorem 6). While we provide some
proof sketches in the main body of the paper, the detailed proofs for all results are in the supplement.

2 Setup

For sets A and B, we let 2A denote the powerset of A and AB the set of all functions from B to A.
Let X be a domain and Y = {0, 1} be a label space. We model the data generation as a distribution
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P over X × Y , and let PX denote its marginal over X . A hypothesis or predictor is a function
h : X → {0, 1, ⋆}. Thus, on input x ∈ X , a hypothesis h either predicts label 0 or 1 or abstains by
outputting ⋆. We call a hypothesis non-abstaining if h(x) ̸= ⋆ for all x ∈ X . A hypothesis class H is
a set of non-abstaining predictors. We will let F = {0, 1, ⋆}X denote the set of all predictors over X .

The performance of a predictor h is measured by a loss function ℓ : F × X × Y → R. For loss
ℓ, we use the notation LP (h) = E(x,y)∼P [ℓ(h, x, y)], to denote the expected loss of predictor h
with respect to distribution P and LS(h) =

1
|S|

∑|S|
i=1 ℓ(h, xi, yi) the empirical loss on dataset S =

((x1, y1), . . . , (xm, ym)). Further, for a hypothesis class H we will let optP (H) = infh∈H LP (h)
denote the approximation error of class H with respect to P and loss ℓ.

The standard loss for classification tasks is the binary loss ℓ0/1(h, x, y) = 1 [h(x) ̸= y], where 1 [·]
denotes the indicator function. The standard loss for adversarial robustness additionally penalizes h
on instance (x, y) for the existence of a perturbation on x that h does not label with y. This loss is
defined for a specified perturbation type, which is a function u : X → 2X that assigns every instance
x ∈ X a set u(x) ⊆ X with x ∈ u(x) of admissible perturbations. The adversarial loss with respect
to u is then defined as

ℓu(h, x, y) = 1 [∃z ∈ u(x) : h(z) ̸= y] .

We will use the notation ℓu,⊥(h, x) to denote the adversarial component loss, which indicates whether
a domain point x lies close to the decision boundary with respect to the perturbation type u:

ℓu,⊥(h, x) = 1 [∃z ∈ u(x) : h(z) ̸= h(x)] .

For hypotheses that have the option to abstain from prediction, we propose a variation of the
adversarial loss that allows for a predictor to abstain from prediction on perturbed instances (but not
on unperturbed instances) without suffering loss. The following definition captures this modification:

Definition 1 (Adversarial abstention loss). For a perturbation type u : X → 2X , the adversarial
abstention loss is defined by

ℓu,abst(h, x, y) =


1 if h(x) ̸= y

1 if ∃z ∈ u(x) such that h(z) ̸= y and h(z) ̸= ⋆

0 otherwise

The main difference with adversarial loss is that if h(z) = ⋆ for an adversarial point z ∈ u(x) with
z ̸= x, then there is no penalty and ℓu,abst(h, x, y) = 0, thus allowing the predictor to abstain on
points that were perturbed. This definition models the scenario where if the predictor can correctly
detect that an adversarial attack has happened and abstains, then it is not penalized. However,
abstaining on non-perturbed points is still penalized. Note that in case a predictor h never abstains
(that is h(x) ̸= ⋆ for all x ∈ X ) the two definitions of adversarial loss coincide. We let Lu

P (h),
Lu,abst
P (h), Lu

S(h), L
u,abst
S (h) denote the corresponding expected and empirical losses, and optuP (H),

optu,abstP (H) the corresponding approximation errors of a class H and distribution P .

Uncertain perturbation type In the literature, adversarial robustness is mostly treated with respect
to a fixed (known) perturbation type u, while learning with respect to an entirely unknown perturbation
type has also been investigated. In this work, we introduce a setting that naturally interpolates between
these two extremes. We assume that the true perturbation type u∗ is unknown to the learner, but
promised to lie within a fixed class U of perturbation types. That is, the learner has prior knowledge
of a class U with u∗ ∈ U , where u∗ is the perturbation type that the learner will be evaluated with (see
Definition 3 below). We can think of u∗ as the perturbation type that the true adversarial environment
will employ to manipulate input instances and induce misclassifications. We let Uall denote the class
that contains all possible perturbation types.

It is easy to see that without any restrictions on the class U and any capability of the learner to
(interactively) gather information about u∗ and no option to abstain, a learner cannot succeed (see
also Observations 1 and 2 below). To gain control over potentially infinite classes of perturbation
types, we will now define a partial order on a class U that is induced by a hypothesis class H. This
structure will prove to be conducive for learnability.
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Definition 2. Let H ⊆ {0, 1}X be a hypothesis class. For perturbation types u1, u2 we say that u1

is smaller than u2 with respect to class H, and write u1 ⪯H u2, if and only if for all h ∈ H and all
x ∈ X we have

ℓu1,⊥(h, x) ≤ ℓu2,⊥(h, x).

We say a set of perturbation types U is totally ordered, with respect to ⪯H, if for every u1, u2 ∈ U ,
we have either u1 ⪯H u2 or u2 ⪯H u1.

We have u1 ⪯H u2 if, for every function h ∈ H the margin area (the points which receive positive
adversarial component loss) with respect to u1 is included in the margin area with respect to u2. This
is, for example, the case if all perturbation sets with respect to u1 are included in those induced by u2.

Resources to learners and learnability A learner is a function A : (X × Y)∗ → F that takes
in a finite sequence S = ((x1, y1), . . . (xm, ym)) of labeled examples and outputs a predictor
A(S) : X → {0, 1, ⋆}. We will study the following PAC-type [Valiant, 1984] notion of learnability
of hypothesis classes H with perturbation type classes U .

Definition 3 (Learnability without abstentions). Let H ⊆ {0, 1}X be a hypothesis class and U a
class of perturbation types. We say that H is robustly learnable with respect to perturbation class
U if there exists a learner A and a function m : (0, 1)2 → N such that for every ϵ, δ > 0, every
m ≥ m(ϵ, δ), every u∗ ∈ U and every data-generating distribution P we have

PS∼Pm [Lu∗

P (A(S)) ≤ optu
∗

P (H) + ϵ] ≥ 1− δ.

We speak of learnability in the realizable case if the above requirement is relaxed to only hold for all
distributions P with optu

∗

P (H) = 0. Without this assumption, we also speak of learnability in the
agnostic case.

If the above definition is fulfilled for a class H, then the function m : (0, 1)2 → N in the above
definition is an upper bound on the sample complexity of the learning task. Note that, while we don’t
require the learner in the above definition to output a non-abstaining hypothesis, predicting ⋆ will
always cause loss with respect to ℓu. We can thus assume all considered predictors are non-abstaining
classifiers for this setting.

Note that the above definition generalizes and unifies previous notions of adversarially robust
learnability. We obtain learnability with respect a known perturbation type (the setting that is mostly
considered in prior works) when U = {u∗} is a singleton class. Learning with unknown perturbations
[Montasser et al., 2021] on the other hand, is the setting where U is the set of all possible perturbation
types. In this work, we are interested in studying more fine-grained conditions on the structure of
(the combination of) H and U that allow for learnability. We will call the case where U is neither a
singleton set nor the set of all possible perturbation types learning with uncertain perturbation sets.

We will show that, even when the class of perturbation types U in consideration is totally ordered
with respect to hypothesis class H, agnostically learning H with U is impossible even in very simple
cases (see Observation 1). We will thus, as has been done in earlier studies [Ashtiani et al., 2020,
Montasser et al., 2021] in addition allow the learner access to a perfect attack oracle, which we model
as follows:

Definition 4 (Perfect Attack Oracle). A perfect attack oracle for perturbation type u is a function
Ou : F × X → X ∪ {robust}, that takes as input a non-abstaining predictor f and a domain
point x and either certifies that f is robust on x with respect to u by outputting robust or returns an
admissible perturbation of x for f . That is

Ou(f, x) =

{
robust if f(z) = f(x) for all z ∈ u(x)

z ∈ u(x) with f(x) ̸= f(z) otherwise

We say that a class H and perturbation class U are learnable with access to a perfect attack oracle
if there exists a function n : (0, 1)2 → N such that the conditions in Definition 3 are satisfied for
a learner that additionally makes at most n(ϵ, δ) queries to the perfect attack oracle. The function
n(·, ·) then is an upper bound on the attack oracle complexity of the learning problem.

In Section 4 we will consider more general pairs of hypothesis and perturbation classes H and U . We
will show that if U is not necessarily totally ordered with respect to H (or a finite union of such totally
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ordered classes) there are tasks on which no learner (even with access to a perfect attack oracle) can
succeed (see Observation 3 below). For such cases we will explore learnability with respect to the
adversarial abstention loss:

Definition 5 (Learnability with abstentions). Let H ⊆ {0, 1}X be a hypothesis class and U a class of
perturbation types. We say that H is robustly learnable with abstentions with respect to perturbation
class U if there exists a learner A and a function m : (0, 1)2 → N such that for every ϵ, δ > 0, every
m ≥ m(ϵ, δ), every u∗ ∈ U and every data-generating distribution P we have

PS∼Pm [Lu∗,abst
P (A(S)) ≤ optu

∗

P (H) + ϵ] ≥ 1− δ.

Note that since H contains only non-abstaining predictors, we have optu
∗

P (H) = optu
∗,abst

P (H).

Discussion on additional parameters and assumptions Throughout this paper, we will also work
with various standard complexity measures, such as bounded VC-dimension or bounded Littlestone
dimension of the hypothesis class H, bounded VC-dimension of the loss class or the adversarial
component loss class. We refer the reader to the appendix for a reminder of the definitions of these
notions.

We will further assume that learners have the capability to identify empirical risk minimizing
hypotheses from a class. It is standard (though often implicit) to assume this as oracle access for the
learner as well. We consider the standard ERM oracle, a robust ERM (RERM) oracle (for a fixed
perturbation type u) and a maximally robust ERM (MRERM) oracle (for a class U of perturbation
types, and realizable samples only). We define the following oracles:

ERMH : S 7→ hS ∈ argminh∈HL0/1
S (h)

RERMu
H : S 7→ hu

S ∈ argminh∈HLu
S(h)

MRERMU
H : S 7→


(h

u∗
S

S , u∗
S) with h

u∗
S

S ∈ argminh∈HLu∗
S

S (h),

and u∗
S is ⪯H maximal in the set {u ∈ U | minh∈H Lu

S(h) = 0}
error if Lu

S(h) > 0 for all u ∈ U and h ∈ H

That is, we will assume that MRERMU
H will return an error if the input sample S is not ℓu-realizable

for any u ∈ U . If, on the other hand, there does exist a u ∈ U for which S is ℓu-realizable, then
MRERMU

H will return a maximal (with respect to ⪯H) such perturbation type u∗
S and corresponding

hypothesis hu∗
S

S with Lu∗

S (hu∗

S ) = 0. In particular, we assume that for every non-empty sample S
there exists such a maximal element u∗

S ∈ U and corresponding ERM hypothesis from H. While
these do not always exist in U and H a priori, it has recently been shown that it is possible to embed
U and H into slightly larger classes so that the MRERMU

H oracle is always well defined [Lechner
et al., 2023]. See Appendix Section A for more details on this.

Since we focus on studying sample complexity (independently of computational considerations) and
consider learners as functions throughout, assuming access to the above oracles is not restricting
the validity of our bounds. It is still interesting to understand when is their existence reasonable to
assume. Both ERM and RERM oracles have been widely used in the literature and they are often
computationally hard to implement. Assuming their existence, however, an MRERM oracle can be
easily implemented for the case where U is finite and totally ordered by running a binary search over
U and calling RERM for the comparison step. If we assume U is parametrized by a k-bit number,
then this requires O(k) queries to RERM.

3 Learning with a totally ordered perturbation class

We will start with investigating the case where the perturbation class U is totally ordered with respect
to hypothesis class H (see Definition 2). Note that if two perturbation types u1 and u2 we satisfy
u1(x) ⊆ u2(x) for all x ∈ X , then u1 is smaller than u2, u1 ⪯H u2, for every hypothesis class
H ⊂ {0, 1}X . This is, for example, the case when u1 and u2 assign balls (with respect to some
metric) centered at x to every domain point x and u2 always assigns a ball of radius at least as large
as the ball assigned by u1 (while the balls assigned by u1 and u2 are not necessarily required to have
the same radii uniformly over the space X ).
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In this section, we will focus on learning with respect to the standard adversarial loss and thus only
consider non-abstaining predictors. We first show that for H and totally ordered U , whenever the
class H has bounded VC-dimension we get learnability in the realizable case. This result is based on
adapting a compression argument for adversarially robust learning [Montasser et al., 2019] to the
case of uncertain perturbation sets. A very similar adaptation has recently been made for the related
problem of strategic classification [Lechner et al., 2023]. The proof of this result can be found in the
appendix.
Theorem 1. Let U be a perturbation class that is totally ordered with respect to a hypothesis class
H with VC(H) = d < ∞. Then H is learnable in the realizable case with respect to U with sample
complexity O(d·2

d·log(1/δ)
ϵ ).

Recall that realizability here means optu
∗

P (H) = 0 for the true perturbation type u∗ (with respect
to which the learner is evaluated). We now show that without this assumption learning guarantees
are impossible without equipping the learner with additional resources (or weakening the success
criteria).
Observation 1. There exists a class H with VC(H) = 1 and a perturbation class U that is totally
ordered with respect to H that is not learnable (in the sense of Definition 3).

We will now show that allowing a learner access to a perfect attack oracle yields learnability in the
agnostic case.
Theorem 2. Let U be a perturbation class that is totally ordered with respect to a hypothesis class
H with VC(H) = d < ∞ and assume access to a perfect attack oracle. Then H is learnable in
the agnostic case with respect to U with sample complexity m(ϵ, δ) = O(d·2

d·log(1/δ)
ϵ2 ) and oracle

complexity O(m(ϵ, δ)2).

Proof. We will employ a well-known reduction from agnostic learning to realizable compression-
based learning [Montasser et al., 2019]. Since our proof for Theorem 1 for the realizable case of
learning with uncertain, totally ordered perturbation sets employs a compression-based learner, for
the agnostic case it suffices to show that, given any sample S = ((x1, y1), . . . , (xm, ym)), we can
identify a largest subsample S′ of S that is realizable with respect to the underlying perturbation type
u∗. We will now outline how the perfect attack oracle can be employed to achieve this.

Employing the MRERMU
H-oracle, the learner can generate an ordered list T =

((S1, h1, u1), . . . (Sn, hn, un))) of subsamples of S that are realizable with respect to some u ∈ U ,
such that (hi, ui) = MRERMU

H(Si) for all i and ui ⪯H uj for all i ≤ j. Note that we have
u∗ ⪯H ui if and only if the perfect attack oracle returns robust for all sample points in Si when
tested on hi, that is Ou∗(hi, x) = robust for all x with (x, y) ∈ Si for some y. Thus, using a
binary search over the list T , we can identify the smallest index ι for which u∗ ⪯H uι. Since we
have n ≤ 2m and every test in the search employs at most m calls to the perfect attack oracle, this
search terminates after at most m2 queries. Finally, note that all subsets Si from T for which i ≥ ι
are realizable with respect to u∗. Thus we can choose any largest among Sι, . . . Sn as a maximal
realizable subset with respect to the unknown perturbation type u∗.

In Section B we provide additional guarantees for the agnostic case.

4 Beyond totally ordered perturbation classes

We now consider a more general setting where U is not necessarily totally ordered with respect to H.

4.1 Learning with the standard adversarial loss

We will start by showing that H, U are learnable with access to a perfect attack oracle if U is the
union of k sub-classes which are each totally ordered with respect to H. This naturally contains the
case that U is finite. Another natural case where this occurs is considering perturbation sets that are
balls around domain points of certain radii and with respect to one of a number of possible norms.
Consider X = Rd and the set

U = {up
r : x 7→ Bp

r (x) | r ∈ R, p ∈ 0, 1, 2,∞}

7



where we let Bp
r (x) denote the ℓp-norm ball around x. Then the above class U is a union of 4 totally

ordered perturbation classes (one for balls of each norm) with respect to any hypothesis class H.

Theorem 3. Let H be a hypothesis class with VC(H) = d < ∞, and let U be a perturbation class,
which is a union U = U1 ∪ U2 ∪ . . . ∪ Uk of k subclasses which are each totally ordered with respect
to class H. Then H is learnable with access to a perfect attack oracle Ou∗ in the realizable case with
respect to U with sample complexity O(d·2

d·log(k/δ)
ϵ + log(k)·log(1/ϵ)+log(1/δ)

ϵ2 ) and query complexity

O(
(

log(k)·log(1/ϵ)+log(1/δ)
ϵ2

)2

).

Proof. We can generate k hypotheses h1, h2, . . . , hk that are the output of an (ϵ, δ)-successful
learner for H with respect to each of the Ui. Since each of the classes Ui are totally ordered with
respect to H, the result of Theorem 1 tells us that O(d·2

d·log(k/δ)
ϵ ) sample points suffice to guarantee

that, with probability at least 1 − δ, we have ℓu
∗
(hi) ≤ ϵ for all i with u∗ ∈ Ui. Thus the class

Hk = {h1, h2, . . . , hk} of these k learning outputs has approximation error at most ϵ with respect to
the data generating distribution P . Note that, since we have |Hk| = k, this class has also bounded
Littlestone dimension at most log(k). Employing a result (Montasser et al. [2021], Theorem 3) on
agnostically learning finite Littlestone classes with access to a perfect attack oracle, an additional
O( log(k)·log(1/ϵ)+log(1/δ)

ϵ2 ) samples and the stated number of queries suffice to output a hypothesis h
with Lu∗

P (h) ≤ 3ϵ.

It is not difficult to see that, even in the realizable case, and when U is the union of just two totally
ordered subclasses, a learner without access to a perfect attack oracle cannot succeed with respect to
the standard adversarial loss.

Observation 2. There exists a class H with VC(H) = 1 and a perturbation class U that is the union
of two totally ordered subclasses with respect to H that are not learnable in the realizable case (in
the sense of Definition 3) without access to a perfect attack oracle.

For the proof of this observation we refer the reader to the supplementary material. Now we show
that if we remove even more structure from the set of perturbation types U then learning success
becomes impossible even with access to a perfect attack oracle. The following observation will
then motivate to investigate learning with respect to the adversarial abstention loss (rather than the
standard adversarial loss).

Observation 3. There exists a class H with VC(H) = 1 and a perturbation class U that are not
learnable (in the sense of Definition 3), even with access to a perfect attack oracle.

Proof. We consider the same domain, class, and distribution as in the proof of the previous observa-
tion: X = R, P with P ((−3, 1) = P ((3, 0)) = 0.5, and

H = {ht : x 7→ 1 [x ≤ t] | t ∈ R}.

Further, we consider the class U = {ua,b | a, b ∈ R} of perturbation types ua,b, that assign all
points x ≤ 0 to a ball of radius a around x and all points x > 0 to a ball of radius b. Then, even
when promised realizability, a learner cannot distinguish the cases where u∗ = ua,b for some values
a, b with a+ b ≤ 6 from samples and any finite number of queries to the perfect attack oracle. In
particular, if u∗ = ua,b for some a, b with a + b = 6, predicting with respect to one such pair a, b
will induce loss 0.5 for all other such pairs.

4.2 Learning with the adversarial abstention loss

We will now consider learning with respect to the adversarial abstention loss. We will first show that
learning with abstentions can actually help overcome some of the impossibilities shown above. For
this, let us revisit the example seen in Observation 3.

Observation 4. There exists a class H with VC(H) = 1 and a perturbation class U that are not
learnable (in the sense of Definition 3), even with access to a perfect attack oracle, but that is robustly
learnable with abstentions (in the sense of Definition 5) in the realizable case (without access to a
perfect attack oracle).
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Proof sketch. We consider the example from the proof of Observation 3. Now consider the sub-
classes U1 = {ua,0 : a ∈ R} and U2 = {u0,b : b ∈ R}. Since both U1 and U2 are totally ordered
we can learn successful hyptheses h1 and h2 respectively. We now define h : X → {0, 1, ⋆} by
h(x) = y if h1(x) = h2(x) = y and h(x) = ⋆ otherwise. This is a successful hypothesis. For more
detail, we refer the reader to the appendix.

We will now continue by showing that, similar to the case where we have access to a perfect-attack-
oracle, a finite union U =

⋃k
i=1 Ui of totally ordered perturbation sets Ui is robustly learnable with

abstention in the robustly realizable case.

Theorem 4. Let U =
⋃k

i=1 Ui, where every Ui is totally ordered. Furthermore, let H have a finite VC
dimension. Then H is robustly learnable with abstension with respect to U in the robustly realizable
case with sample complexity O(d·2

d·k2 log(k/δ)
ϵ ).

4.2.1 Abstention learning with disagreement coefficient

The proof of Theorem 4 shows how bounding the mass of the region on which two learners with
small 0/1-loss disagree, yields a robust error guarantee for learning with abstentions. In this section,
we will review the definition of the disagreement coefficient (Hanneke [2007], Hanneke et al. [2014]),
and show that hypothesis classes H with finite disagreement coefficient are robustly learnable with
abstention in the realizable case with respect to every class of perturbation types U .
For a distribution PX over X , we let the PX -induced difference between two hypotheses be denoted
by

dPX (h, h
′) = Px∼PX [h(x) ̸= h′(x)].

The ball in H around a hypothesis h with radius r is then denoted by

BPX (h, r) = {h′ ∈ H : dPX (h, h
′) ≤ r}.

Lastly, let the disagreement region of a set of hypotheses H be

DIS(H) = {x ∈ X : ∃h, h′ ∈ H with h(x) ̸= h′(x)}.

We can now state the definition of the disagreement coefficient.

Definition 6 (Hanneke et al. [2014]). For a distribution P over X × Y and a class H ⊆ {0, 1}X , let
h∗ ∈ argminh′∈H LP (h

′). The disagreement-coefficient of H with respect to P is defined by:

θP (H) = sup
r∈(0,1)

PX (DIS(B(h∗, r)))

r
.

Furthermore, let the worst-case disagreement coefficient be θ(H) = supP∈∆(X×Y) θP (H).

Theorem 5. Let H be a hypothesis class with θ(H) < ∞ and V C(H) = d < ∞. Then the class H
is robustly learnable with abstention in the realizable case with respect to the class of all perturbation
types Uall with sample complexity O(

d+log( 1
δ )

( ϵ
θ(H)

)2 ).

The proof can be found in Appendix D.6, but the main idea is that for any point x, we return a
y ∈ {0, 1} if and only if every h with L0/1

S (h) = 0 agrees with y, otherwise we abstain. Because of
the bound on the disagreement coefficient, one can show that for a large enough S, this leads to a
hypothesis with low abstention loss.

4.2.2 Abstention learning via ϵ-cover

We will now generalize our previous results, by introducing the concept of an (ϵ,H)-cover.

Definition 7 ((ϵ,H)-cover of U). Let H ⊆ {0, 1}X be a hypothesis class, P a distribution over
X × Y and U a class of perturbation types. A set of hypotheses H′ is a (ϵ,H)-cover for U with
respect to P , if for every u ∈ U , there exists an h′ ∈ H′ such that Lu

P (h
′) < infh∈H Lu

P (h) + ϵ.

We will now provide the definition of a successful cover learner.

9



Definition 8. Let H ⊆ {0, 1}X be a hypothesis class, and U be a class of perturbation types. We say
a function Acover : (X ×Y)∗ → 2{0,1}

X
that maps a sample S to a hypothesis class Ĥ ⊂ F is a suc-

cessful finite-disagreement-cover learner for (H,U), if there is a function m(H,U),cover : (0, 1)3 → N,
such that for every ϵ, η, δ ∈ (0, 1), every m ≥ m(H,U),cover(ϵ, η, δ) and every distribution P over
X × {0, 1} with probability 1− δ over S ∼ Pm both of the following statements hold:

• A(S) is an (ϵ,H)-cover for U with respect to P

• PX (DIS(A(S)) ≤ η .

We note that any successful cover learner, that is guaranteed to output a finite set is a successful
finite-disagreement cover learner. The case, where U is a union of k totally ordered perturbation
type classes Ui, we have seen before, can be interpreted as first learning a cover Ĥ of size k, where
each of the element of the union "covers" one of the classes. The case in which H has a finite
disagreement coefficient can furthermore be seen as a case where the set of all ERMH hypotheses
constitute an (ϵ,H)-cover H′ for every class of perturbation types U . The mass of the disagreement
region of H is then bounded by the disagreement coefficient. We now state our result generalizing
these observations.

Theorem 6. A class H is robustly learnable with abstentions with respect to U in the robustly
realizable case, if there is a successful finite-disagreement-cover learner for (H,U). Furthermore,
the sample complexity of robustly learning with abstentions is then bounded by mH,U (ϵ, δ) ≤
mH,U,cover(ϵ/2, ϵ/2, δ).

Inspired by considerations of adaptive robustness radii [Chowdhury and Urner, 2022, Bhattacharjee
and Chaudhuri, 2021], in Section C of the appendix we discuss a setting of abstention learning in
which we allow the size of the perturbation sets to vary locally between different regions of the
domain. We provide a learning guarantee for this setting that is not covered by our previous results.

5 Conclusion

In this work we relaxed the assumption that we know exactly the perturbation sets that are to be
used by an adversary. Our model provides an interpolation between knowing the perturbation sets
exactly and not knowing them at all. Many of our results rely on realizability. We have also shown
that without realizability, learning is not possible unless the learner receives other feedback, such
as access to a perfect attack oracle. It might be interesting to consider some milder relaxations of
realizability. For example, instead of saying optu

∗

P (H) = 0, what if we only know that the adversarial
Bayes loss is zero for some u∗ ∈ U?

While our work focuses on statistical aspects, it will also be interesting to understand the kinds of
computation required for our results. For example, we rely on the existence of an MRERM oracle.
When are they computationally feasible? Do we require accurate MRERM oracles or can approximate
(and hence potentially more tractable) versions also be used for the learning task?

Another question is to find a dimension that characterizes learning in various settings. This was only
recently resolved for adversarially robust learning (for the case when u is known) Montasser et al.
[2022], however, the dimension proposed in the paper is not easy to define. On the other hand, in
the setting when the only information we can obtain about u is through a perfect attack oracle, the
Littlestone dimension of H has been shown to characterize adversarially robust learning Montasser
et al. [2021]. It will be interesting to see if such a simple dimension can be obtained for the settings
considered in our paper.
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A Maximally Robust Empirical Risk Minimization

Recall the definition of the empirical risk minimization oracles:

ERMH : S 7→ hS ∈ argminh∈HL0/1
S (h)

RERMu
H : S 7→ hu

S ∈ argminh∈HLu
S(h)

MRERMU
H : S 7→


(h

u∗
S

S , u∗
S) with h

u∗
S

S ∈ argminh∈HLu∗
S

S (h),

and u∗
S is ⪯H maximal in the set {u ∈ U | minh∈H Lu

S(h) = 0}
error if Lu

S(h) > 0 for all u ∈ U and h ∈ H

While there always exists functions hS and hu
S that are solutions to the queries in the first two oracles,

the last one requires a bit more care.

Let S be some labeled dataset and assume that H and U are hypothesis and perturbation type classes
such that S is H-realizable for the true perturbation type u∗ ∈ U . We can then define a maximal
perturbation type u∗

S for S, H and U as follows:

u∗
S(x) =

⋃
u∈U such that minh∈H Lu

S(h)=0

u(x).

This defines a perturbation type u∗
S(x), which is not necessarily in U but does satisfy u∗ ⪯H u∗

S ,
which suffices for our purposes.

If, given u∗
S , the set argminh∈HLu∗

S

S (h) is non-empty, the oracle can return any function in this set
as hu∗

S

S . We will now argue that we can define a “closure” H̄ of the hypothesis class H, which has the
same VC-dimension as H and such that hu∗

S

S ∈ H̄.

We here show how such an embedding of H into the closure class H̄ can be constructed in the case of
a countable domain X and a perturbation class U that is separable, in the sense that for every U ′ ⊂ U
there exists a countable subset U ′′ ⊂ U ′, such that for every x ∈ X :

⋃
u∈U ′ u(x) =

⋃
u∈U ′′ u(x).

This is the case for a wide range of perturbation types, in particular in the case for which the sets
u(x) are always open balls with respect to some ℓp-norm in Rd. In the general case (where X may
be uncountable and U not separable in the above sense) recent work has shown that the existence
of a closure class with identical VC-dimension is still guaranteed [Lechner et al., 2023]. The more
general construction there employs the set-theoretic concept of filters. It is shown in the context of
strategic classification, but the technique is readily available to adversarial perturbation sets. We here
illustrate the intuition behind that abstract construction by focusing on countable and separable case.

We now assume that X is countable and let (xi)i∈N be an enumeration of the elements of X . The
separability assumption on the perturbation class U implies that for all S there is a countable subset
Uc ⊆ U such that for all x ∈ X we have

u∗
S(x) =

⋃
u∈Uc such that minh∈H Lu

S(h)=0

u(x).

For a given sample S, let (ui)i∈N be an enumeration of the set

{u ∈ Uc | min
h∈H

Lu
S(h) = 0}

and let (hi)i∈N be an enumeration of corresponding empirical risk minimizing hypotheses from H:

hi = RERMui

H(S).

We will now define the function h∗
S by successively choosing subsequences from the sequence

(hi)i∈N as follows. We set F0 = (hi)i∈N and J0 = N. Then, for every i ∈ N, we define a set of
indices Ji such that

• Case 1: There exists a k ∈ Ji−1 such that hj(xi) = hk(xi) for all j ≥ k, j ∈ Ji−1. Then
we define:

Ji = {j ∈ Ji−1 | hj(xi) = hk(xi)}
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• Case 2: Both labels are assigned infinitely often to xi by the sequence (hj)j∈Ji−1 . Then we
define

Ji = {j ∈ Ji−1 | hj(xi) = 1}

and we define subsequence Fi = (hj)j∈Ji . Note that, by construction, in each resulting sequence
Fi the first i points x1, x2, . . . , xi receive the same label by all functions in the sequence. Now, by
choosing indices to select the i-th function from each sequence Fi (by choosing the first index of J1,
the second index in J2, the third in J3 and so on), and re-identifying these indices with the natural
numbers, we obtain yet another subsequence F = (fi)i∈N. In this sequence we now have for every
i ∈ N and every k ≥ i

fk(xi) = fi(xi).

That is, this sequence of functions converges pointwise and we can use the above equation define the
function h∗

S as follows:
h
u∗
S

S (xi) = fi(xi).

It is not difficult to see that the so defined function h
u∗
S

S satisfied LS
u∗
S
(h

u∗
S

S ) = 0. Let let H̄ be defined

by adding these function h
u∗
S

S to H for all possible S.

H̄ = H ∪ {hu∗
S

S ∈ {0, 1}X | S ∈ (X × Y)∗}

We observe that every behavior that H̄ exhibits on a finite subset C ⊆ X , is already witnessed by
a function from H. Thus we get VC(H̄) = VC(H), and we can always let MRERMU

H return a
function from H̄.

B Agnostic learning for finite unions of total orders

Theorem 7. Let H be a hypothesis class with VC(H) = d < ∞, and let U be a perturbation class,
which is a union U = U1 ∪ U2 ∪ . . . ∪ Uk of k subclasses which are each totally ordered with respect
to class H. Then H is agnostically learnable with access to a perfect attack oracle Ou∗ with respect
to U with sample complexity m1(ϵ, δ) +m2(ϵ, δ), and query complexity n1(ϵ, δ) + n2(ϵ, δ) where:

• m1(ϵ, δ) = O(d·2
d·log(k/δ)

ϵ2 )

• m2(ϵ, δ) is the sample complexity of agnostically learning a hypothesis class of size k wrt
Uall.

• n1(ϵ, δ) = k · (m1(ϵ, δ))
2

• n2(ϵ, δ) is the query complexity of agnostically learning a hypothesis class of size k wrt Uall

Proof. We can generate k hypotheses h1, h2, . . . , hk that are the output of an (ϵ, δ)-successful
learner for H with respect to each of the Ui. Since each of the classes Ui are totally ordered
with respect to H, the result of Theorem 2 (combined with a union bound) tells us that m1(ϵ, δ)
sample points and n1(ϵ, δ) queries suffice to guarantee that, with probability at least 1− δ, we have
ℓu

∗
(hi) ≤ optu

∗

P (H) + ϵ for all i with u∗ ∈ Ui. Thus the class Hk = {h1, h2, . . . , hk} of these k

learning outputs has approximation error at most optu
∗

P (H) + ϵ with respect to the data generating
distribution P . Note that, since we have |Hk| = k, this class has bounded Littlestone dimension at
most log(k), VC-dimension at most log(k), and dual VC-dimension at most k. Employing a result
(Montasser et al. [2021], Theorem 4) on agnostically learning finite VC classes with access to a perfect
attack oracle, we get that both m2(ϵ, δ) and n2(ϵ, δ) are finite and Lu∗

P (h) ≤ optu
∗

P (H) + 2ϵ.

C ϵ-cover Learning

C.1 Abstention learning for regions with different radii

Let us now explore the case, where we allow our perturbation types to consist of perturbation sets
whose size varies throughout the domain. While a lot of work assumes that the size of the radius
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is fixed throughout the domain, it is not a prior clear that the distances in the domain correspond
perfectly to what humans find perceptible. This was noted in prior works [Bhattacharjee and
Chaudhuri, 2021, Chowdhury and Urner, 2022] and motivated their adaptive adversarial loss. We
explore such variation of local radii for the setting of uncertain perturbation sets. We have seen
examples of this in Observation 3 and Observation 4. We will now generalize these perturbation
types. Let X = R. For a function f : X → [k], let the perturbation type uf,a1,...,ak

defined by:
uf,a1,...,ak

(x) = Baf(x)
(x).

That is, we have k different regions in the domain, which are determined by f . Furthermore, we
assume that each perturbation set within a region i is a ball with radius of a fixed size ai, while radii
can vary between regions. For a fixed function f , let us now consider

Uf = {uf,a1,...,ak
: a1, . . . , ak ∈ R}.

Let VC(H) ≤ VC(H × U)ℓ ≤ d. We note that in general, that is excluding particular hypothesis
sets H and function f , this set of perturbation sets cannot be expressed as a finite union of totally
ordered sets.

For every i ∈ [k] consider the classes Uf,i = {uf,0,...,0,ai,0,...,0 : ai ∈ R}. Let P be a realizable

distribution with respect to H and u∗ ∈ U . Let m(ϵ, δ) = C
d+log( 1

δ )

ϵ2 , where C is the constant
we require to get a uniform-convergence guarantee (which exists due to the corresponding VC-
dimensions being finite, see Shalev-Shwartz and Ben-David [2014]), and let m ≥ m( ϵ

k(2k2+1) ,
δ
k ).

Now for a sample S and any i, let (hi, ui) = MRERMH
Uf,i

(S). We denote by amax
i the maximum

realizable radius for component i, i.e. h0,...,0,amax
i ,0,...,0 = hi. Now let u∗ = uf,a∗

1 ,...,a
∗
k

be the
ground true perturbation set. Then for every i, a∗i ≤ amax

i . Let umax = uf,amax
1 ,...,amax

k
. We note

that for every x ∈ X , y ∈ Y and h ∈ F , we have ℓu
max

(h, x, y) ≤ maxi∈[k] ℓ
ui(h, x, y). Now let

h(x) =

{
y if for all i : hi(x) = y

⋆ otherwise.

We note that by the PAC-learning guarantee with respect to 0/1-loss, with probability 1 − δ, for
every i, j ∈ [k] we have a pairwise disagreement between hi and hj of at most 2ϵ

(2k2+1)k . Thus the

disagreement-region of {hi : i ∈ [k]} has mass at most k2ϵ
k(2k2+1) . Thus, with probability 1− δ over

the sample generation the abstention loss of h we have

Lu∗,abst
P (h) ≤ Lumax,abst

P (h) ≤
k∑

i=1

Lui,abst
P (h) ≤

k∑
i=1

(Lui

P (hi) + PX ({x : h(x) = ⋆}))

≤ k(
ϵ

k(2k2 + 1)
+

k2ϵ

k(2k2 + 1)
) = ϵ.

Note, that we can thus view {h} as an (H, ϵ)-cover of U with respect to P and adversarial abstention
loss.

D Proofs

D.1 Proof of Theorem 1

Proof. For this result we adapt a compression based argument for the case of fixed perturbation
type [Montasser et al., 2019] to the case of a class U of perturbation types. A similar adaptation
has recently been shown for the setting of strategic classification [Lechner et al., 2023]. The key
difference to the original compression scheme is that we use the MRERMU

H oracle for the weak
learners in each round of boosting, rather than the simple RERMu

H oracle as is done in the original
publication [Montasser et al., 2019]. Importantly, the maximal ERM paradigm is well defined on all
subsets of an original given data sample, and thus each required weak hypothesis can be encoded with
a finite number of samples. Finally, since the maximal perturbation type for any subsample is always
at least as large as the true perturbation type (under the realizablity assumption), using MRERMU

H
for each boosting step we obtain the required guarantee for the true perturbation type (without the
learner/compressor requiring knowledge of the true type). We thus obtain the same compression size
and implied sample complexity in the case of a totally ordered class of perturbation types as for a
fixed perturbation type.
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D.2 Proof of Observation 1

Proof. Consider a finite domain X = {x1, x2, x3} and distribution P over X × {0, 1} with
P ((x1, 1)) = 1/4, P ((x3, 0)) = 3/4 and P ((x, y)) = 0 for all (x, y) /∈ {(x1, 1), (x3, 0)}. We
define a class U = {u1, u2} containing two perturbation types u1 and u2 defined as follows:

u1(x1) = {x1, x2}, u1(x2) = {x2}, u1(x3) = {x3}

and
u2(x1) = {x1, x2}, u2(x2) = {x2}, u2(x3) = {x2, x3}

We let hy1y2y3 denote the function that labels xi with yi on this domain (there are only 8 different
non-abstaining predictors over X ), and let H = {h110, h100} be a hypothesis class containing only
two of these predictors. Clearly VC(H) = 1 and u1 ⪯H= u2. Note that

optu1

P (H) = Lu1

P (h110) = 0

while Lu1

P (hy1y2y3
) ≥ 1/4 for all predictors hy1y2y3

̸= h110. We further note that

optu2

P (H) = Lu2

P (h100) = Lu2

P (h000) = 1/4

while Lu2

P (hy1y2y3
) ≥ 3/4 for all predictors hy1y2y3

/∈ {h000, h100}. Samples from P will not allow
distinguishing whether the true perturbation type is u1 or u2 (since we are not imposing a realizability
assumption here). Thus, no learner will be able to output predictors that are (close to) optimal for all
possible perturbation types in U .

D.3 Proof of Observation 2

Proof. We consider X = R and H to be the class of threshold classifiers:

H = {ht : x 7→ 1 [x ≤ t] | t ∈ R}.

Further consider U = U− ∪ U+, where U− consists of perturbation types u−
r that assign each x to

a ball (interval) of radius r around x if x ≤ 0 and a ball of radius r/2 around x if x > 0, and U+

similarly consists of perturbation types u+
r that assign each x to a ball (interval) of radius r around

x if x > 0 and a ball of radius r/2 around x if x ≤ 0. Both U− and U+ are totally ordered (with
respect to any hypothesis class) but their union U is not totally ordered with respect to H. Consider a
distribution P with P ((−3, 1) = P ((3, 0)) = 0.5. Then, even when promised realizability, a learner
cannot distinguish the cases u∗ = u−

4 and u∗ = u+
4 from samples; and performing well with respect

to one of these perturbation types will induce loss 0.5 with respect to the other.

D.4 Proof of Observation 4

Proof. We consider the example from Observation 3 Now consider the classes U1 = {ua,0 : a ∈ R}
and U2 = {u0,b ∈ R}. Since both U1 and U2 are totally ordered there are successful robust learners
A1 for H with respect to U1 and A2 with respect to U2. We run both learners on a sample with a size
to guarantee (ϵ/2, δ/2)-success in both cases. We denote the resulting hypotheses with h1 and h2

respectively. We now define h : X → {0, 1, ⋆} by h(x) = y if h1(x) = h2(x) = y and h(x) = ⋆
otherwise.

We now argue that with probability 1 − δ, h has adversarial abstention loss less than ϵ. Let u∗ =
ua∗,b∗ ∈ U be the ground-truth perturbation type. Now let P be any ℓua∗,b∗ -realizable distribution.
Let (·, ua1,0) = MRERMU1

H (S) and (·, u0,b2) = MRERMU2

H (S). With probability 1, we have both
a1 > a∗ and b2 > b∗. Further, we note every x ∈ X and every ua,b ∈ U , ℓua,b(h, x, y) is either
determined by a, h and y or b, h and y, not both, since either x ≤ 0 or x > 0. This means, that for
every x ∈ X , ℓua1,b2 (h, x, y) ≤ max{ℓua1,0(h, x, y), ℓu0,b2 (h, x, y)}.

Combining these observations, we get

Lu∗,abst
P (h) ≤ Lua1,b2

,abst

P (h) ≤ Lua1,0,abst

P (h) + Lu0,b2
,abst

P (h) ≤ ϵ

2
+

ϵ

2
= ϵ.
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D.5 Proof of Theorem 4

Proof. We assume robust realizability with respect to U . In particular this means that we are in the
non-robustly realizable case. Thus for any Ui, we know that the set U ′

i = Ui ∪ {{{x} : x ∈ X}}
is totally ordered and that it contains some ui ∈ U ′

i such that H is robustly realizable with respect
to the ground truth distribution P and ui. We know from Theorem 1, that for every i, there is a
successful maximally robust learner Ai for H with respect to U ′

i in the realizable case, since U ′
i is

totally ordered.

Now let A be defined by

A(S)(x) =


1 iff for all i ∈ [k] we have Ai(S)(x) = 1

0 iff for all i ∈ [k] we have Ai(S)(x) = 0

⋆ otherwise .

Furthermore, let (h, ui(S)) = MRERMUi

H (S). Now let u∗ ∈ U be the ground-truth perturbation
type. We know that there is i∗ ∈ [k], such that u∗ ⪯ ui∗ . Let P be a distribution with optu

∗

P (H) = 0.
Now if S ∼ Pm with m ≥ maxi∈[k] m( ϵ

2k2+1 ,
δ
k ), then with probability 1 − δ, for every i ∈ [k],

Lui

P (Ai(S)) ≤ ϵ
2k2+1 and therefore, L0/1

P (Ai(S)) ≤ ϵ
2k2+1 . Thus, for any two i, j ∈ [k], we have

PX ({x ∈ X : Ai(S)(x) ̸= Aj(S)(x)}) ≤
2ϵ

2k2 + 1
.

Thus,
Lu∗,abst
P (A(S)) ≤ Lu∗,abst

P (Ai∗(S)) + PX ({x ∈ X : A(S)(x) = ⋆})
≤ Lui∗ ,abst

P (Ai∗(S)) + PX ({x ∈ X : ∃i, j,Ai(S)(x) ̸= Aj(S)(x)})

≤ ϵ

2k2 + 1
+

2k2ϵ

2k2 + 1
= ϵ.

D.6 Proof of Theorem 5

Proof. Let u∗ ∈ Uall be any perturbation set and P any distribution with optu
∗

P (H) = 0. Furthermore,

let m ≥ mH(ϵ, δ) where mH is the sample complexity function in O(
d+log( 1

δ )

( ϵ
θ(H)

)2 . Let S ∼ Pm. Let

Ĥ = {h ∈ H : L0/1
S (h) = 0}. Now we define our output hypothesis ĥ by

ĥ =


1 if for every h ∈ Ĥ : h(x) = 1

0 if for every h ∈ Ĥ : h(x) = 0

⋆ otherwise.

We note that there is some h∗ ∈ Ĥ with Lu∗

P (h∗) = L0/1
P (h∗) = 0. Since every h ∈ Ĥ is an ERMH

hypothesis and H has VC dimension d, the sample of ERMs gives us

Lu∗,abst
P (ĥ) ≤ Lu∗,abst

P (h∗) + PX ({x ∈ X : h∗(x) ̸= ĥ(x)})
≤ Lu∗

P (h∗) + PX ({x ∈ X : ĥ(x) = ⋆})

0 + PX (DIS(B(h∗,
ϵ

θ(H)
)) = ϵ.

D.7 Proof of Theorem 6

Proof. Let m ≥ mU,H,cover(ϵ/2, ϵ/2, δ) and S ∼ Pm. And let u∗ ∈ U the ground-truth perturbation
set. We define the abstention learner as:

A(S)(x) =


1 if for all h ∈ Acover(S) : h(x) = 1

0 if for all h ∈ Acover(S) : h(x) = 0

⋆ otherwise
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Then with probability 1− δ, PX (DIS(Acover(S))) ≤ ϵ
2 and ∃h ∈ Acover(S) with

Lu∗

P (h) ≤ min
h′∈H

Lu∗

P (h′) + ϵ/2.

Since for every x ∈ X either A(S)(x) = h(x) or x ∈ Acover(S). Thus,

Lu∗,abst
P (A(S)) ≤ Lu∗,abst

P (h) + PX (DIS(Acover(S))) ≤ min
h′∈H

Lu∗,abst
P (h′) + ϵ.
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