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Abstract

This paper investigates fairness and bias in Canonical Correlation Analysis (CCA),
a widely used statistical technique for examining the relationship between two sets
of variables. We present a framework that alleviates unfairness by minimizing
the correlation disparity error associated with protected attributes. Our approach
enables CCA to learn global projection matrices from all data points while ensuring
that these matrices yield comparable correlation levels to group-specific projec-
tion matrices. Experimental evaluation on both synthetic and real-world datasets
demonstrates the efficacy of our method in reducing correlation disparity error
without compromising CCA accuracy.

1 Introduction

Canonical Correlation Analysis (CCA) is a multivariate statistical technique that explores the rela-
tionship between two sets of variables [30]. Given two datasets X ∈ RN×Dx and Y ∈ RN×Dy on
the same set of N observations,1 CCA seeks the R–dimensional subspaces where the projections of
X and Y are maximally correlated, i.e. finds U ∈ RDx×R and V ∈ RDy×R such that

maximize trace
(
U⊤X⊤YV

)
subject to U⊤X⊤XU = V⊤Y⊤YV = IR. (CCA)

CCA finds applications in various fields, including biology [51], neuroscience [2], medicine [79],
and engineering [14], for unsupervised or semi-supervised learning. It improves tasks like clustering,
classification, and manifold learning by creating meaningful dimensionality-reduced representations
[70]. However, CCA can exhibit unfair behavior when analyzing data with protected attributes, like
sex or race. For instance, in Alzheimer’s disease (AD) analysis, CCA can establish correlations
between brain imaging and cognitive decline. Yet, if it does not consider the influence of sex, it
may result in disparate correlations among different groups because AD affects males and females
differently, particularly in cognitive decline [36, 81].

The influence of machine learning on individuals and society has sparked a growing interest in the
topic of fairness [42]. While fairness techniques are well-studied in supervised learning [5, 18, 20],
attention is shifting to equitable methods in unsupervised learning [11, 12, 15, 34, 49, 55, 64]. Despite
extensive work on fairness in machine learning, fair CCA (F-CCA) remains unexplored. This paper
investigates F-CCA and introduces new approaches to mitigate bias in (CCA).

For further discussion, we compare CCA with our proposed F-CCA in sample projection, as illustrated
in Figure 1. In Figure 1(a), we have samples x1 and x2 from matrix X, and in Figure 1(b), their
corresponding samples y1 and y2 are from matrix Y. CCA learns U and V to maximize correlation,
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Figure 1: Illustration of CCA and F-CCA, with the sensitive attribute being sex (female and male).
Figures (a)–(c) demonstrate the general framework of CCA, while Figures (d)–(i) provide a com-
parison of the projected results using various strategies. It is important to note that the correlation
between two corresponding samples is inversely associated with the angle formed by their projected
vectors. F-CCA aims to equalize the average angles among different groups.

inversely related to the angle between the sample vectors. Figure 1(c) demonstrates the proximity
within the projected sample pairs (U⊤x1,V

⊤y1) and (U⊤x2,V
⊤y2). In Figure 1(d)-(i), we

compare the results of different learning strategies. There are five pairs of samples, with female
pairs highlighted in red and male pairs shown in blue. Random projection (Figure 1(e)) leads to
randomly large angles between corresponding sample vectors. CCA reduces angles compared to
random projection (Figure 1(f)), but significant angle differences between male and female pairs
indicate bias. Using sex-based projection matrices heavily biases the final projection, favoring one sex
over the other (Figures 1(g) and 1(h)). To address this bias, our F-CCA maximizes correlation within
pairs and ensures equal correlations across different groups, such as males and females (Figure 1(i)).
Note that while this illustration represents individual fairness, the desired outcome in practice is
achieving similar average angles for different groups.

Contributions. This paper makes the following key contributions:

• We introduce fair CCA (F-CCA), a model that addresses fairness issues in (CCA) by considering
multiple groups and minimizing the correlation disparity error of protected attributes. F-CCA aims
to learn global projection matrices from all data points while ensuring that these projection matrices
produce a similar amount of correlation as group-specific projection matrices.

• We propose two optimization frameworks for F-CCA: multi-objective and single-objective. The
multi-objective framework provides an automatic trade-off between global correlation and equality
in group-specific correlation disparity errors. The single-objective framework offers a simple
approach to approximate fairness in CCA while maintaining a strong global correlation, requiring
a tuning parameter to balance these objectives.

• We develop a gradient descent algorithm on the generalized Stiefel manifold to solve the multi-
objective problem, with convergence guarantees to a Pareto stationary point. This approach extends
Riemannian gradient descent [8, 9] to multi-objective optimization, accommodating a broader
range of retraction maps than exponential retraction [23, 6]. Furthermore, we provide a similar
algorithm for single-objective problems, also with convergence guarantees to a stationary point.

• We provide extensive empirical results showcasing the efficacy of the proposed algorithms. Com-
parison against the CCA method on synthetic and real datasets highlights the benefits of the F-CCA
approach, validating the theoretical findings 2.

Organization: Section 2 covers related work. Our proposed approach is detailed in Section 3, along
with its theoretical guarantees. Section 4 showcases numerical experiments, while Section 5 discusses
implications and future research directions.

2Code is available at https://github.com/PennShenLab/Fair_CCA.
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2 Related work

Canonical Correlation Analysis (CCA). CCA was first introduced by [28, 29]. Since then, it has
been utilized to explore relations between variables in various fields of science, including economics
[72], psychology [19, 27], geography [45], medicine [39], physics [76], chemistry [69], biology
[62], time-series modeling [26], and signal processing [57]. Recently, CCA has demonstrated its
applicability in modern fields of science such as neuroscience, machine learning, and bioinformatics
[59, 60]. CCA has been used to explore relations for developing brain-computer interfaces [10, 46]
and in the field of imaging genetics [22]. CCA has also been applied for feature selection [47],
feature extraction and fusion [61], and dimension reduction [71]. Additionally, numerous studies
have applied CCA in bioinformatics and computational biology, such as [54, 56, 58]. The broad range
of application domains highlights the versatility of CCA in extracting relations between variables,
making it a valuable tool in scientific research.

Fairness. Fairness in machine learning has been a growing area of research, with much of the work
focusing on fair supervised methods [5, 16, 18, 20, 67, 78]. However, there has also been increasing
attention on fair methods for unsupervised learning tasks [11, 12, 15, 34, 33, 49, 55, 64, 50, 66]. In
particular, Samadi et al. [55] proposed a semi-definite programming approach to ensure fairness in
PCA. Kleindessner et al. [33, 34] focused on fair PCA formulation for multiple groups and proposed
a kernel-based fair PCA. Kamani et al. [32] introduced an efficient gradient method for fair PCA,
addressing multi-objective optimization. In this paper, we propose a novel multi-objective framework
for F-CCA, converting constrained F-CCA problems to unconstrained ones on a generalized Rieman-
nian manifold. This framework enables the adaptation of efficient gradient techniques for numerical
optimization on Riemannian manifolds.

Riemannian Optimization. Riemannian optimization extends Euclidean optimization to smooth
manifolds, enabling the minimization of f(x) on a Riemannian manifoldM and converting con-
strained problems into unconstrained ones [1, 8]. It finds applications in various domains such as
matrix/tensor factorization [31, 63], PCA [21], and CCA [77]. Specifically, CCA can be formulated
as Riemannian optimization on the Stiefel manifold [13, 43]. In our work, we utilize Riemannian
optimization to develop a multi-objective framework for F-CCAs on generalized Stiefel manifolds.

3 Fair Canonical Correlation Analysis

This section introduces the formulation and optimization algorithms for F-CCA.

3.1 Preliminary

Real numbers are represented as R, with R+ for nonnegative values and R++ for positives. Vectors
and matrices use bold lowercase and uppercase letters (e.g., a, A) with elements ai and aij . For x,y ∈
Rm, x ≺ y and x ⪯ y mean y − x ∈ Rm

++ and y − x ∈ Rm
+ , respectively. For a symmetric matrix

A ∈ RN×N , A ≻ 0 and A ⪰ 0 denote positive definiteness and positive semidefiniteness (PSD),
respectively. ID, JD, and 0D are D ×D identity, all-ones, and all-zeros matrices. Λi(A) stands for
the i-th singular values of A. Matrix norms are defined as ∥A∥1 =

∑
ij |aij |, ∥A∥ = maxi Λi(A),

and ∥A∥F := (
∑

ij |aij |2)1/2. We introduce some preliminaries on manifold optimization [1, 6, 8].
Given a PSD matrix B ∈ RD×D, the generalized Stiefel manifold is defined as

St(D,R,B) =
{
Z ∈ RD×R

∣∣ Z⊤BZ = IR
}
. (1)

The tangent space of the manifoldM = St(D,R,B) at Z ∈M is given by

TZM =
{
W ∈ RD×R

∣∣ Z⊤BW +W⊤BZ = 0R

}
. (2)

The tangent bundle of a smooth manifoldM, which consists of TZM at all Z ∈M, is defined as

TM =
{
(Z,W)

∣∣ Z ∈M, W ∈ TZM
}
. (3)

Definition 1. A retraction on a differentiable manifoldM is a smooth mapping from its tangent
bundle TM toM that satisfies the following conditions, with Rz being the retraction of R to TZM:

1. Rz(0) = Z, for all Z ∈M, where 0 denotes the zero element of TZM.
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2. For any Z ∈M, it holds that limTZM∋ξ→0
∥Rz(ξ)−(Z+ξ)∥F

∥ξ∥F
= 0.

In the numerical experiments, this work employs a generalized polar decomposition-based retraction.
Given a PSD matrix B ∈ RD×D, for any ξ ∈ TZM withM = St(D,R,B), it is defined as:

Rz(ξ) = Ū(QΛ− 1
2Q⊤)V̄⊤, (4)

where ŪΣV̄⊤ = ξ is the singular value decomposition of ξ, and Q,Λ are obtained from the eigen-
value decomposition QΛQ⊤ = Ū⊤BŪ. Further details on retraction choices are in Appendix A.1.

3.2 Correlation Disparity Error

As previously mentioned, applying CCA to the entire dataset could lead to a biased result, as some
groups might dominate the analysis while others are overlooked. To avoid this, we can perform CCA
separately on each group and compare the results. Indeed, we can compare the performance of CCA
on each group’s data with the performance of CCA on the whole dataset, which includes all groups’
data. The goal is to find a balance between the benefits and sacrifices of different groups so that
each group’s contribution to the CCA analysis is treated fairly. In particular, suppose the datasets
X ∈ RN×Dx and Y ∈ RN×Dy on the same set of N observations, belong to K different groups
{(Xk,Yk)}Kk=1 with Xk ∈ RNk×Dx and Yk ∈ RNk×Dy , based on demographics or some other
semantically meaningful clustering. These groups need not be mutually exclusive; each group can be
defined as a different weighting of the data.

To determine how each group is affected by F-CCA, we can compare the structure learned from
each group’s data (Xk,Yk) with the structure learned from all groups’ data combined (X,Y). A
fair CCA approach seeks to balance the benefits and drawbacks of each group’s contribution to the
analysis. Specifically, if we train global subspaces U ∈ RDx×R and V ∈ RDy×R on k-th group
dataset (Xk,Yk), we can identify the group-specific (local) weights represented by (Uk,Vk) that
has the best performance on that dataset. Thus, F-CCA algorithm should be able to learn global
weights (U,V) on all data points while ensuring that each group’s correlation on the CCA learned
by the whole dataset is equivalent to the group-specific subspaces learned only by its own data.

To define these fairness criteria, we introduce correlation disparity error as follows:
Definition 2 (Correlation Disparity Error). Consider a pair of datasets (X,Y) with K sensitive
groups with data matrix {(Xk,Yk)}Kk=1 representing each sensitive group’s data samples. Then, for
any (U,V), the correlation disparity error for each sensitive group k ∈ [K] is defined as

Ek (U,V) := trace
(
Uk,⋆⊤Xk⊤YkVk,⋆

)
− trace

(
U⊤Xk⊤YkV

)
, 1 ≤ k ≤ K. (5)

Here, (Uk,⋆,Vk,⋆) is the maximizer of the following group-specific CCA problem:

maximize trace
(
Uk⊤Xk⊤YkVk

)
subj. to Uk⊤Xk⊤XkUk = Vk⊤Yk⊤YkVk = IR. (6)

This measure shows how much correlation we are suffering for any global (U,V), with respect to
the loss of optimal local (Uk,⋆,Vk,⋆) that we can learn based on data points (Xk,Yk).

Using Definition 2, we can define F-CCA as follows:
Definition 3 (Fair CCA). A CCA pair (U⋆,V⋆) is called fair if the correlation disparity error
among K different groups is equal, i.e.,

Ek (U⋆,V⋆) = Es (U⋆,V⋆) , ∀k ̸= s, k, s ∈ [K]. (7)

A CCA pair (U⋆,V⋆) that achieves the same disparity error for all groups is called a fair CCA.

Next, we introduce the concept of pairwise correlation disparity error for CCA, which measures the
variation in correlation disparity among different groups.
Definition 4 (Pairwise Correlation Disparity Error). The pairwise correlation disparity error for
any global (U,V) and group-specific subspaces {(Uk,⋆,Vk,⋆)}Kk=1, is defined as

∆k,s (U,V) := ϕ
(
Ek (U,V)− Es (U,V)

)
, ∀k ̸= s, k, s ∈ [K]. (8)

Here, ϕ : R→ R+ is a penalty function such as ϕ(x) = exp(x), ϕ(x) = x2, or ϕ(x) = |x|.
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Algorithm 1: A Multi-Objective Gradient
Method for F-CCA (MF-CCA)

1: Input: (X,Y), (U0,V0), (R, T ) ∈ N×N;
and stepsizes {(ηut , ηvt )}Tt=1;

2: Find the R-rank subspaces for each group,
{(Uk,∗,Vk,∗)}Kk=1 using (6).

3: for t = 0, . . . , T − 1 do
4: Find (Pu

t ,P
v
t ) by solving (10).

5: Ut+1 ← Ru (ηut P
u
t )

6: Vt+1 ← Rv (ηvt P
v
t )

7: end for
8: Output: (UT ,VT ), {(Uk,∗,Vk,∗)}Kk=1.

Algorithm 2: A Single-Objective Gradient
Method for F-CCA (SF-CCA)

1: Input: (X,Y), (U0,V0), (R, T ) ∈ N × N;
λ ∈ R++; and stepsizes {(ηut , ηvt )}Tt=1;

2: Find the R-rank subspaces for each group,
{(Uk,∗,Vk,∗)}Kk=1 using (6).

3: for t = 0, . . . , T − 1 do
4: Find (Gu

t ,G
v
t ) by solving (12).

5: Ut+1 ← Ru (ηut G
u
t )

6: Vt+1 ← Rv (ηvt G
v
t )

7: end for
8: Output: (UT ,VT ), {(Uk,∗,Vk,∗)}Kk=1.

The motivation for incorporating pairwise correlation disparity error in our approach can be attributed
to the work by [40, 55] in the context of PCA. To facilitate convergence analysis, we will primarily
consider smooth penalization functions, such as squared or exponential penalties.

3.3 A Multi-Objective Framework for Fair CCA

In this section, we introduce an optimization framework for balancing correlation and disparity
errors. Let f1 (U,V) := − trace

(
U⊤X⊤YV

)
, f2 (U,V) := ∆1,2 (U,V) , . . . , fM (U,V) :=

∆K−1,K (U,V). The optimization problem of finding an optimal Pareto point of F is denoted by

minimize
U,V

F(U,V) := [f1 (U,V) , f2 (U,V) , . . . , fM (U,V)] ,

subj. to U ∈ U , V ∈ V,
(9)

where U := {U ∈ RDx×R
∣∣U⊤X⊤XU = IR} and V := {V ∈ RDy×R

∣∣V⊤Y⊤YV = IR}.

A point (U,V) ∈ U × V satisfying Im(∇F(U,V)) ∩ (−RM
++) = ∅ is called critical Pareto. Here,

Im denotes the image of Jacobian of F. An optimum Pareto point of F is a point (U⋆,V⋆) ∈ U × V
such that there exists no other (U,V) ∈ U × V with F(U,V) ≺ F(U⋆,V⋆). Moreover, a
point U⋆,V⋆ ∈ U × V is a weak optimal Pareto of F if there is no (U,V) ∈ U × V with
F(U,V) ⪯ F(U⋆,V⋆). The multi-objective framework (9) addresses the challenge of handling
conflicting objectives and achieving optimal trade-offs between them.

To effectively solve Problem (9), we propose utilizing a gradient descent method on the manifold
U ×V that ensures convergence to a Pareto stationary point. The proposed gradient descent algorithm
for solving (9) is provided in Algorithm 1. For each (U,V) ∈ U × V , let P := (Pu,Pv) with
Pu ∈ TUU and Pv ∈ TVV . The iterates (Pu

t ,P
v
t ) in Step 4 are obtained by solving the following

subproblem in the joint tangent plane TUU × TVV:

min
P∈TUU×TVV

Qt(P), where Qt(P) :=

{
max
i∈[M ]

trace
(
P⊤∇fi((Ut,Vt))

)
+

1

2
∥P∥2F

}
. (10)

If (Ut,Vt) /∈ U × V is not a Pareto stationary point, Problem (10) has a unique nonzero solution Pt

(see Lemma 7), known as the steepest descent direction for F at (Ut,Vt). In Steps 5 and 6, Ru and
Rv denote the retractions onto the tangent spaces TUU and TVV , respectively; refer to Definition 1.
Assumption A. For a given subset S of the tangent bundle T U × T V , there exists a constant
LF such that, for all (Z,P) ∈ S, we have F(Rz(P)) ⪯ F(Z) + ∇ + (LF /2) ∥P∥2F 1M , where
∇i := ⟨∇fi(Z),P⟩, ∇ := [∇1, · · · ,∇M ]⊤ ∈ RM , and Rz is the retraction.

The above assumption extends [8, A 4.3] to multi-objective optimization, and it always holds for the
exponential map (exponential retraction) if the gradient of F is LF -Lipschitz continuous [23, 6].
Theorem 5. Suppose Assumption A holds. Let (Ut,Vt) be the sequence generated by MF-CCA.
Let f∗

i := inf{fi(U,V) : (U,V) ∈ U × V}, for all i ∈ [M ] and define fi∗(U0,V0) − f∗
i∗

:=
min {fi(U0,V0)− f∗

i : i ∈ [M ]}. If ηut = ηvt = η ≤ 1/LF for all t ∈ {0, . . . , T − 1}, then

min
{
∥Pt∥F : t = 0, . . . , T − 1

}
≤ 2

η

[
fi∗(U0,V0)− f∗

i∗

T

] 1
2

.
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Proof Sketch. We employ Lemma 7 to establish the unique solution Pt for subproblem (10). Lemmas
9 and 10 provide estimates for the decrease of function F along Pt: For any ηt ≥ 0, we have
F(Ut+1,Vt+1) ⪯ F(Ut,Vt) − (ηt − LF η

2
t /2) ∥Pt∥2F 1M . Summing this inequality over t =

0, 1, . . . , T − 1 and applying our step size condition yields the desired result.

Theorem 5 provides a generalization of [8, Corollary 4.9] to the multi-objective optimization, showing
that the norm of Pareto descent directions converges to zero. Consequently, the solutions produced
by the algorithm converge to a stationary fair subspace. It is worth mentioning that multi-objective
optimization in [23, 6] relies on the Riemannian exponential map, whereas the above theorem covers
broader (and practical) retraction maps.

3.4 A Single-Objective Framework for Fair CCA

In this section, we introduce a straightforward and effective single-objective framework. This ap-
proach simplifies F-CCA optimization, lowers computational requirements, and allows for fine-tuning
fairness-accuracy trade-offs using the hyperparameter λ. Specifically, by employing a regularization
parameter λ > 0, our proposed fairness model for F-CCA is expressed as follows:

minimize
U,V

f(U,V) := − trace
(
U⊤X⊤YV

)
+ λ∆(U,V) ,

subj. to U ∈ U , V ∈ V,
(11)

where ∆(U,V) =
∑

i,j∈[K],i̸=j ∆
i,j (U,V); see Definiton 4.

The choice of λ in the model determines the emphasis placed on different objectives. When λ is large,
the model prioritizes fairness over minimizing subgroup errors. Conversely, if λ is small, the focus
shifts towards minimizing subgroup correlation errors rather than achieving perfect fairness. In other
words, it is possible to obtain perfectly F-CCA subspaces; however, this may come at the expense
of larger errors within the subgroups. The constant λ in the model allows for a flexible trade-off
between fairness and minimizing subgroup correlation errors, enabling us to find a balance based on
the specific requirements and priorities of the problem at hand.

The proposed gradient descent algorithm for solving (11) is provided as Algorithm 2. For each
(U,V) ∈ U × V , let G := (Gu,Gv) with Gu ∈ TUU and Gv ∈ TVV . The iterates (Gu

t ,G
v
t ) are

obtained by solving the following problem in the joint tangent plane TUU × TVV:

min
G∈TUU×TVV

qt(G), where qt(G) :=

{
trace

(
G⊤∇f((Ut,Vt))

)
+

1

2
∥G∥2F

}
. (12)

The solutions (Gu
t ,G

v
t ) are maintained on the manifolds using the retraction operations Ru and Rv.

Assumption B. For a subset S ⊆ T U ×T V , there exists a constant Lf such that for all (Z,G) ∈ S ,
f(Rz(G)) ≤ F(Z) + ⟨∇f(Z),G⟩+ (Lf/2) ∥G∥2F , with Rz as the retraction.

Theorem 6. Suppose Assumption B holds. Let (Ut,Vt) be the sequence generated by SF-CCA. Let
f∗ := inf{f(U,V) : (U,V) ∈ U × V}. If ηut = ηvt = η ≤ 1/Lf for all t ∈ [T ], then

min
{
∥Gt∥F : t = 0, . . . , T − 1

}
≤ 2

η

[
f(U0,V0)− f∗

T

] 1
2

.

Comparison between MF-CCA and SF-CCA: MF-CCA addresses conflicting objectives and
achieves optimal trade-offs automatically, but it necessitates the inclusion of

(
K
2

)
additional objectives.

SF-CCA, on the other hand, provides a simpler approach but requires tuning an extra hyperparameter
λ. When choosing between the two methods, it is crucial to consider the trade-off between complexity
and simplicity, as well as the number of objectives and the need for hyperparameter tuning.

4 Experiments

In this section, we provide empirical results showcasing the efficacy of the proposed algorithms.
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4.1 Evaluation Criteria and Selection of Tuning Parameter

F-CCA’s performance is evaluated on correlation and fairness for each dimension of subspaces. Let
U = [u1, · · · ,uR] ∈ RDx×R and V = [v1, · · · ,vR] ∈ RDy×R. The r-th canonical correlation is
defined as follows:

ρr =
u⊤
r X

⊤Yvr√
u⊤
r X

⊤Xurv⊤
r Y

⊤Yvr

, r = 1, . . . , R. (13a)

Next, in terms of fairness, we establish the following two key measures:

∆max,r = max
i,j∈[K]

|E i(ur,vr)− Ej(ur,vr)|, r = 1, . . . , R, (13b)

∆sum,r =
∑

i,j∈[K]

|E i(ur,vr)− Ej(ur,vr)|, r = 1, . . . , R. (13c)

Here, ∆max,r measures maximum disparity error, while ∆sum,r represents aggregate disparity error.
The aim is to reach ∆max,r and ∆sum,r of 0 without sacrificing correlation (ρr) compared to CCA.
We conduct a detailed analysis using component-wise measurements (13) instead of matrix versions;
for more discussions, see Appendix C.2.

The canoncorr function from MATLAB and [35] is used to solve (CCA). For MF-CCA and SF-
CCA, the learning rate is searched on a grid in {1e− 1, 5e− 2, 1e− 2, . . . , 1e− 5}, and for SF-CCA,
λ is searched on a grid in {1e− 2, 1e− 1, 0.5, 1, 2, . . . , 10}. Sensitivity analysis of λ is provided in
Appendix B.2. The learning rate decreases with the square root of the iteration number. Termination
of algorithms occurs when the descent direction norm is below 1e− 4.

4.2 Dataset

4.2.1 Synthetic Data

Following [4, 44], our synthetic data are generated using the Gaussian distribution(
X
Y

)
∼ N

([
µX

µY

]
,

[
ΣX ΣXY

ΣYX ΣY

])
.

Here, µX ∈ RDx×1 and µY ∈ RDy×1 are the means of data matrices X and Y, respectively;
covariance matrices ΣX,ΣY and the cross-covariance matrix ΣXY are constructed as follows.
Given ground truth projection matrices U ∈ RDx×R,V ∈ RDy×R and canonical correlations
ρ = (ρ1, ρ2, . . . , ρR) defined in (13a). Let U = QXRX and V = QYRY be the QR decomposition
of U and V, then we have

ΣXY = ΣXU diag(ρ)V⊤ΣY, (14a)

ΣX = QXRX
−⊤RX

−1QX
⊤ + τxTX(IDx

−QXQX
⊤)TX

⊤, (14b)

ΣY = QYRY
−⊤RY

−1QY
⊤ + τyTY(IDy

−QYQY
⊤)TY

⊤. (14c)

Here, TX ∈ RDx×Dx and TY ∈ RDy×Dy are randomly generated by normal distributions, and
τx = 1 and τy = 0.001 are scaling hyperparameters. For subgroup distinction, we added noise to
canonical vectors and adjusted sample sizes: 300, 350, 400, 450, and 500 observations each. In the
numerical experiment, different canonical correlations are assigned to each subgroup alongside two
global canonical vectors U and V to generate five distinct subgroups.

4.2.2 Real Data

National Health and Nutrition Examination Survey (NHANES). We utilized the 2005-2006
subset of the NHANES database https://www.cdc.gov/nchs/nhanes, including physical mea-
surements and self-reported questionnaires from participants. We partitioned the data into two distinct
subsets: one with 96 phenotypic measures and the other with 55 environmental measures. Our
objective was to apply F-CCA to explore the interplay between phenotypic and environmental factors
in contributing to health outcomes, considering the impact of education. Thus, we segmented the
dataset into three subgroups based on educational attainment (i.e., lower than high school, high
school, higher than high school), with 2,495, 2,203, and 4,145 observations in each subgroup.

7

https://www.cdc.gov/nchs/nhanes


Table 1: Numerical results in terms of Correlation (ρr), Maximum Disparity (∆max,r), and Aggregate
Disparity (∆sum,r) metrics. Best values are in bold, and second-best are underlined. We focus
on the initial five projection dimensions, but present only two dimensions here; results for other
dimensions are in the supplementary material. We put the results of other projection dimensions in
the supplementary material. “↑” means the larger the better and “↓” means the smaller the better.
Note that MHAAPS has only 3 features, so we report results for its 1 and 2 dimensions.

Dataset Dim. ρr ↑ ∆max,r ↓ ∆sum,r ↓
(r) CCA MF-CCA SF-CCA CCA MF-CCA SF-CCA CCA MF-CCA SF-CCA

Synthetic
Data

2 0.7533 0.7475 0.7309 0.3555 0.2866 0.2241 3.3802 2.8119 2.2722
5 0.4717 0.4681 0.4581 0.4385 0.3313 0.2424 4.1649 3.1628 2.2304

NHANES 2 0.6392 0.6360 0.6334 0.0485 0.0359 0.0245 0.1941 0.1435 0.0980
5 0.4416 0.4393 0.4392 0.1001 0.0818 0.0824 0.4003 0.3272 0.3297

MHAAPS 1 0.4464 0.4451 0.4455 0.0093 0.0076 0.0044 0.0187 0.0152 0.0088
2 0.1534 0.1529 0.1526 0.0061 0.0038 0.0019 0.0122 0.0075 0.0039

ADNI 2 0.7778 0.7776 0.7753 0.0131 0.0119 0.0064 0.0263 0.0238 0.0127
5 0.6810 0.6798 0.6770 0.0477 0.0399 0.0324 0.0954 0.0799 0.0648

Table 2: Mean computation time in seconds (±std) of 10 repeated experiments for R = 5 on the real
dataset and R = 7 on the synthetic dataset. Experiments are run on Intel(R) Xeon(R) CPU E5-2660.

Dataset CCA MF-CCA SF-CCA

Synthetic Data 0.0239±0.0026 109.0693±5.5418 29.1387±2.0828

NHANES 0.0483±0.0059 42.3186±1.9045 14.9156±1.8941

MHAAPS 0.0021±0.0047 3.5235±2.0945 0.8238±0.8155

ADNI 0.0039±0.0032 2.7297±0.5136 1.8489±1.0519

Mental Health and Academic Performance Survey (MHAAPS). This dataset is available at
https://github.com/marks/convert_to_csv/tree/master/sample_data. It consists of
three psychological variables, four academic variables, as well as sex information for a cohort
of 600 college freshmen (327 females and 273 males). The primary objective of this investigation
revolves around examining the interrelationship between the psychological variables and academic
indicators, with careful consideration given to the potential influence exerted by sex.
Alzheimer’s Disease Neuroimaging Initiative (ADNI). We utilized AV45 (amyloid) and AV1451
(tau) positron emission tomography (PET) data from the ADNI database (http://adni.loni.usc.
edu) [73, 74]. ADNI data are analyzed for fairness in medical imaging classification [41, 53, 81], and
sex disparities in ADNI’s CCA study can harm generalizability, validity, and intervention tailoring.
We utilized F-CCA to account for sex differences. Our experiment links 52 AV45 and 52 AV1451
features in 496 subjects (255 females, 241 males).

4.3 Results and Discussion

In the simulation experiment, we follow the methodology described in Section 4.2.1 to generate
two sets of variables, each containing two subgroups of equal size. Canonical weights are trained
and used to project the two sets of variables into a 2-dimensional space using CCA, SF-CCA, and
MF-CCA. From Figure 2, it is clear that the angle between the distributions of the two subgroups, as
projected by SF-CCA and MF-CCA, is smaller in comparison. This result indicates that F-CCA has
the ability to reduce the disparity between distinct subgroups.

Table 1 shows the quantitative performance of the three models: CCA, MF-CCA, and SF-CCA. They
are evaluated based on ρr, ∆max,r, and ∆sum,r defined in (13) across five experimental sets. Table
2 displays the mean runtime of each model. Several key observations emerge from the analysis.
Firstly, MF-CCA and SF-CCA demonstrate substantial improvements in fairness compared to CCA.
However, it is important to note that F-CCA, employed in both MF-CCA and SF-CCA, compromises
some degree of correlation due to its focus on fairness considerations during computations. Secondly,
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(a) XU of CCA (b) XU of MF-CCA (c) XU of SF-CCA

(d) YV of CCA (e) YV of MF-CCA (f) YV of SF-CCA

Figure 2: Scatter plot of the synthetic data points after projected to the 2-dimensional space. The
distributions of the two groups after projection by CCA are orthogonal to each other. Our SF-CCA
and MF-CCA can make the distributions of the two groups close to each other.

(a) Synthetic Data (b) NHANES

(c) MHAAPS (d) ADNI

Figure 3: Aggregate disparity of CCA, MF-CCA, and SF-CCA (results from Table 1).

SF-CCA outperforms MF-CCA in terms of fairness improvement, although it sacrifices correlation.
This highlights the effectiveness of the single-objective optimization approach in SF-CCA. Moreover,
the datasets consist of varying subgroup quantities (5, 3, 2, and 2) and an imbalanced number of
samples in distinct subgroups. F-CCA consistently performs well across these datasets, confirming its
inherent scalability. Lastly, although SF-CCA requires more effort to tune hyperparameters, SF-CCA
still exhibits a notable advantage in terms of time complexity compared to MF-CCA, demonstrating
computational efficiency. Disparities among various CCA methods are visually represented in
Figure 3. Notably, the conventional CCA consistently demonstrates the highest disparity error.
Conversely, SF-CCA and MF-CCA consistently outperform CCA across all datasets, underscoring
their efficacy in promoting fairness within analytical frameworks.

In Table 1, we define the percentage change of correlation (ρr), maximum dispar-
ity gap (∆max,r), and aggregate disparity (∆sum,r), respectively, as follows: Pρr :=
(ρr of F-CCA − ρr of CCA)/(ρr of CCA) × 100, P∆max,r := −(∆max,r of F-CCA −
∆max,r of CCA)/(∆max,r of CCA) × 100, and P∆sum,r := −(∆sum,r of F-CCA −
∆sum,r of CCA)/(∆sum,r of CCA) × 100. Here, F-CCA is replaced with either MF-CCA or
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(a) Synthetic Data (b) NHANES

(c) MHAAPS (d) ADNI

Figure 4: Percentage change from CCA to F-CCA (results from Table 1). Each dataset panel shows
two cases with projection dimensions (r). Pρr is slight, while P∆max,r and P∆sum,r changes are
substantial, signifying fairness improvement without significant accuracy sacrifice.

SF-CCA to obtain the percentage change for MF-CCA or SF-CCA. Figure 4 illustrates the percentage
changes of each dataset. Pρr is slight, while P∆max,r and P∆sum,r changes are substantial,
signifying fairness improvement without significant accuracy sacrifice.

5 Conclusion, Limitations, and Future Directions

We propose F-CCA, a novel framework to mitigate unfairness in CCA. F-CCA aims to rectify the
bias of CCA by learning global projection matrices from the entire dataset, concurrently guaranteeing
that these matrices generate correlation levels akin to group-specific projection matrices. Experi-
ments show that F-CCA is effective in reducing correlation disparity error without sacrificing much
correlation. We discuss potential extensions and future problems stemming from our work.

• While F-CCA effectively reduces unfairness while maintaining CCA model accuracy, its potential to
achieve a minimum achievable disparity correlation remains unexplored. A theoretical exploration
of this aspect could provide valuable insights.

• F-CCA holds promise for extensions to diverse domains, including multiple modalities [80], deep
CCA [3], tensor CCA [44], and sparse CCA [25]. However, these extensions necessitate novel
formulations and in-depth analysis.

• Our approach of multi-objective optimization on smooth manifolds may find relevance in other
problems, such as fair PCA [55]. Further, bilevel optimization approaches [37, 68, 65] can be
designed on a smooth manifold to learn a single Pareto-efficient solution and provide an automatic
trade-off between accuracy and fairness.

• With applications encompassing clustering, classification, and manifold learning, F-CCA ensures
fairness when employing CCA techniques for these downstream tasks. It can also be jointly
analyzed with fair clustering [15, 66, 34] and fair classification [78, 18].
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Roadmap. The appendix is organized as follows: In Section A, we present the subproblem solvers
for MF-CCA and SF-CCA, along with the proofs for Theorems 5 and 6. In Section B, we provide
comprehensive insights into the three real datasets utilized and present supplementary experimental
results. Furthermore, Section C outlines the experimental specifics and the procedure for selecting
hyperparameters.
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A Addendum to Section 3

A.1 Preliminaries on Retractions

In reference to Definition 1, the following options together with generalized polar decomposition
defined in (4) represent commonly employed retractions[1, 6, 7, 21, 23, 38, 75] of a matrix ξ ∈
RD×R:

• Exponential mapping. It takes 8DR2 +O(R3) flops and has the closed-form expression:

Rz
exp(ξ) = [Z Q] exp

([
−Z⊤ξ −R⊤

R 0

])[
IR
0

]
,

where QR = −(Ir − ZZ⊤)ξ is the unique QR factorization.

• Polar decomposition. It takes 3DR2 +O(R3) flops and has the closed-form expression:

Rz
polar(ξ) = (Z+ ξ)(IR + ξ⊤ξ)−1/2.

• QR decomposition. It takes 2DR2 +O(R3) flops and has the closed-form expression:

Rz
qr(ξ) = qr(Z+ ξ),

where qr(A) is the Q factor of the QR factorization of A.

• Cayley transformation. It takes 7DR2 +O(R3) flops and has the closed-form expression:

RZ
cayley(ξ) =

(
IR −

1

2
W(ξ)

)−1(
IR +

1

2
W(ξ)

)
Z,

where W(ξ) = (IR − ZZ⊤/2)ξZ⊤ − Zξ⊤(IR − ZZ⊤/2).

This work specifically focuses on generalized polar decomposition defined in (4) for retraction.

A.2 Subproblem Solver for MF-CCA

To solve the optimization problem (9), we introduce a method for finding the descent direction on the
joint manifold, as described in Equation (10). In this section, we will provide a detailed explanation
of the relevant calculations. We expand the optimization problem into two sub-optimization problems,
one for updating the canonical weight U and the other for updating the canonical weight V. Here,
we focus on outlining the process of updating U, which is described below.

In the t-th iteration, the gradient of the multi-objective function (9) with respect to Ut is computed as
follows:

∇Uf1(Ut,Vt) =
∂f1(Ut,Vt)

∂Ut
= −X⊤YVt,

∇Ufj(Ut,Vt) =
∂∆k,s(Ut,Vt)

∂Ut

= ϕ′ (Ek (U,V)− Es (U,V)
)
·
(
∂Ek(Ut,Vt)

∂Ut
− ∂Es(Ut,Vt)

∂Ut

)
,

(15a)

for all M ≥ j ≥ 2, k, s ∈ [K], k ̸= s, where

∂Ek(Ut,Vt)

∂Ut
= trace

(
Uk,⋆

t

⊤
Xk⊤YkVk,⋆

t

)
−Xk⊤YkVt,

∂Es(Ut,Vt)

∂Ut
= trace

(
Us,⋆

t
⊤
Xs⊤YsVs,⋆

t

)
−Xs⊤YsVt.

(15b)

Similarly, we can compute the gradient of f w.r.t Vt.

Lemma 7, inspired by [23, 6], states that the direction Pt can be expressed as a linear combination of
gradients {∇f1(Ut,Vt),∇f2(Ut,Vt), . . . ,∇fM (Ut,Vt)}.
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Lemma 7. The unconstrained optimization problem in (10) has a unique solution. Moreover, Pt is
the solution of the problem in (10) if only if there exist µi ≥ 0, i ∈ [M ], such that

Pt = −
∑
i∈[M ]

µi∇fi(Ut,Vt),
∑
i∈[M ]

µi = 1, µi ≥ 0, for 1 ≤ i ≤M. (16)

Proof. Recall that for each (U,V) ∈ U × V , we have P = (Pu,Pv) with Pu ∈ TUU and
Pv ∈ TVV . It can be easily seen that the first term of Q(P) (defined in (10)) is a summation of the
maximum of linear functions in the linear space TUU × TVV . Hence, it is convex, which implies
that Q(P) is strongly convex. Thus, the solution is unique.

From the convexity of the function, it is well known that Pt is the solution of (10) if only if
0 ∈ ∂Q(P)Pt,

or equivalently,

−Pt ∈ ∂

(
max
i∈[M ]

trace
(
P⊤∇fi(Ut,Vt)

))
Pt.

Therefore, the second statement follows from the formula for the subdifferential of the maximum of
convex functions.

The (sub)-gradient formula (15) can be substituted into Equation (10), and subsequently, the fminimax
function from the MATLAB optimization toolbox can be applied to solve for the descent direction
Pt. We found that the Goal Attainment Method [24] gives a more stable and accurate solution for
our subproblem 3. Given Pu

t , Ut can be updated by:
Ut+1 = Ru(ηtP

u
t ), (17)

where ηt is the adaptive stepsize and Ru is the retraction operator onto U = {U ∈
RDx×R|U⊤X⊤XU = IR}.
Various retraction options are discussed in Sections 3.1 and A.1. Specifically, the generalized polar
decomposition method defined in (4) is employed in our numerical experiments described in Section
4. The symmetric nature of the update process for canonical weights U and V in CCA allows us
to employ identical procedures for updating V. By substituting X with Y and U with V in the
aforementioned steps, we obtain the process for updating V. In each iteration, U and V are updated
once in sequence.

A.3 Subproblem Solver for SF-CCA

To solve the optimization problem (11), the method of finding the descent direction is introduced in
Equation (12). Detailed calculations will be explained below. We expand it into two sub-optimization
problems to update the canonical weight U and the canonical weight V, respectively. First, to update
the canonical weight Ut in iteration t, we can take gradient of f(Ut,Vt) with respect Ut as follows:

∇f (Ut,Vt) =
∂f(Ut,Vt)

∂Ut

= −X⊤YVt + λ
∂∆(Ut,Vt)

∂Ut

= −X⊤YVt

+ λ

 ∑
k,s∈[K],k ̸=s

ϕ′ (Ek (U,V)− Es (U,V)
)
·
(
∂Ek(Ut,Vt)

∂Ut
− ∂Es(Ut,Vt)

∂Ut

) ,

(18a)

where
∂Ek(Ut,Vt)

∂Ut
= trace

(
Uk,⋆

t

⊤
Xk⊤YkVk,⋆

t

)
−Xk⊤YkVt,

∂Es(Ut,Vt)

∂Ut
= trace

(
Us,⋆

t
⊤
Xs⊤YsVs,⋆

t

)
−Xs⊤YsVt.

(18b)

3https://ww2.mathworks.cn/help/optim/ug/multiobjective-optimization-algorithms.
html
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Given the subgradients (18) and the single-objective subproblem (12), the direction Gt = (Gu
t ,G

v
t )

can be effectively computed using subgradient-based methods such as the fmincon function from the
MATLAB optimization toolbox. Given Gu

t , the update for Ut can be obtained as follows:

Ut+1 = Ru(ηtG
u
t ). (19)

Here, ηt is the adaptive stepsize and Ru is the retraction operator onto U = {U ∈
RDx×R|U⊤X⊤XU = IR}.
In our numerical experiments, we utilize polar decomposition as the retraction operator; see (4).
Similarly, the canonical weight V can be updated using the same procedure.

A.4 Auxiliary Lemmas

Lemma 8. Suppose Assumption A holds. For any (Ut,Vt) ∈ U × V , let Pt be the solution of (10).
Then, for any ηt ≥ 0, we have the following:

F(Ut+1,Vt+1) ⪯ F(Ut,Vt) + ηt∇t + η2t
LF

2
∥Pt∥2F 1M , Pt ∈ TUU × TVV,

where ∇it := ⟨∇fi(Ut,Vt),Pt⟩ and ∇t := [∇1t, · · · ,∇Mt]
⊤ ∈ RM .

Proof. The proof is a straightforward consequence of Assumption A.

Lemma 9. For any (Ut,Vt) ∈ U × V , let Pt be the solution of (10). Then,

max
i∈[M ]

trace
(
P⊤

t ∇fi(Ut,Vt)
)
= −∥Pt∥2F . (20)

Hence, trace
(
P⊤

t ∇fi(Ut,Vt)
)
⪯ −∥Pt∥2F . Further, Pt is critical Pareto point of F if, and only if,

∥Pt∥F = 0.

Proof. It follows from (10) that

−∥Pt∥2F = trace
(
P⊤

t

∑
i∈[M ]

µi∇fi(Ut,Vt

)
=
∑
i∈[M ]

µi trace
(
P⊤

t ∇fi(Ut,Vt)
)
.

Hence, by the second equality in (16), it is easy to verify that (20) holds. The second statement
follows by using the definitions of trace(P⊤

t ∇F ((Ut,Vt)). We proceed with the proof of the third
statement of the lemma. Assuming that Pt is a critical Pareto, it follows from the definition that there
exists i ∈ [M ] such that trace(P⊤

t ∇fi(Ut,Vt) ≥ 0. Then, by the first part of the lemma, we have
∥Pt∥ = 0. The converse (only if) follows from the application of [6, Lemma 4.2].

The following result provides an estimate for the decrease of a function F, along P. This result
is crucial in determining the iteration-complexity bounds for the gradient method on a general
Riemannian manifold.
Lemma 10 (Descent Property of MF-CCA). Suppose Assumption A holds. For any (Ut,Vt) ∈ U×V ,
let Pt be the solution of (10). Then, for any ηt ≥ 0, we have

F(Ut+1,Vt+1) ⪯ F(Ut,Vt) +

(
LF η

2
t

2
− ηt

)
∥Pt∥2F 1M .

Proof. The proof is a straight combination of Lemmas 8 and 9.

A.5 Proof of Theorem 5

Proof. It follows from Lemma 10 that(
LF η

2
t

2
− ηt

)
∥Pt∥2F 1M ⪯ F(Ut,Vt)− F(Ut+1,Vt+1),

for all t = 0, 1, . . . , T − 1.
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Setting ηt = η, and summing both sides of this inequality for t = 0, 1, . . . , T − 1, we get(
LF η

2

2
− η

) T−1∑
t=0

∥Pt∥2F 1M ⪯ F(U0,V0)− F(UT ,VT ).

Thus, by the definition of i∗, we obtain(
LF η

2

2
− η

)
T min

{
∥Pt∥2F : t = 0, 1, . . . , T − 1

}
≤ fi∗(U0,V0)− f∗

i∗ ,

which together with η ≤ 1
LF

implies

min {∥Pt∥F : t = 0, . . . , T − 1} ≤ 2

η

[
fi∗(U0,V0)− f∗

i∗

T

] 1
2

.

Remark 11. As a consequence, if we consider a tolerance level of ϵ, we can bound the
number of iterations required by the gradient method to obtain PT such that ∥PT ∥F ≤ ϵ.
This bound can be expressed as O

(
(fi∗(U0,V0)− f∗

i∗
)/ϵ2

)
, where fi∗(U0,V0) − f∗

i∗
=

min {fi(U0,V0)− f∗
i : i ∈ [M ]}. In other words, the number of iterations needed by the gra-

dient method to achieve a solution (UT ,VT ) with ∥PT ∥F ≤ ϵ is proportional to the difference
between the initial objective function value and the optimal objective function value, divided by
the square of the tolerance level ϵ. The "big O" notation, O, indicates that the bound is an upper
bound, providing an estimate of the worst-case behavior of the algorithm. This result showcases the
convergence rate of the gradient method and provides a useful guideline for choosing the tolerance
level and estimating the computational resources required to achieve the desired accuracy.

A.6 Proof of Theorem 6

Proof. This proof is a slightly modified version of the proof of Theorem 5. Using Assumption B and
a single-objetive variant of Lemma 10, we obtain

f (Ut+1,Vt+1)− f (Ut,Vt)

≤ ⟨∇f (Ut,Vt) , ((Ut+1,Vt+1)− (Ut,Vt))⟩+
Lf

2
∥(Ut+1,Vt+1)− (Ut,Vt)∥2F

= −η ∥∇f (Ut,Vt)∥2F +
Lfη

2

2
∥∇f (Ut,Vt)∥2F

= −η
(
1− Lfη

2

)
∥∇f (Ut,Vt)∥2F .

Summing both sides of this inequality for t = 0, 1, . . . , T − 1, we get(
Lfη

2

2
− η

) T−1∑
t=0

∥Gt∥2F ≤ f(U0,V0)− f(UT ,VT ).

Hence, using the fixed stepsize ηt = η ≤ 1
Lf

, we get

min {∥Gt∥F : t = 0, . . . , T − 1} ≤ 2

η

[
f(U0,V0)− f∗

T

] 1
2

.

Remark 12. As a result, given a tolerance ϵ, the number of iterations required by the gradient
method to obtain (UT ,VT ) such that ∥GT ∥F ≤ ϵ is bounded by O

(
(f(U0,V0)− f∗)/ϵ2

)
.
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Table 3: Statistic summary of real datasets. In the ADNI database, AV45 is used twice in two different
datasets but with a different number of features. In AV45 vs. AV1451, we use the shared ROI (region
of interest), thus, the two views have the same number of features. While in AV45 vs Cognitive Score,
AV45 contains the total number of features.

Datbase Dataset Number of
Features

Number of
Samples

Sensitive
Attribute

Group
Distribution

NHANES
Phenotypic Measures 96

8843 Education
<High School: 2495
= High School: 2203
>High School: 4145Environmental Measures 55

NHANES
Phenotypic Measures 96

8136 Race
White: 4576
Black: 1793

Mexican: 1767Environmental Measures 55

MHAAPS Psychological Performance 3 600 Sex Male: 273
Female: 327Academic Performance 4

ADNI AV45 52 496 Sex Male: 241
Female: 255AV1451 52

ADNI AV45 68 785 Sex Male: 431
Female: 354Cognitive Score 46

B Addendum to Section 4

B.1 Detailed Description of Datasets

Table 3 provides a comprehensive overview of the relevant details associated with each real dataset.
These details include the number of samples, the number of features, sensitive attributes, and group
distribution. Notably, within the group distribution, it is important to acknowledge that in certain
datasets, the total number of samples within different sensitive attributes may not be equivalent. This
discrepancy arises due to the presence of missing information, as well as the insufficient sample sizes
in certain subgroups. Figure 5 visualizes the distribution of all the groups in each dataset. We can
see that the groups are imbalanced in synthetic data, NHANES (Education) and NHANES (Race),
while balanced in MHAAPS (Sex), ADNI AV45/AV1451 (Sex), and ADNI AV45/Cognition (Sex).
Imbalanced groups can make the problem more complicated, which is a good challenge to validate
the effectiveness of our methods.

In the following, we provide comprehensive descriptions of all the datasets we used.

B.1.1 National Health and Nutrition Examination Survey (NHANES)

The NHANES dataset is extensively used for CCA analysis [48] and fairness studies [17, 52].
The dataset’s diverse attributes give rise to fairness considerations, underscoring the importance of
conducting equitable CCA experiments to tackle discrepancies in sample representation stemming
from these inequalities.

In our study, we narrow our focus to the 2005-2006 subset of the NHANES database available at
https://www.cdc.gov/nchs/nhanes. This subset comprises physical measurements and self-
reported questionnaires from participants. To address missing data concerns, we employ the Multiple
Imputation by Chained Equations (MICE) Forest methodology. Afterward, we divide the data into
two distinct subsets: the "Phenotypic-Measure" dataset and the "Environmental-Measure" dataset,
based on the inherent nature of the features. This stratified approach enables us to leverage F-CCA to
gain a nuanced understanding of how phenotypic and environmental factors interact in influencing
health outcomes while also accounting for the potential influence of education and race.

In our numerical experiments, we utilize education and race as sensitive attributes to partition the two
datasets. In the initial experiment, we split the dataset into three subgroups based on participants’
educational attainment. These subgroups comprise 2495, 2203, and 4145 observations, respectively.
For the subsequent experiment, we work with a total of 8136 observations, dividing them into three
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(a) Synthetic Data (b) NHANES (Education)

(c) NHANES (Race) (d) MHAAPS (Sex)

(e) ADNI AV45/AV1451 (Sex) (f) ADNI AV45/Cognition (Sex)

Figure 5: Group distributions of the studied datasets.

subgroups based on racial categories. Specifically, there are 4576 white subjects, 1793 black subjects,
and 1767 Mexican subjects. The "Phenotypic-Measure" dataset encompasses 96 distinct features,
while the "Environmental-Measure" dataset includes 55 features.

B.1.2 Mental Health and Academic Performance Survey (MHAAPS)

The dataset employed in this study is obtained from the online repository available at https:
//github.com/marks/convert_to_csv/tree/master/sample_data. This particular dataset
includes three distinct psychological variables and four academic variables in the form of standardized
test scores, as well as gender information for a cohort of 600 individuals classified as college freshmen.
The primary objective of this investigation revolves around examining the interrelationship between
the aforementioned psychological variables and academic indicators, with careful consideration given
to the potential influence exerted by gender. Specifically, the dataset consists of 327 female samples
and 273 male samples.

B.1.3 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

We utilize AV45 (amyloid), AV1451 (tau) positron emission tomography (PET), and Cognitive Score
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.
usc.edu) as three of our experiment datasets. Over- or under-representation of age, sex, or biometric
groups might affect ADNI data fairness. Disease distribution among sensitivity features, such as
higher AD occurrence in women, can also impact fairness [41]. The unfairness in sex representation
within the CCA study of the ADNI dataset arises from an imbalance in the number of male and
female participants. This disparity undermines the generalizability and validity of the study findings,
as it fails to account for potential sex-related differences in Alzheimer’s disease progression and
response to treatments. The skewed representation limits the ability to draw accurate conclusions
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Figure 6: Aggregate disparity of 1st projection dimension on synthetic data comprising varying
numbers of subgroups (K).

and develop tailored interventions for both sexes, perpetuating sex bias in research and healthcare.
Consequently, it becomes imperative to utilize F-CCA as a means to acknowledge and integrate sex
disparities within research initiatives.

In the conducted numerical study, two distinct experiments are carried out utilizing the ADNI dataset,
where the sensitive attribute considered is the sex of the participants. The first experiment aims
to explore the correlation between AV45 and AV1451, whereas the second experiment focuses on
investigating the correlation between AV45 and Cognitive Scores. In the first experiment, both AV45
and AV1451 include 52 regional features and comprise a total of 496 observations. Among these
observations, 255 belong to the female subgroup, and 241 belong to the male subgroup. In the
analysis involving the correlation between AV45 and Cognitive Scores, a subset of 785 common
samples is extracted, consisting of 431 male samples and 354 female samples. This analysis employs
68 regional features associated with AV45 and 46 cognitive score features.

B.2 Trade-off Analysis of Correlation and Disparity

B.2.1 Sensitivity of Correlation and Disparity Error to K

We conducted an analysis to examine the sensitivity of fairness in relation to the number of subgroups
K. To investigate this, we utilized synthetic data consisting of varying numbers of subgroups and
compared the resulting aggregate disparity on the first projection dimension.

Figure 6 provides a visual representation of our findings. The results clearly demonstrate that as the
number of subgroups increases, there is a substantial amplification in the aggregate disparity when
employing CCA. However, both MF-CCA and SF-CCA effectively address this issue and mitigate
the observed phenomenon. Specifically, they successfully reduce the level of disparity even as the
number of subgroups grows.

Moreover, it is worth noting that the aggregate discrepancy of SF-CCA exhibits a certain degree of
sensitivity beyond a threshold of six subgroups. Beyond this point, the effectiveness of SF-CCA
in reducing disparity begins to diminish. Conversely, MF-CCA remains consistently unaffected
by variations in the number of subgroups, consistently maintaining its fairness performance. This
analysis underscores the robustness and scalability of MF-CCA in handling an increasing number
of subgroups, as it consistently maintains fairness irrespective of this parameter. On the other hand,
SF-CCA demonstrates effective fairness mitigation but exhibits limitations when faced with a large
number of subgroups beyond a certain threshold.

B.2.2 Sensitivity of Correlation and Disparity Error to r

Table 4 presents the numerical results of three measures described in Section 4.1, namely correlation
(ρr), maximum disparity (∆max,r), and aggregate disparity (∆sum,r). The results are with respect to

22



(a) Correlation of CCA (b) Correlation of MF-CCA (c) Correlation of SF-CCA

Figure 7: Visualization of the canonical correlation results on synthetic data for the total five projection
dimensions (r). All the methods are applied to both the entire dataset and individual subgroups. The
closer each subgroup’s curve is to the overall curve, the better.

(a) Correlation of CCA
on NHANES (Education)

(b) Correlation of MF-CCA
on NHANES (Education)

(c) Correlation of SF-CCA
on NHANES (Education)

(d) Correlation of CCA
on NHANES (Race)

(e) Correlation of MF-CCA
on NHANES (Race)

(f) Correlation of SF-CCA
on NHANES (Race)

Figure 8: Visualization of the canonical correlation results of NHANES (Education & Race) for
the total five projection dimensions (r). All the methods are applied to both the entire dataset and
individual subgroups. The closer each subgroup’s curve is to the overall curve, the better.

the first r projection dimensions. It is an extension of Table 1. Specifically, we present the results
of the first seven projection dimensions for synthetic data; the first five projection dimensions for
NHANES and ADNI; and the first two projection dimensions for MHAAPS, respectively. Overall, we
have consistent results and conclusions in Table 1. Firstly, MF-CCA and SF-CCA show substantial
improvements in fairness compared to CCA with mild compromises of correlation. Secondly, SF-
CCA outperforms MF-CCA in terms of fairness improvement, although it sacrifices correlation.
This highlights the effectiveness of the single-objective optimization approach in SF-CCA. F-CCA
consistently performs well across these datasets, confirming its inherent scalability.
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(a) Correlation of CCA
on MHAAPS (Sex)

(b) Correlation of MF-CCA
on MHAAPS (Sex)

(c) Correlation of SF-CCA
on MHAAPS (Sex)

Figure 9: Visualization of the canonical correlation results of MHAAPS (Sex) for the total two
projection dimensions (r). All the methods are applied to both the entire dataset and individual
subgroups. The closer each subgroup’s curve is to the overall curve, the better.

Table 5 quantifies the improvement in fairness and the minor compromises in accuracy presented in
Table 4 by depicting the percentage performance shift from baseline CCA to MF-CCA and SF-CCA.
The table is a reference and an extension of Figure 4 in Section 4.1. Figure 4 only visualizes the
percentage shifts of the second and fifth projection dimension for Synthetic Data, NHANES, and
ADNI and the first two projection dimensions for MHAAPS regarding the results presented in
Table 1 for coherence. In Table 5, the metrics are formulated as: Pρr = ρr of F-CCA−ρr of CCA

ρr of CCA × 100,

P∆max,r = −∆max,r of F-CCA−∆max,r of CCA
∆max,r of CCA × 100, P∆sum,r = −∆sum,r of F-CCA−∆sum,r of CCA

∆sum,r of CCA × 100,
where F-CCA is switched to MF-CCA and SF-CCA to obtain the corresponding shift results. The
formulations are designed regarding the properties of the metrics where ρr is the larger the better
while ∆max,r and ∆sum,r are the smaller the better. According to the table, compared to CCA, MF-
CCA, and SF-CCA sacrifice slightly the performance in correlation (ρr) in exchange for significant
fairness improvements in terms of maximum disparity (∆max,r) and aggregate disparity (∆sum,r)
across all datasets in general, which demonstrate the good performance of F-CCA.

We also provide visualizations demonstrating how the correlation changes as the dimensionality
changes. Figures 7, 8, 9, and Figure 10 display these correlation curves. Our expectation is that the
correlation curves of our methods will show a stronger tendency to concentrate around the overall
correlation curve compared to the baseline method. The findings indicate that the utilization of both
MF-CCA and SF-CCA approaches yields a convergence of subgroup performance towards the overall
canonical correlation. Furthermore, the overall canonical correlations derived from these two models
exhibit a comparable level of performance to that of the CCA model.

Upon examining the synthetic data in Figure 7, we observe a clear concentration tendency. However,
in the case of real data, this tendency is less pronounced. This is due to the fact that the disparities
between different groups in the real data are already quite small. As a result, all the dashed curves in
the CCA are already close to the solid red curve.

B.2.3 Sensitivity of Correlation and Disparity of SF-CCA to λ

The SF-CCA experiment incorporates the hyperparameter λ to strike a balance between correlation
and fairness considerations. This hyperparameter allows us to modulate the emphasis placed on
fairness within the SF-CCA model. Figure 11 provides a visual representation of the effects of
different λ values on both correlation and fairness metrics.

The illustration clearly demonstrates that increasing the magnitude of λ enhances the emphasis on
fairness within the SF-CCA model. Consequently, this leads to a reduction in aggregate disparity,
indicating improved fairness. Conversely, lower values of λ prioritize correlation, emphasizing the
preservation of the underlying relationship between the datasets.

This experimental finding aligns with the discussion presented in Section 3 of our work, where
we discussed the trade-off between correlation and fairness. By adjusting the value of λ, we can
effectively control the balance between these two objectives in the SF-CCA model.
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(a) Correlation of CCA
on ADNI AV45/AV1451 (sex)

(b) Correlation of MF-CCA
on ADNI AV45/AV1451 (sex)

(c) Correlation of SF-CCA
on ADNI AV45/AV1451 (sex)

(d) Correlation of CCA
on ADNI AV45/Cognition (Sex)

(e) Correlation of MF-CCA
on ADNI AV45/Cognition (Sex)

(f) Correlation of SF-CCA
on ADNI AV45/Cognition (Sex)

Figure 10: Visualization of the canonical correlation results of ADNI for the total five projection
dimensions (r). All the methods are applied to both the entire dataset and individual subgroups. The
closer each subgroup’s curve is to the overall curve, the better.

B.3 Runtime Sensitivity of MF-CCA and SF-CCA

When it comes to the issue of running time, it is important to consider the trade-off between
computational efficiency and hyperparameter tuning effort. While SF-CCA may require more effort
in tuning its hyperparameters, it still demonstrates a notable advantage in terms of time complexity
compared to MF-CCA. To conduct a sensitivity analysis concerning the sample count (N ), the feature
count (d), and the subgroup count(K), we conduct a series of experiments on synthetic datasets,
ensuring the hyperparameters remained constant. These experiments are performed in three distinct
settings, each replicated ten times, employing techniques including CCA, MF-CCA, and SF-CCA.
The specifics of outcomes are depicted in Figures 12, 13, and 14.

B.3.1 Runtime Sensitivity of MF-CCA and SF-CCA to d

In the first experimental setup, with the sample size held constant at N = 2000 and the number
of groups held constant at K = 5, the dimensionality of features is varied across the set [50, 100,
150, 200, 250, 300, 350, 400]. According to Figure 12, it is discerned that as feature dimensionality
increases, the runtime of MF-CCA exhibits a concomitant augmentation. Conversely, the runtime
associated with SF-CCA remains comparatively stable throughout the varying feature sizes.

B.3.2 Runtime Sensitivity of MF-CCA and SF-CCA to N

In the subsequent experimental configuration, the feature size is held constant at d = 100, while
the sample size varies across the set [600, 800, 1000, 1200, 1400, 1600, 1800, 2000]. Notably,
according to Figure 13, the increment in the sample size exerts a minimal impact on the runtime
duration of SF-CCA. This observation can be rationalized by considering that an increase in the
number of features would lead to a covariance matrix of greater dimensionality. Consequently, the
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Table 4: Numerical results regarding three metrics including Correlation (ρr), Maximum Disparity
(∆max,r), and Aggregate Disparity (∆sum,r). The best ones in each row are bold, and the second
best one is underlined. The analysis focuses on the initial five projection dimensions for NHANES
and ADNI, the initial seven projection dimensions for Synthetic Data, and the initial two projection
dimensions for MHAAPS. “↑” means the larger the better and “↓” means the smaller the better.

Dataset Dim. ρr ↑ ∆max,r ↓ ∆sum,r ↓
(r) CCA MF-CCA SF-CCA CCA MF-CCA SF-CCA CCA MF-CCA SF-CCA

Synthetic
Data

1 0.8003 0.7934 0.7757 0.3013 0.2386 0.1829 2.8647 2.2836 1.7258
2 0.7533 0.7475 0.7309 0.3555 0.2866 0.2241 3.3802 2.8119 2.2722
3 0.7032 0.6980 0.6853 0.3215 0.2591 0.2033 3.0974 2.5135 1.9705
4 0.5872 0.5818 0.5677 0.3784 0.2791 0.197 3.6619 2.6939 1.8134
5 0.4717 0.4681 0.4581 0.4385 0.3313 0.2424 4.1649 3.1628 2.2304
6 0.4186 0.4161 0.4131 0.1163 0.0430 0.0000 1.161 0.4142 0.0000
7 0.4012 0.3989 0.3928 0.2156 0.1336 0.0488 2.0224 1.1771 0.4117

NHANES
(Education)

1 0.7360 0.7305 0.7330 0.0149 0.0113 0.0092 0.0596 0.0450 0.0366
2 0.6392 0.6360 0.6334 0.0485 0.0359 0.0245 0.1941 0.1435 0.0980
3 0.6195 0.6163 0.6147 0.0423 0.0322 0.0187 0.1691 0.1287 0.0747
4 0.5027 0.4961 0.4990 0.0506 0.0342 0.0243 0.2022 0.1367 0.0974
5 0.4416 0.4393 0.4392 0.1001 0.0818 0.0824 0.4003 0.3272 0.3297

NHANES
(Race)

1 0.7376 0.7359 0.7365 0.0482 0.0479 0.0468 0.1927 0.1916 0.1874
2 0.6400 0.6374 0.6383 0.0101 0.0097 0.0048 0.0402 0.0389 0.0191
3 0.6221 0.6216 0.6195 0.0739 0.0708 0.0608 0.2955 0.2834 0.2432
4 0.5001 0.4990 0.4980 0.0887 0.0774 0.0685 0.3549 0.3096 0.2742
5 0.4459 0.4454 0.4442 0.1561 0.1451 0.1413 0.6244 0.5805 0.5653

MHAAPS
(Sex)

1 0.4464 0.4451 0.4455 0.0093 0.0076 0.0044 0.0187 0.0152 0.0088
2 0.1534 0.1529 0.1526 0.0061 0.0038 0.0019 0.0122 0.0075 0.0039

ADNI
AV45 and
AV1451

(Sex)

1 0.8472 0.8468 0.8450 0.0190 0.0180 0.0165 0.038 0.036 0.0329
2 0.7778 0.7776 0.7753 0.0131 0.0119 0.0064 0.0263 0.0238 0.0127
3 0.7369 0.7360 0.7332 0.0460 0.0371 0.0269 0.0919 0.0743 0.0538
4 0.7022 0.7003 0.6985 0.0083 0.0046 0.0018 0.0167 0.0092 0.0037
5 0.6810 0.6798 0.6770 0.0477 0.0399 0.0324 0.0954 0.0799 0.0648

ADNI
AV45 and
Cognition

(Sex)

1 0.7391 0.7386 0.7373 0.0146 0.0149 0.0135 0.0293 0.0299 0.0270
2 0.5232 0.5224 0.5223 0.1212 0.1127 0.1116 0.2424 0.2254 0.2233
3 0.5189 0.5185 0.5182 0.1568 0.1508 0.1497 0.3135 0.3017 0.2994
4 0.4999 0.4979 0.4985 0.1242 0.1061 0.1084 0.2485 0.2123 0.2168
5 0.4904 0.4886 0.4896 0.0249 0.0124 0.0165 0.0498 0.0248 0.0329

corresponding numerical computations, such as the resolution of eigenvalues, become increasingly
time-intensive.

B.3.3 Runtime Sensitivity of MF-CCA and SF-CCA to K

Finally, we examined the sensitivity of both SF-CCA and MF-CCA to the number of subgroups.
Synthetic data was generated with varying numbers of subgroups, allowing us to assess the corre-
sponding running time. The results are presented in Figure 14. From the figure, it is evident that
conventional CCA is not significantly sensitive to the number of groups. However, MF-CCA exhibits
a higher level of sensitivity to the number of groups compared to SF-CCA.

C Experimental Details and Hyperparameter Selection Procedure

In this section, we delve into the particulars of our experiments, which encompass the choice of the
penalty function and hyperparameters. We initiate our discussion with the penalty function ϕ outlined
in Equation (8). This function takes on various forms, such as absolute, square, and exponential
functions. For our experimental purposes, we concentrate specifically on the absolute function.

The distinctive characteristic of the absolute function lies in its robustness against minor discrepancies,
as opposed to the square function, which tends to converge rapidly towards zero. It’s worth noting
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Table 5: Performance change from baseline CCA to F-CCA algorithms (MF-CCA and SF-CCA) in
the format of percentage regarding three metrics: Correlation (ρr), Maximum Disparity (∆max,r),
and Aggregate Disparity (∆sum,r). The changes are computed using the numerical results from
Table 4: Pρr = ρr of F-CCA−ρr of CCA

ρr of CCA × 100, P∆max,r = −∆max,r of F-CCA−∆max,r of CCA
∆max,r of CCA × 100,

P∆sum,r = −∆sum,r of F-CCA−∆sum,r of CCA
∆sum,r of CCA × 100. Here, F-CCA is replaced with either MF-CCA

or SF-CCA to obtain the results in each column. The formulations are determined based on the
properties of the metrics where ρr is the larger the better while ∆max,r and ∆sum,r are the smaller
the better.

Dataset Dim. Pρr P∆max,r P∆sum,r

(r) MF-CCA SF-CCA MF-CCA SF-CCA MF-CCA SF-CCA

Synthetic
Data

1 -0.8688 -3.0817 20.8021 39.2877 20.2834 39.7572
2 -0.7726 -2.9710 19.3625 36.9495 16.8132 32.7792
3 -0.7366 -2.5461 19.3916 36.7677 18.8495 36.3813
4 -0.9243 -3.3148 26.245 47.9246 26.4333 50.4784
5 -0.7660 -2.8896 24.4426 44.7114 24.0612 46.4484
6 -0.5865 -1.3126 63.0023 99.9997 64.3202 99.9997
7 -0.5767 -2.0838 38.0292 77.3821 41.7986 79.6436

NHANES
(Education)

1 -0.7511 -0.4184 24.5248 38.5621 24.5248 38.5621
2 -0.5131 -0.9070 26.0899 49.5206 26.0899 49.5206
3 -0.5243 -0.7835 23.8580 55.7921 23.8580 55.7921
4 -1.3118 -0.7309 32.4151 51.833 32.4151 51.833
5 -0.5175 -0.5422 18.2615 17.6268 18.2615 17.6268

NHANES
(Race)

1 -0.2329 -0.1450 0.5481 2.7539 0.5481 2.7539
2 -0.3972 -0.2625 3.3229 52.6573 3.3229 52.6573
3 -0.0931 -0.4209 4.1097 17.7082 4.1097 17.7082
4 -0.2334 -0.4317 12.7708 22.7437 12.7708 22.7437
5 -0.1113 -0.3914 7.0315 9.4561 7.0315 9.4561

MHAAPS
(Sex)

1 -0.2917 -0.2084 18.6150 52.8984 18.6150 52.8984
2 -0.2724 -0.4941 38.2692 68.1768 38.2692 68.1768

ADNI
AV45 and
AV1451

(Sex)

1 -0.0444 -0.2604 5.3213 13.4811 5.3213 13.4811
2 -0.0222 -0.3178 9.5217 51.4446 9.5217 51.4446
3 -0.1294 -0.4999 19.1779 41.4136 19.1779 41.4136
4 -0.2648 -0.5307 44.6624 77.8152 44.6624 77.8152
5 -0.1737 -0.5918 16.288 32.0918 16.288 32.0918

ADNI
AV45 and
Cognition

(Sex)

1 -0.0631 -0.2416 -2.0189 7.7392 -2.0189 -7.7392
2 -0.1436 -0.1690 7.0116 7.8657 7.0116 7.8657
3 -0.0832 -0.1386 3.7799 4.5125 3.7799 4.5125
4 -0.4074 -0.2842 14.5679 12.7538 14.5679 12.7538
5 -0.3663 -0.1533 50.094 33.8674 50.094 33.8674

that due to the non-differentiability of the absolute function at the origin, its identification within the
MATLAB environment requires the utilization of the sign function. When the input to the penalty
function reaches zero, the sign function indicates that the discrepancy error has already reached zero,
leading to the termination of the training process.

C.1 Hyperparameters Selection

When it comes to selecting hyperparameters, the key decisions revolve around providing the appro-
priate learning rate and the parameter λ within the SF-CCA framework. Our approach consists of a
two-step process. Firstly, we ascertain the optimal λ for each dataset through an extensive sensitivity
analysis, as detailed in Section B.2.3. With these derived values in hand, we then conduct a compre-
hensive grid search to determine the best-fitting learning rate. The unique parameter combinations
utilized for each experimental set are elucidated as follows:

• Synthetic Data: λ = 10, learning rate of 2e-2 in SF-CCA, and 4e-1 in MF-CCA.
• NHANES (Education): λ = 5, learning rate of 2e-3 in SF-CCA, and 5e-2 in MF-CCA.
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(a) Synthetic Data (b) NHANES (Education)

(c) NHANES (Race) (d) MHAAPS (sex)

(e) ADNI AV45/AV1451 (sex) (f) ADNI AV45/Cognition (sex))

Figure 11: Sensitivity of correlation and disparity error to λ in SF-CCA framework. Higher λ
emphasizes fairness over correlation (accuracy). Moving right to left, accuracy drops as fairness
improves (smaller disparity). A notable trend links higher correlation with reduced fairness.

• NHANES (Race): λ = 5, learning rate of 1e-3 in SF-CCA, and 2e-2 in MF-CCA.

• MHAAPS: λ = 10, learning rate of 2e-2 in SF-CCA, and 4e-1 in MF-CCA.

• ADNI (AV45 and AV1451): λ = 5, learning rate of 1e-3 in SF-CCA, and 1e-2 in MF-CCA.

• ADNI (AV45 and Cognition): λ = 5, learning rate of 1e-3 in SF-CCA, and 2e-2 in MF-CCA.

C.2 Fairness and Correlation Measures

The correlation and fairness between X and Y under projections of U and V within R-dimensional
spaces can be quantitatively measured by

ρ =
trace(U⊤X⊤YV)√

trace(U⊤X⊤XU)trace(V⊤Y⊤YV)
, (21a)

∆max = max
i,j∈[K]

∣∣E i(U,V)− Ej(U,V)
∣∣ , (21b)

∆sum =
∑

i,j∈[K]

∣∣E i(U,V)− Ej(U,V)
∣∣ . (21c)

In Section 4.1, instead of employing matrix-based measurements (21), we adopted component-wise
measurements (13) to facilitate detailed observations on each individual projection dimension r.
In the following discussion, we demonstrate that the component-wise measurements, across all
r dimensions, provide a more aggressive measurement approach compared to the matrix variants
(21). In other words, it is evident that having large component-wise correlation values ρr and small
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Figure 12: Computation time (mean±std) of 10 repeated experiments for the total three projection
dimensions on synthetic data comprising four subgroups (K). The number of samples is fixed at
N = 2000, while the number of features varies.

Figure 13: Computation time (mean±std) of 10 repeated experiments for the total three projection
dimensions on synthetic data comprising four subgroups (K). The number of features is fixed at
d = 100, and the number of groups is held constant at K = 5, while the number of samples varies.

disparity errors ∆max,r and ∆sum,r for all r ∈ [R] can guarantee large values of ρ and small values
of ∆max and ∆sum.

The following lemma rigorously supports this observation.

Lemma 13. Let ρr,∆max,r,∆sum,r be defined as in (13), and let ρ,∆max,∆sum be defined as in
(21). Then,

ρ =
1

R

R∑
r=1

ρr, ∆max ≤
R∑

r=1

∆max,r, ∆sum ≤
R∑

r=1

∆sum,r.
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Figure 14: Computation time (mean±std) of 10 repeated experiments for the total seven projection
dimensions on synthetic data comprising varying numbers of subgroups (K). The number of features
is fixed at d = 100.

Proof. Since U = [u1, · · · ,uR] ∈ RDx×R and V = [v1, · · · ,vR] ∈ RDy×R, we have

trace(U⊤X⊤YV) =

R∑
r=1

u⊤
r X

⊤Yvr,

trace(U⊤X⊤XU) =

R∑
r=1

u⊤
r X

⊤Xur,

trace(V⊤Y⊤YV) =

R∑
r=1

v⊤
r Y

⊤Yvr.

(22)

Note that U = {U
∣∣U⊤X⊤XU = IR} and V = {V

∣∣V⊤Y⊤YV = IR}. Using the implementation
of the retraction operation on U and V (see, (19) and (17)), we obtain

urX
⊤Xur = vrY

⊤Yvr = 1,

U⊤X⊤XU = V⊤Y⊤YV = IR,

trace(U⊤X⊤XU) trace(V⊤Y⊤YV) = trace(IR)
2 = R2.

(23)

Thus, for the component-wise measure ρr defined in (13a) and the matrix variant ρ defined in (21a),
we have

ρ =
trace(U⊤X⊤YV)√

trace(U⊤X⊤XU) trace(V⊤Y⊤YV)

=

∑R
r=1 u

⊤
r X

⊤Yvr√
R2

=
1

R

R∑
r=1

u⊤
r X

⊤Yvr

1

=
1

R

R∑
r=1

u⊤
r X

⊤Yvr√
u⊤
r X

⊤Xurv⊤
r Y

⊤Yvr

=
1

R

R∑
r=1

ρr.

(24)
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For component-wise measure ∆max,r and matrix measure ∆max, we have

∆max = max
i,j∈[K]

∣∣E i(U,V)− Ej(U,V)
∣∣

= max
i,j∈[K]

∣∣∣(trace(Ui,⋆⊤Xi⊤YiVi,⋆
)
− trace

(
U⊤Xi⊤YiV

))
−
(
trace

(
Uj,⋆⊤Xj⊤YjVj,⋆

)
− trace

(
U⊤Xj⊤YjV

))∣∣∣
= max

i,j∈[K]

∣∣∣∣∣
(

R∑
r=1

ui,∗
r

⊤
Xi⊤Yivi,∗

r −
R∑

r=1

ur
⊤Xi⊤Yivr

)

−

(
R∑

r=1

uj,∗
r

⊤
Xj⊤Yjvj,∗

r −
R∑

r=1

ur
⊤Xj⊤Yjvr

)∣∣∣∣∣
= max

i,j∈[K]

∣∣∣∣∣
R∑

r=1

((
ui,∗
r

⊤
Xi⊤Yivi,∗

r − ur
⊤Xi⊤Yivr

)
−
(
uj,∗
r

⊤
Xj⊤Yjvj,∗

r − ur
⊤Xj⊤Yjvr

))∣∣∣
≤

R∑
r=1

max
i,j∈[K]

∣∣∣(ui,∗
r

⊤
Xi⊤Yivi,∗

r − ur
⊤Xi⊤Yivr

)
−
(
uj,∗
r

⊤
Xj⊤Yjvj,∗

r − ur
⊤Xj⊤Yjvr

)∣∣∣
=

R∑
r=1

max
i,j∈[K]

∣∣E i(ur,vr)− Ej(ur,vr)
∣∣

=

R∑
r=1

∆max,r.

(25)

Similarly, for ∆sum,r and ∆sum, we have ∆sum ≤
∑R

r=1 ∆sum,r.
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