
Supplementary Materials

A Experiments

A.1 Toy Example

To demonstrate our proposed method can achieve better or comparable performance under stochastic
settings, we provide an empirical study on the two-objective toy example used in CAGrad [9]. The
two objectives L1(x) and L2(x) shown in Figure 1 are defined on x = (x1, x2)> 2 R2,

L1(x) = f1(x)g1(x) + f2(x)h1(x)

L2(x) = f1(x)g2(x) + f2(x)h2(x),

where the functions are given by

f1(x) = max
�
tanh(0.5x2), 0

�

f2(x) = max
�
tanh(�0.5x2), 0

�

g1(x) = log
⇣
max

�
|0.5(�x1 � 7)� tanh(�x2)|, 0.000005

�⌘
+ 6

g2(x) = log
⇣
max

�
|0.5(�x1 + 3)� tanh(�x2) + 2|, 0.000005

�⌘
+ 6

h1(x) =
�
(�x1 + 7)2 + 0.1(�x1 � 8)2

�
/10� 20

h2(x) =
�
(�x1 � 7)2 + 0.1(�x1 � 8)2

�
/10� 20.

(a) Mean objective (b) Objective 1 (c) Objective 2 (d) MGDA

(e) GD (f) PCGrad (g) CAGrad (h) SDMGrad(Ours)

Figure 1: A two-objective toy example.

We choose 3 initializations

x0 2 {(�8.5, 7.5), (�8.5, 5), (9, 9)}

for different methods and visualize the optimization trajectories in Figure 1. The starting point of
every trajectory in Figure 1d-Figure 1h is given by the • symbol, and the color of every trajectory
changes gradually from red to yellow. The gray line illustrates the Pareto front, and the ? symbol
denotes the global optimum. To simulate the stochastic setting, we add zero-mean Gaussian noise
to the gradient of each objective for all the methods except MGDA. We adopt Adam optimizer with
learning rate of 0.002 and 70000 iterations for each run. As shown, GD can get stuck due to the
dominant gradient of a specific objective, which stops progressing towards the Pareto front. PCGrad
and CAGrad can also fail to converge to the Pareto front in certain circumstances.
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A.2 Consistency Verification

We conduct the experiment on the multi-task classification dataset Multi-Fashion+MNIST [45].
Each image contained in this dataset is constructed by overlaying two images randomly sampled
from MNIST [46] and FashionMNIST [47] respectively. We adopt shrinked Lenet [48] as the shared
base-encoder and a task-specific linear classification head for each task. We report the training losses
obtained from different methods over 3 independent runs in Figure 2. As illustrated, the performance
of SDMGrad with large � is similar to GD, and the performance when � is small resembles MGDA.
With properly tuned �, lower average training loss can be obtained. Generally, the results confirm
the consistency of our formulation with the direction-oriented principle.

Figure 2: Consistency verification on Multi-Fashion+MNIST dataset.

The Multi-Fashion+MNIST[45] includes images constructed from FashionMNIST[47] and
MNIST[46]. First, select one image from each dataset randomly, then transform the two images
into a single image with one put in the top-left corner and the other in bottom-right corner. The
dataset contains 120000 training images and 20000 test images. We use SGD optimizer with learn-
ing rate 0.001 and train for 100 epochs with batch size 256. We use multi-step scheduler with scale
factor 0.1 to decay learning rate every 15 epochs. The projected gradient descent is performed with
learning rate of 10 and momentum of 0.5 and 20 gradient descent steps are applied.

A.3 Supervised Learning

We implement the methods based on the library released by [10]. Following [9, 13, 10], we train
our method for 200 epochs, using Adam optimizer with learning rate 0.0001 for the first 100 epochs
and 0.00005 for the rest. The batch size for Cityscapes and NYU-v2 are 8 and 2 respectively. We
compute the averaged test performance over the last 10 epochs as final performance measure. The
inner projected gradient descent is performed with learning rate of 10 and momentum of 0.5 and
20 gradient descent steps are applied. The experiments on Cityscapes and NYU-v2 are run on RTX
3090 and Tesla V100 GPU, respectively. We also report additional experiment results over different
� and S = 1 in Table 5 and Table 6.

A.4 Reinforcement Learning

Following [9, 13, 10], we conduct the experiments based on MTRL codebase[49]. We train our
method for 2 million steps with batch size of 1280. The inner projected gradient descent is performed
with learning rate of 10 for MT10 benchmark and 20 gradient descent steps are applied. The method
is evaluated once every 10000 steps and the best average test performance over 10 random seeds over
the entire training process is reported. We search � 2 {0.1, 0.2, · · · , 1.0} for MT10 benchmark and
the highest success rate is achieved when � = 0.6. For our objective sampling strategy, the number
of sampled objectives is a random variable obeying binomial distribution whose expectation is n.
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Method Segmentation Depth
�m% #

mIoU " Pix Acc " Abs Err # Rel Err #

STL 74.01 93.16 0.0125 27.77

SDMGrad (� = 0.1) 72.56 92.68 0.0156 40.89 18.65
SDMGrad (� = 0.2) 74.79 93.30 0.0149 32.46 8.62
SDMGrad (� = 0.3) 74.53 93.52 0.0137 34.01 7.79
SDMGrad (� = 0.4) 75.10 93.48 0.0137 35.66 9.11
SDMGrad (� = 0.5) 74.63 93.46 0.0131 38.99 11.09
SDMGrad (� = 0.6) 74.42 93.22 0.0138 38.79 12.30
SDMGrad (� = 0.7) 75.06 93.42 0.0158 39.98 17.24
SDMGrad (� = 0.8) 74.99 93.40 0.0155 39.65 16.30
SDMGrad (� = 0.9) 75.60 93.50 0.0134 43.52 15.39
SDMGrad (� = 1.0) 74.50 93.47 0.0142 42.80 16.41
SDMGrad (� = 10) 74.17 93.13 0.0154 41.77 18.36

SDMGrad (� = 0.3, S = 1) 75.41 93.62 0.0139 38.83 12.22

Table 5: Addtional supervised learning experiments on Cityscapes dataset.

Method
Segmentation Depth Surface Normal

�m% #

mIoU " Pix Acc " Abs Err # Rel Err # Angle Distance # Within t� "

Mean Median 11.25 22.5 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

SDMGrad (� = 0.1) 40.23 66.01 0.5360 0.2268 25.03 19.99 28.45 55.80 68.65 -3.86
SDMGrad (� = 0.2) 39.23 65.67 0.5315 0.2189 25.13 20.02 28.12 55.71 68.46 -3.66
SDMGrad (� = 0.3) 40.47 65.90 0.5225 0.2084 25.07 19.99 28.54 55.74 68.53 -4.84
SDMGrad (� = 0.4) 40.68 66.53 0.5248 0.2199 25.21 20.01 27.69 55.72 68.58 -4.14
SDMGrad (� = 0.5) 41.08 66.82 0.5184 0.2116 25.65 20.68 26.70 54.27 67.46 -3.33
SDMGrad (� = 0.6) 41.20 66.86 0.5258 0.2175 25.85 21.03 26.47 53.51 66.82 -2.39
SDMGrad (� = 0.7) 41.00 66.31 0.5224 0.2202 25.60 20.64 27.64 54.30 67.15 -3.16
SDMGrad (� = 0.8) 39.88 66.13 0.5406 0.2266 26.20 21.57 25.67 52.33 65.65 -0.09
SDMGrad (� = 0.9) 41.03 67.16 0.5314 0.2271 25.89 20.97 27.22 53.58 66.48 -2.17
SDMGrad (� = 1.0) 39.94 66.27 0.5224 0.2155 26.51 21.95 25.15 51.54 64.94 -0.06
SDMGrad (� = 10) 39.81 66.11 0.5352 0.2232 27.05 22.57 24.53 50.24 63.59 1.82

SDMGrad (� = 0.3, S = 1) 39.63 65.43 0.5296 0.2140 25.66 20.83 27.18 53.93 67.05 -2.34

Table 6: Addtional supervised learning experiments on NYU-v2 dataset.

To compare with CAGrad-Fast[9], we choose n = 4 for MT10 benchmark. We cite the reported
success rates of all baseline methods in Table 4, but independently run each experiment 5 times to
calculate the average running time. All experiments on MT10 are run on RTX 2080Ti GPU. We also
report addtional experiments results over S = 1 on MT10 in Table 7.

Method
Metaworld MT10

success time(mean ± stderr)

SDMGrad 0.84 ± 0.10 13.6
SDMGrad (S=1) 0.83 ± 0.05 11.2

SDMGrad-OS 0.82 ± 0.08 9.7
SDMGrad-OS (S=1) 0.80 ± 0.12 6.8

Table 7: Additonal reinforcement learning experiments on Metaworld MT10 benchmarks.

B Notations for Technical Proofs

In this part, we first summarize all the notations that we used in this paper in order to help readers
understand. First, in multi-objective optimization, we have K � 2 different objectives and each
of them has the loss function Li(✓). Let gi denote the gradient of objective i and g0 denotes the
target gradient. w = (w1, ..., wK)T 2 RK and W denotes the probability simplex. Other useful
notations are listed as below:

✓⇤ = arg min
✓2Rm

n
L0(✓) ,

1

K

KX

i=1

Li(✓)
o
, g0 = g0(✓) = G(✓) ew
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gw =
X

i

wigi s.t. W = {w :
X

i

wi = 1 and wi � 0}

w⇤
� = arg min

w2W

1

2
kgw + �g0k

2, w⇤ = arg min
w2W

1

2
kgwk

2, w⇤
t = arg min

w2W

1

2
kG(✓t)wk

2

w⇤
t,� = arg min

w2W
F (w) = arg min

w2W

1

2
kG(✓t)w + �g0(✓t)k

2

rwF (w) = G(✓t)
T (G(✓t)w + �g0(✓t)),rw

bF (w) = G(✓t; ⇠)
T (G(✓t, ⇠

0)w + �g0(✓t, ⇠
0)). (11)

We use E[·]A|B to denote taking expectation over A conditioning on B and eO omits the order of log.

C Detailed proofs for convergence analysis with nonconvex Objectives

We now provide some auxiliary lemmas for proving Proposition 1 and Theorem 1
Lemma 1. Let d⇤ be the solution of

max
d2Rm

min
i2[K]

hgi, di �
1

2
kdk2 + �hg0, di,

then we have

d⇤ = gw⇤
�
+ �g0.

In addition, w⇤
� is the solution of

min
w2W

1

2
kgw + �g0k

2.

Proof. First, it can be seen that

max
d2Rm

min
i2[K]

hgi, di �
1

2
kdk2 + �hg0, di

= max
d2Rm

min
w2W

h

X

i

wigi, di �
1

2
kdk2 + �hg0, di

= max
d2Rm

min
w2W

gw
T d�

1

2
kdk2 + �hg0, di. (12)

Noting that the problem is concave w.r.t. d and convex w.r.t w and using the Von Neumann-Fan
minimax theorem [50], we can exchange the min and max problems without changing the solution.
Then, we can solve the following equivalent problem.

min
w2W

max
d2Rm

gw
T d�

1

2
kdk2 + �hg0, di (13)

Then by fixing w, we have d⇤ = gw +�g0. Substituting this solution to the eq. (13) and rearranging
the equation, we turn to solve the following problem.

min
w2W

1

2
kgw + �g0k

2.

Let w⇤
� be the solution of the above problem, and hence the final updating direction d⇤ = gw⇤

�
+�g0.

Then, the proof is complete.

Lemma 2. Suppose Assumption 2-3 are satisfied. According to the definition of g0(✓) in eq. (11),
we have the following inequalities,

kg0(✓)k  Cg, E[kg0(✓; ⇠)� g0(✓)k
2]  K�2

0 .

Proof. Based on the definitions, we have
kg0(✓)k = kG(✓) ewk  Cg,

where the inequality follows from the fact that k ewk  1 and Assumption 3. Then, we have

E⇠[kg0(✓; ⇠)� g0(✓)k
2]  E⇠[kG(✓; ⇠)�G(✓)k2]  K�2

0

where �2
0 = maxi �2

i and the proof is complete.
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Lemma 3. Suppose Assumptions 2-3 are satisfied and recall that F (w) = 1
2kG(✓t)w + �g0(✓t)k2

is a convex function. Let w⇤
� = argminw2W

1
2kgw + �g0k2 and set step size �t,s = c/

p
s where

c > 0 is a constant. Then for any S > 1, it holds that,

E[krw
bF (w)k] C1,

E[kG(✓t)wS + �g0(✓t)k
2
� kG(✓t)w

⇤
� + �g0(✓t)k

2] (
2

c
+ 2cC1)

2 + log(S)
p
S

where C1 =
q
8(K�2

0 + C2
g )

2 + 8�2(K�2
0 + C2

g )
2 = O(K + �K), rw

bF (w) =

G(✓t; ⇠)T (G(✓t; ⇠0)w + �g0(✓t; ⇠0)).

Proof. This lemma mostly follows from Theorem 2 in [51]. However, we did not take that
E[krw

bF (w)k] is bounded by a constant as an assumption. Therefore, we first provide a bound
for it in our method. Based on the definition in Equation (11), rw

bF (w) = G(✓t; ⇠)T (G(✓t; ⇠0)w +
�g0(✓t; ⇠0)). According to the fact that E[X] 

p
E[X2], we have

E[krw
bF (w)k] 

q
E[krw

bF (w)k2] =
q

E[kG(✓t; ⇠)T (G(✓t; ⇠0)w + �g0(✓t; ⇠0))k2]

(i)


s
2E[kG(✓t; ⇠)

TG(✓t; ⇠
0)wk2| {z }

A

+�2 kG(✓t; ⇠)
T g0(✓t; ⇠

0))k2| {z }
B

], (14)

where (i) follows from the Young’s inequality. Next, we provide bounds for E[A] and E[B], sepa-
rately:

E[A]
(i)
E[k(G(✓t; ⇠)

T
�G(✓t)

T +G(✓t)
T )(G(✓t; ⇠

0)�G(✓t) +G(✓t))k
2]

=E[k(G(✓t; ⇠)
T
�G(✓t)

T )(G(✓t; ⇠
0)�G(✓t)) + (G(✓t; ⇠)

T
�G(✓t)

T )G(✓t)

+G(✓t)
T (G(✓t; ⇠

0)�G(✓t)) +G(✓t)
TG(✓t)k

2]

(ii)
 4E[kG(✓t; ⇠)

T
�G(✓t)

T
k
2
kG(✓t; ⇠

0)�G(✓t)k
2 + kG(✓t; ⇠)

T
�G(✓t)

T
k
2
kG(✓t)k

2

+ kG(✓t)
T
k
2
k(G(✓t; ⇠

0)�G(✓t)k
2 + kG(✓t)

TG(✓t)k
2]

(iii)
 4K2�4

0 + 8K�2
0C

2
g + 4C4

g = 4(K�2
0 + C2

g )
2, (15)

where (i) follows from Cauchy–Schwarz inequality and w 2 W where W is the simplex, (ii)
follows from Young’s inequality and (iii) follows from Assumption 2 and Assumption 3. Then for
term B, we have,

E[B] =E[k(G(✓t; ⇠)
T
�G(✓t)

T +G(✓t)
T )(g0(✓t; ⇠

0)� g0(✓t) + g0(✓t))k
2]

(i)
4E[k(G(✓t; ⇠)

T
�G(✓t)

T )(g0(✓t; ⇠
0)� g0(✓t))k

2 + k(G(✓t; ⇠)
T
�G(✓t)

T )g0(✓t)k
2

+ kG(✓t)
T (g0(✓t; ⇠

0)� g0(✓t))k
2 + kG(✓Tt )g0(✓t)k

2]

(ii)
 4K2�4

0 + 8K�2
0C

2
g + 4C4

g = 4(K�2
0 + C2

g )
2, (16)

where (i) follows from Young’s inequality, (ii) follows from Assumption 3 and Lemma 2. Then
substituting eq. (15) and eq. (16) into eq. (14), we can obtain,

E[krw
bF (w)k] 

q
8(K�2

0 + C2
g )

2 + 8�2(K�2
0 + C2

g )
2 = C1.

Meanwhile, since E[krw
bF (w)k]  C1, supw,w0 kw � w0

k  1 and by choosing step size �s =
c/
p
s where c > 0 is a constant, we can obtain the following inequality from Theorem 2 in [51]:

E[F (wS)� F (w⇤
�)]  (

1

c
+ cC1)

2 + log(S)
p
S

(17)

Then after multiplying by 2 on both sides, the proof is complete.
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C.1 Proof of Proposition 1

CA distance. Now we show the upper bound for the distance to CA direction. Recall that we define
the CA distance as kE⇣,wt,S |✓t [G(✓t; ⇣)wt,S + �g0(✓t; ⇣)]�G(✓t)w⇤

t,� � �g0(✓t)k.

Proof. Based on the Jensen’s inequality, we have

kE⇣,wt,S |✓t [G(✓t; ⇣)wt,S + �g0(✓t; ⇣)]�G(✓t)w
⇤
t,� � �g0(✓t)k

2

Ewt,S |✓t
⇥��E⇣ [G(✓t; ⇣)wt,S + �g0(✓t; ⇣)]�G(✓t)w

⇤
t,� � �g0(✓t)

��2⇤

(i)
=E[kG(✓t)wt,S �G(✓t)w

⇤
t,�k

2]

=E[kG(✓t)wt,S + �g0(✓t)�G(✓t)w
⇤
t,� � �g0(✓t)k

2]

=E[kG(✓t)wt,S + �g0(✓t)k
2 + kG(✓t)w

⇤
t,� + �g0(✓t)k

2

� 2EhG(✓t)wt,S + �g0(✓t), G(✓t)w
⇤
t,� + �g0(✓t)i]

=E[kG(✓t)wt,S + �g0(✓t)k
2 + kG(✓t)w

⇤
t,� + �g0(✓t)k

2]

� 2E[hG(✓)wt,S , G(✓t)w
⇤
t,� + �g0(✓t)i]� 2E[h�g0(✓t), G(✓t)w

⇤
t,� + �g0(✓t)i]

(ii)
 E[kG(✓t)wt,S + �g0(✓t)k

2 + kG(✓t)w
⇤
t,� + �g0(✓t)k

2]

� 2E[hG(✓)w⇤
t,�, G(✓t)w

⇤
t,� + �g0(✓t)i]� 2E[h�g0(✓t), G(✓t)w

⇤
t,� + �g0(✓t)i]

=E[kG(✓t)wt,S + �g0(✓t)k
2 + kG(✓t)w

⇤
t,� + �g0(✓t)k

2]

� 2E[hG(✓)w⇤
t,� + �g0(✓t), G(✓t)w

⇤
t,� + �g0(✓t)i]

=E[kG(✓t)wt,S + �g0(✓t)k
2
� kG(✓t)w

⇤
t,� + �g0(✓t)k

2]

(iii)
 (

2

c
+ 2cC1)

2 + log(S)
p
S

(18)

where (i) omits the subscript of taking expectation over wt,S conditioning on ✓t, (ii) follows from
optimality condition that

hw,G(✓t)
T (G(✓t)w

⇤
t,� + �g0(✓t))i � hw⇤

t,�, G(✓t)
T (G(✓t)w

⇤
t,� + �g0(✓t))i. (19)

(iii) follows from Lemma 3 whenwe choose �t,s = c/
p
s where c is a constant. Then take the

square root on both sides, the proof is complete.

C.2 Proof of Theorem 1

Theorem 5 (Restatement of Theorem 1). Suppose Assumptions 1-3 are satisfied. Set ↵t = ↵ =
⇥((1 + �)�1K� 1

2T� 1
2 ), �t,s = c/

p
s where c is a constant, and S = ⇥((1 + �)�2T 2). The

outputs of the proposed SDMGrad algorithm satisfy

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t,� + �g0(✓t)k

2] = eO((1 + �2)K
1
2T� 1

2 ).

Proof. Recall that d = G(✓t; ⇣)wt,S + �g0(✓t; ⇣). According to Assumption 1, we have for any i,

Li(✓t+1) + �L0(✓t+1)  Li(✓t) + �L0(✓t) + ↵thgi(✓t) + �g0(✓t),�di+
l0i,1↵

2
t

2
kdk2. (20)

where l0i,1 = li,1 + �maxi li,1 = ⇥(1 + �). Then we bound the second and third terms separately
on the right-hand side (RHS). First, for the second term, conditioning on ✓t and taking expectation,
we have

E[hgi(✓t) + �g0(✓t),�G(✓t; ⇣)wt,S � �g0(✓t; ⇣)i|✓t]

=E[hgi(✓t) + �g0(✓t),�G(✓t)wt,S � �g0(✓t)i|✓t]

=E[hgi(✓t) + �g0(✓t), G(✓t)w
⇤
t,� �G(✓t)wt,Si � hgi(✓t) + �g0(✓t), G(✓t)w

⇤
t,� + �g0(✓t)i|✓t]
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(i)
E[(li + �Cg)kG(✓t)w

⇤
t,� �G(✓t)wt,Sk|✓t]� E[kG(✓t)w

⇤
t,� + �g0(✓t)k

2
|✓t]

(ii)
 (li + �Cg)

q
E[kG(✓t)w⇤

t,� �G(✓t)wt,Sk
2|✓t]� E[kG(✓t)w

⇤
t,� + �g0(✓t)k

2
|✓t]

(iii)
 (li + �Cg)

s

(
2

c
+ 2cC1)

2 + log(S)
p
S

� E[kG(✓t)w
⇤
t,� + �g0(✓t)k

2
|✓t] (21)

where (i) follows from Cauchy-Schwarz inequality and optimality condition in eq. (19), (ii) follows
from the fact that E[X] 

p
E[X2] and (iii) follows from eq. (18).

Then for the third term,

E[kdk2] =E[kG(✓t; ⇣)wt,S + �g0(✓t; ⇣)k
2]

=E[kG(✓t; ⇣)wt,S �G(✓t)wt,S +G(✓t)wt,S + �g0(✓t; ⇣)� �g0(✓t) + �g0(✓t)k
2]

(i)
4E[kG(✓t; ⇣)�G(✓t)k

2] + 4E[kG(✓t)k
2] + 4�2E[kg0(✓t; ⇣)� g0(✓t)k

2]

+ 4�2E[kg0(✓t)k2]
(ii)
 4K�2

0 + 4C2
g + 4�2K�2

0 + 4�2C2
g| {z }

C2

(22)

where (i) follows from Young’s inequality, and (ii) follows from Assumption 3 and Lemma 2. Note
that C2 = O(K+K�2). Then taking expectation on eq. (20), substituting eq. (21) and eq. (22) into
it, and unconditioning on ✓t, we have

E[Li(✓t+1) + �L0(✓t+1)]

E[Li(✓t) + �L0(✓t)] + ↵tE[hgi(✓t) + �g0(✓t),�di] +
l0i,1↵

2
t

2
E[kdk2]

E[Li(✓t) + �L0(✓t)] + ↵t(li + �Cg)

s

(
2

c
+ 2cC1)

2 + log(S)
p
S

� ↵tE[kG(✓t)w
⇤
t,� + �g0(✓t)k

2] +
l0i,1↵

2
t

2
C2 (23)

Then, choosing ↵t = ↵, and rearranging the above inequality, we have

↵E[kG(✓t)w
⇤
t,� + �g0(✓t)k

2] E[Li(✓t) + �L0(✓t)� Li(✓t+1)� �L0(✓t+1)]

+ ↵(li + �Cg)

s

(
2

c
+ 2cC1)

2 + log(S)
p
S

+
l0i,1↵

2

2
C2.

Telescoping over t 2 [T ] in the above inequality yields

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t,� + �g0(✓t)k

2]


1

↵T
E[Li(✓0)� inf Li(✓) + �(L0(✓0)� inf L0(✓))] +

l0i,1↵

2
C2

+ (li + �Cg)

s

(
2

c
+ 2cC1)

2 + log(S)
p
S

,

If we choose ↵ = ⇥((1 + �)�1K� 1
2T� 1

2 ) and S = ⇥((1 + �)�2T 2), we have

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t,� + �g0(✓t)k

2] = eO((1 + �2)K
1
2T� 1

2 ),

where eO means the order of logT is omitted. The proof is complete.

20



C.3 Proof of Corollary 1

Proof. Since � > 0 and g0(✓t) = G(✓t) ew, we have

E[kG(✓t)w
⇤
t,� + �g0(✓t)k

2] = (1 + �)2E[kG(✓t)w
0
k
2] � (1 + �)2E[kG(✓t)w

⇤
t k

2]

where w0 = 1
1+� (w

⇤
1,t,� + � ew1, w⇤

2,t,� + � ew2, ..., w⇤
K,t,� + � ewK)T such that w0

2 W . According
to parameter selection in Theorem 1 and by choosing a constant �, we have

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t k

2] = eO(K
1
2T� 1

2 ). (24)

To achieve an ✏-accurate Pareto stationary point, it requires T = eO(K✏�2) and each objective re-
quires eO(K3✏�6) samples in ⇠ (⇠0) and eO(K✏�2) samples in ⇣, respectively. Meanwhile, according
to the choice of S and T , we have the following result for CA distance,

kE⇣,wt,S |✓t [G(✓t, ⇣)wt,S + �g0(✓t; ⇣)]�G(✓t)w
⇤
t,� � �g0(✓t)k = eO(

r
K

T
) = eO(✏) (25)

Remark. Our algorithm with a constant � helps mitigate gradient conflict and it guarantees an
✏�accurate Pareto stationary point and the CA distance takes the order of eO(✏) simultaneously.

C.4 Proof of Corollary 2

Proof. According to the inequality ka+ b� bk2  2ka+ bk2 + 2kbk2, we have

�2
kg0(✓t)k

2
2kG(✓t)w

⇤
t,� + �g0(✓t)k

2 + 2kG(✓t)w
⇤
t,�k

2

2kG(✓t)w
⇤
t,� + �g0(✓t)k

2 + 2C2
g

where the last inequality follows from Assumption 3. Then we take the expectation on the above
inequality and sum up it over t 2 [T ] such that

1

T

T�1X

t=0

E[kg0(✓t)k2] 
2

�2T

T�1X

t=0

E[kG(✓t)w
⇤
t,� + �g0(✓t)k

2] +
C2

g

�2

= eO((��2 + 1)K
1
2T� 1

2 + ��2),

where the last inequality follows from Theorem 1. If we choose � = ⇥(T
1
2 ), then we have

1

T

T�1X

t=0

E[kg0(✓t)k2] = eO(K
1
2T� 1

2 ).

To achieve an ✏-accurate stationary point, it requires T = eO(K✏�2) and each objective requires
eO(K2✏�4) samples in ⇠ (⇠0) and eO(K✏�2) samples in ⇣, respectively. Meanwhile, according to the
choice of �, S and T , we have the following result for CA distance,

kE⇣,wt,S |✓t [G(✓t, ⇣)wt,S + �g0(✓t; ⇣)]�G(✓t)w
⇤
t,� � �g0(✓t)k = eO(

r
K(1 + �)2

T
) = eO(

p

K)

Remark. With an increasing �, our algorithm approaches GD and it has a faster convergence rate
to the stationary point. However, the CA distance takes the order of eO(

p
K).

C.5 Proof of Theorem 2

Now we provide the convergence analysis with nonconvex objectives with objective sampling.
Theorem 6 (Restatement of Theorem 2). Suppose Assumptions 1-3 are satisfied. Set � = K

n ,

↵t = ↵ = ⇥((1 + �2)�
1
2 �� 1

2K� 1
2T� 1

2 ), �t,s = c/
p
s and S = ⇥((1 + �)�2��2T 2). Then by

choosing a constant �, the iterates of the proposed SDMGrad-OS algorithm satisfy

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t k

2] = eO(K
1
2 �

1
2T� 1

2 ).
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Proof. Recall that updating direction for ✓t is d0 = K
n H(✓t; ⇣, eS)wt,S + K

n �h0(✓t; ⇣, eS). Similarly,
we have

Li(✓t+1) + �L0(✓t+1)  Li(✓t) + �L0(✓t) + ↵thgi(✓t) + �g0(✓t),�d0i+
l0i,1↵

2
t

2
kd0k2. (26)

Then for the inner product term on the RHS of eq. (26), conditioning on ✓t and taking expectation,
we have

E[hgi(✓t)+�g0(✓t),�d0i|✓t] = E[hgi(✓t) + �g0(✓t),�G(✓t)wt,S � �g0(✓t)i|✓t]

(li + �Cg)(

s

(
2

c
+ 2cC1)

2 + log(S)
p
S

)� E[kG(✓t)w
⇤
t,� + �g0(✓t)k

2
|✓t], (27)

where the last inequality follows from eq. (21). Then following the same step as in eq. (22), we can
bound the last term on the RHS of eq. (26) as

E[kd0k2]  4�2(1 + �2)(n�2
0 + C2

g )| {z }
C0

2

. (28)

Then taking expectation on eq. (26), substituting eq. (27) and eq. (28) into it and unconditioning on
✓t, we have

E[Li(✓t+1) + �L0(✓t+1)] E[Li(✓t) + �L0(✓t)] + ↵t(li + �Cg)
⇣
s

(
2

c
+ 2cC1)

2 + log(S)
p
S

⌘

� ↵tEkG(✓t)w
⇤
t,� + �g0(✓t)k

2 +
l0i,1↵

2
t

2
C 0

2

Then choosing ↵t = ↵, telescoping the above inequality over t 2 [T ], and rearranging the terms,
we have

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t,� + �g0(✓t)k

2] 
1

↵T
E[Li(✓0)� inf Li(✓) + �(L0(✓0)� inf L0(✓))] +

l0i,1↵

2
C 0

2

+ (li + �Cg)(

s

(
2

c
+ 2cC1)

2 + log(S)
p
S

)

If we choose ↵ = ⇥((1 + �2)�
1
2 �� 1

2K� 1
2T� 1

2 ), and S = ⇥((1 + �)�2��2T 2), we can get
1
T

PT�1
t=0 E[kG(✓t)w⇤

t,� + �g0(✓t)k2] = eO((1 + �2)K
1
2 �

1
2T� 1

2 ). Furthermore, by choosing � as
constant and following the same step as in Appendix C.3, we have

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t k

2] = eO(K
1
2 �

1
2T� 1

2 ).

To achieve an ✏-accurate Pareto stationary point, it requires T = eO(K�✏�2). In this case, each
objective requires a similar number of samples eO(K3�✏�6) in ⇠ (⇠0) and eO(K�✏�2) samples in ⇣,
respectively. As far as we know, this is the first provable objective sampling strategy for stochastic
multi-objective optimization.

D Lower sample complexity but higher CA distance

When we do not have requirements on CA distance, we can have a much lower sample complexity.
In Algorithm 1, the update process for w is to reduce the CA distance, which increases the sample
complexity. Thus, we will set S = 1 to make Algorithm 1 more sample-efficient. In addition, we
will use wt+1 = wt,1 and �t instead of �t,s in Algorithm 1 for simplicity. The following proof is
mostly motivated by Theorem 3 in [14].
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D.1 Proof of Theorem 3

Theorem 7 (Restatement of Theorem 3). Suppose Assumptions 1-3 are satisfied and S = 1. Set

↵t = ↵ = ⇥(K� 1
2T� 1

2 ), �t = � = ⇥(K�1T� 1
2 ) and � as constant. The iterates of the proposed

SDMGrad algorithm satisfy,

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t k

2] = O(KT� 1
2 ).

Proof. Now we define a new function, with a fixed weight w 2 W ,

l0(✓t) = L(✓t)w + �L0(✓t). (29)

For this new function, we have

l0(✓t+1) l0(✓t) + ↵thG(✓t)w + �g0(✓t),�di+
l01↵

2
t

2
kdk2

=l0(✓t) + ↵thG(✓t)w + �g0(✓t),�G(✓t; ⇣)wt+1 � �g0(✓t; ⇣)i+
l01↵

2
t

2
kdk2

where l01 = maxi li,1 + �li,1. Then taking expectations over ⇣ on both sides and rearranging the
inequality, we have

E[l0(✓t+1)]� E[l0(✓t)] ↵tE[hG(✓t)w + �g0(✓t),�G(✓t)wt+1 � �g0(✓t)i] +
l01↵

2
t

2
E[kdk2]

=� ↵tE[hG(✓t)w + �g0(✓t), G(✓t)wt+1 �G(✓t)wti]

� ↵tE[hG(✓t)w + �g0(✓t), G(✓t)wt + �g0(✓t)i] +
l01↵

2
t

2
E[kdk2]

=� ↵tE[hG(✓t)w + �g0(✓t), G(✓t)wt+1 �G(✓t)wti]

� ↵tE[hG(✓t)w �G(✓t)wt, G(✓t)wt + �g0(✓t)i]

� ↵tE[kG(✓t)wt + �g0(✓t)k
2] +

l01↵
2
t

2
E[kdk2]

(i)
↵t E[k(G(✓t)w + �g0(✓t))

TG(✓t)kkwt � wt+1k]| {z }
C

+ ↵t E[hG(✓t)wt �G(✓t)w,G(✓t)wt + �g0(✓t)i]| {z }
D

� ↵tE[kG(✓t)wt + �g0(✓t)k
2] +

l01↵
2
t

2
E[kdk2], (30)

where (i) follows from Cauchy-Schwarz inequlaity. Then we provide bound for term C and term D,
respectively. For term C,

E[k(G(✓t)w + �g0(✓t))
TG(✓t)kkwt � wt+1k]

=�tE[k(G(✓t)w + �g0(✓t))
TG(✓t)kkG(✓t; ⇠)

T (G(✓t; ⇠
0)wt + �g0(✓; ⇠

0))k]

�tE[k(G(✓t)w + �g0(✓t))
TG(✓t)k(kG(✓t; ⇠)

T (G(✓t; ⇠
0)wtk+ �kG(✓t; ⇠)g0(✓; ⇠

0)k)]

�t(1 + �)2C2
g (K�0 + Cg)

2 = �tC3, (31)

where C3 = O((1 + �)2K2). Then for term D, we first follow the non-expansive property of
projection onto the convex set,

kwt+1 � wk2 kwt � �tG(✓t; ⇠)
T (G(✓t; ⇠

0)wt + �g0(✓t; ⇠
0))� wk2

=kwt � wk2 � 2�thwt � w,G(✓t; ⇠)
T (G(✓t; ⇠

0)wt + �g0(✓t; ⇠
0))i

+ �2
t kG(✓t; ⇠)

T (G(✓t; ⇠
0)wt + �g0(✓t; ⇠

0))k2

Then taking expectation on the above inequality, we can obtain,

E[kwt+1 � wk2] E[kwt � wk2]� 2�tE[hwt � w,G(✓t; ⇠)
T (G(✓t; ⇠

0)wt + �g0(✓t; ⇠
0))i]
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+ �2
tE[kG(✓t; ⇠)

T (G(✓t; ⇠
0)wt + �g0(✓t; ⇠

0))k2]

E[kwt � wk2]� 2�tE[hwt � w,G(✓t)
T (G(✓t)wt + �g0(✓t))i] + �2

tC
2
1 ,

where the last inequality follows from Lemma 3. Then by rearranging the above inequality, we can
obtain,

E[hwt � w,G(✓t)
T (G(✓t)wt + �g0(✓t))i] 

1

2�t
E[kwt � wk2 � kwt+1 � wk2] +

�t

2
C2

1 (32)

Then substituting eq. (31) and eq. (32) into eq. (30), we can obtain,

E[l0(✓t+1)� l0(✓t)] ↵t�tC3 +
↵t

2�t
E[kwt � wk2 � kwt+1 � wk2] +

↵t�t

2
C2

1

� ↵tE[kG(✓t)wt + �g0(✓t)k
2] +

l01↵
2
t

2
E[kdk2]

(i)
↵t�tC3 +

↵t

2�t
E[kwt � wk2 � kwt+1 � wk2] +

↵t�t

2
C2

1

� ↵tE[kG(✓t)wt + �g0(✓t)k
2] +

l01↵
2
t

2
C2 (33)

Then we take ↵t = ↵ and �t = � as constants, telescope and rearrange the above inequality,

1

T

T�1X

t=0

E[kG(✓t)wt + �g0(✓t)k
2] 

1

↵T
E[l0(✓0)� l0(✓T )] +

1

2�T
E[kw0 � wk2 � kwT � wk2]

+ �(C3 +
C2

1

2
) +

l01↵

2
C2

(i)
O(

1

↵T
+ ↵K +

1

�T
+ �K2), (34)

where (i) follows from that we choose � as a constant. If we choose ↵ = ⇥(K� 1
2T� 1

2 ) and
� = ⇥(K�1T� 1

2 ), we can get 1
T

PT�1
t=0 E[kG(✓t)wt + �g0(✓t)k2] = O(KT� 1

2 ). Furthermore,
following the same steps as in Appendix C.3, we have

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t k

2] = O(KT� 1
2 ).

To achieve an ✏-accurate Pareto stationary point, it requires T = O(K2✏�2). In this case, each
objective requires a similar number of samples O(K2✏�2) in ⇠(⇠0) and ⇣, respectively.

Convergence under objective sampling. We next analyze the convergence of SDMGrad-OS.
Theorem 8 (Restatement of Theorem 4). Suppose Assumptions 1-3 are satisfied and S = 1. Set

� = K
n , ↵t = ↵ = ⇥(K� 1

2 �� 1
2T� 1

2 ), �t = � = ⇥(K�1��1T� 1
2 ) and � as a constant. The

iterates of the proposed SDMGrad-OS algorithm satisfy,

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t k

2] = O(K�T� 1
2 ).

Proof. In SDMGrad-OS, the vector for updating ✓t is d0 = K
n H(✓t; ⇣, eS)wt+1 +

�K
n h0(✓t; ⇣, eS).

Using the same function defined in eq. (29), we have

l0(✓t+1) l0(✓t) + ↵thG(✓t)w + �g0(✓t),�d0i+
l01↵

2
t

2
kd0k2.

Then by taking expectation over ⇣ and eS, we have

E[l0(✓t+1)� l0(✓t)] ↵tE[hG(✓t)w + �g0(✓t),�G(✓t)wt+1 + �g0(✓t)i] +
l0↵2

t

2
E[kd0k2]
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=↵tE[hG(✓t)w + �g0(✓t), G(✓t)(wt � wt+1)i]

+ ↵tE[hG(✓t)wt �G(✓t)w,G(✓t)wt + �g0(✓t)i]

� E[kG(✓t)wt + �g0(✓t)k
2] +

l01↵
2
t

2
E[kd0k2]

↵tE[k(G(✓t)w + �g0(✓t))
TG(✓t)kkwt � wt+1k]

+ ↵tE[hG(✓t)wt �G(✓t)w,G(✓t)wt + �g0(✓t)i]

� E[kG(✓t)wt + �g0(✓t)k
2] +

l01↵
2
t

2
E[kd0k2] (35)

Then following the same steps in eq. (31) and eq. (32), we can obtain,

E[l0(✓t+1)� l0(✓t)] ↵t�tC
0
3 +

↵t

2�t
E[kwt � wk2 � kwt+1 � wk2] +

↵t�t

2
C 02

1

�↵tE[kG(✓t)wt + �g0(✓t)k
2] +

l01↵
2
t

2
C 0

2, (36)

where C 02
1 = 4�4(1+�2)(n�2

0+Cg)2, C 0
2 = 4�2(1+�2)(n�2

0+C2
g ), and C 0

3 = �2(1+�)2C2
g (n�

2
0+

Cg)2. Then we take ↵t = ↵ and �t = � as constants and telescope the above inequality,

1

T

T�1X

t=0

E[kG(✓t)wt + �g0(✓t)k
2] 

1

↵T
E[l0(✓0)� l0(✓T )] +

1

2�T
E[kw0 � wk2 � kwT � wk2]

+ �(C 0
3 +

C 02
1

2
) +

l01↵

2
C 0

2

(i)
O(

1

↵T
+ ↵�K +

1

�T
+ ��2K2), (37)

where (i) follows from that we choose � as constant. Similarly, if we choose ↵ = ⇥(K� 1
2 �� 1

2T� 1
2 )

and � = ⇥(K�1��1T� 1
2 ), we can get 1

T

PT�1
t=0 E[kG(✓t)wt + �g0(✓t)k2] = O(K�T� 1

2 ). Fur-
thermore, following the same step as in Appendix C.3, we have

1

T

T�1X

t=0

E[kG(✓t)w
⇤
t k

2] = O(K�T� 1
2 ).

To achieve an ✏-accurate Pareto stationary point, it requires T = O(�2K2✏�2). In this case, each
objective requires a similar number of samples O(�2K2✏�2) in ⇠(⇠0) and ⇣, respectively.
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