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Abstract

We present a novel method for reconstructing 3D objects from a single RGB image.
Our method leverages the latest image generation models to infer the hidden 3D
structure while remaining faithful to the input image. While existing methods[1, 2]
obtain impressive results in generating 3D models from text prompts, they do not
provide an easy approach for conditioning on input RGB data. Naïve extensions of
these methods often lead to improper alignment in appearance between the input
image and the 3D reconstructions. We address these challenges by introducing
Image Constrained Radiance Fields (ConRad), a novel variant of neural radiance
fields. ConRad is an efficient 3D representation that explicitly captures the appear-
ance of an input image in one viewpoint. We propose a training algorithm that
leverages the single RGB image in conjunction with pretrained Diffusion Models
to optimize the parameters of a ConRad representation. Extensive experiments
show that ConRad representations can simplify preservation of image details while
producing a realistic 3D reconstruction. Compared to existing state-of-the-art base-
lines, we show that our 3D reconstructions remain more faithful to the input and
produce more consistent 3D models while demonstrating significantly improved
quantitative performance on a ShapeNet object benchmark.

1 Introduction

Humans posses the ability to accurately infer the full 3D structure of an object even after observing
just one viewpoint. Since the RGB and depth observed for one viewpoint does not provide sufficient
information, we have to rely on our past experiences to make intelligent inferences about a realistic
reconstruction of the full 3D structure. This ability helps us navigate and interact with the 3D world
around us seamlessly. Capturing a similar capability of generating the full 3D structure from a single
image has been a long-standing problem in Computer Vision. Such systems could facilitate advances
in robotic manipulation and navigation systems, and has applications in video games, augmented
reality and e-commerce. Despite the importance of this capability, success on solving this problem
has been limited.

This lack of success can partly be attributed to the lack of useful large scale data. While we have
made progress on collecting large scale image datasets, the scale of 3D object or multi-view image
datasets has been severely limited. The availability of billions of RGB images and captions [3]
has facilitated significant advances in semantic understanding of images [4–6]. Over the last few
years in particular, approaches for generative modeling of the image manifold have demonstrated
capabilities including controllable generation of highly realistic images [7, 8], inpainting of occluded
images [9] and realistic image editing [10–12]. These success stories demonstrate the ability of the
2D generative models to capture prior knowledge about the visual world. In light of this evidence,
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Figure 1: ConRad representation: We propose a novel radiance field,ConRad, which allows
conditioning on a single image. In contrast to regular radiance fields, our approach can accurately
model the input image in one reference viewpoint of the radiance field without any training. Utilizing
ConRad representations simplifies the optimization of a radiance field for generating a 3D model
from a single image.

we ask the question—can this 2D prior knowledge be leveraged to infer the hidden 3D structure of
objects?

DreamFusion [1] generates 3D models based on an input text prompt, using the distribution captured
by a pretrained diffusion model to update the parameters of a neural radiance field (NERF) [13].
While DreamFusion demonstrates impressive capabilities, generating arbitrary instances of objects
from text prompts severely limits its applications. In recent concurrent work, RealFusion [14] and
NeuralLift360 [15] extend DreamFusion to accommodate image input. These methods propose to
optimize additional objectives to reconstruct the given input image in one reference viewpoint of
the NERF while still relying on a diffusion model to generate a realistic reconstruction in novel
viewpoints.

In this work, we propose a novel method for generating a 3D object from a single input image.
Instead of designing additional objectives to reconstruct the input image, we propose to rethink
the underlying 3D representation. We introduce Image Constrained Radiance Fields (ConRad), a
novel variant of NERFs that can explicitly capture an input image without any training. Given an
input image and a chosen arbitrary reference camera pose, ConRad utilizes multiple constraints to
incorporate the appearance of the object and the estimated foreground mask into the color and density
fields respectively. These constraints ensure that the rendering of the radiance field from the chosen
viewpoint exactly matches the input image while allowing the remaining viewpoints to be optimized.

The proposed ConRad representation significantly simplifies the process of generating a consistent
3D model for the input image using any pretrained diffusion model. Since the representation accounts
for the reference view, the training simply has to focus on distilling the diffusion model prior for the
other viewpoints. Therefore, we show that we can leverage a training algorithm that has minimal
deviations from DreamFusion. We propose a few key improvements to the training algorithm which
leads to more robust training and higher quality 3D reconstructions.

We demonstrate results using images gathered from multiple datasets including CO3D [16],
ShapeNet [17], and images generated from pretrained generative models. ConRad produces 3D
reconstructions that are consistently faithful to the input image while producing high quality full 3D
reconstructions. In contrast to RealFusion and NeuralLift360, ConRad has fewer hyperparameters and
does not rely on balancing the trade off between image reconstruction vs satisfying the diffusion prior,
leading to a more robust training pipeline. We conduct a quantitative comparison on objects from
the ShapeNet dataset and observe that our approach demonstrates significant gains in reconstruction
quality compared to state-of-the-art methods.

2 Related Work

3D Representations Over the last decade, research in Computer Vision and Graphics has led to
development of efficient parametric representations of 3D scenes [13, 18, 19]. Traditional voxel
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grid representations [20–22] maintain a dense grid of 3D scene parameters but consume a lot
of memory. Neural Radiance Fields (NERFs) [13] offer a continuous parametric representation
of the scene modeled as a neural network while requiring significantly lower memory while being
computationally inefficient. Several approaches [23, 18] have been proposed to take advantage of both
forms of representation. Instant-NGP [18] is one such approach that models a 3D scene using a multi-
resolution hash-encoding followed by a shallow neural network. Our proposed ConRad representation
builds on Instant-NGP but can be used with any radiance field.

Learning to Estimate 3D Structure To recover the full 3D structure from a single image, many
works propose to learn category-specific 3D representations [24] then later fit to an input image.
These approaches primarily relied on coarse representations like point clouds [24] and compositions
of primitive shapes [25]. Furthermore, these methods focused on the geometry and could not infer
the hidden appearance of the objects. NERFs demonstrated the capability to accurately infer novel
viewpoints of a scene using densely sampled images. This has inspired numerous approaches to train
similar radiance fields using sparse samples of a scene or object using semantic and geometric priors.
[26–30] train models on large scale multi-view data to estimate radiance fields given a single or few
images. The limited diversity of available 3D data restricts the generalizability of these approaches.

Generating 3D from Pretrained 2D models Large scale 2D image data is much more readily
available compared to 3D or multi-view data. This has led to significantly larger advances in modeling
semantics in images [4–6] and generative modeling of images [7, 8]. In light of this, several works
have attempted to leverage the knowledge from these 2D models for the task of inferring the radiance
fields from one or few images. Our proposed method belongs to this category of approaches since we
rely on the distribution modeled by a pretrained image diffusion model.

DreamFields [31] generates 3D models from text prompts by optimizing the CLIP [4] distance
between the NERF renderings and the textual CLIP embedding. DreamFusion [1] proposes an
approach called Score Distillation Sampling (SDS) for distilling knowledge from a pretrained
text-conditioned Diffusion Model [8] into a NERF representation (see Section 3 for more details).
Magic3D [2] proposes a coarse-to-fine strategy that also leverages SDS to first train a NERF and then
finetune a mesh representation. Similar to DreamFields, DietNERF [32] proposed to train a NERF
on a few input images while enforcing consistency of CLIP [4] features in other unknown views.
However, this approach fails to generate 3D objects using a single image input. Pretrained image
generative models have also been used to infer radiance fields in existing work [33] but only focuses
on estimating geometry of the regions visible in the input image.

RealFusion [14] and NeuralLift360 [15] are two recent methods that are very relevant to our proposed
approach. Inspired by DreamFusion, these approaches leverage a pretrained Stable Diffusion model to
infer the appearance and geometry of unknown viewpoints and optimize several additional objectives
to enforce consistency to the input image in one reference viewpoint. In concurrent work, Nerdi[34]
also follows a similar approach of using a reconsruction loss and depth loss for the known viewpoint,
and uses diffusion model priors for unknown viewpoints. Unless properly tuned, these approaches
lead to poor alignment between the input image and reconstructed 3D model (more details in
Section 5). In contrast, ConRad focuses on modifying the underlying 3D representation to easily
incorporate the input image and generates a more consistent 3D reconstruction.

3 Preliminaries

We first provide a concise summary of the prerequisite concepts from generative modeling of images
and 3D objects that we build upon for ConRad.

Diffusion Models A diffusion model is a recently developed generative model that synthesizes
images by iteratively denoising a sample from a Gaussian distribution. For training a diffusion model,
noise is added to a real image I iteratively for T timesteps to synthesize training data {I0, I1, ..., IT }.
Specifically, the noised image for timestep t can be computed as It =

√
αtI +

√
1− αtϵ where

ϵ ∈ N (0, I) and αt is predefined noising schedule. This data is used to a train a denoising model
ϵ̂ϕ(It, y, t) which estimates the noise ϵ using the noisy image It, the timestep t and an optional
embedding y of the caption associated with the image. A pretrained diffusion model can be used to
synthesize images by following the inverse process. First, a noise sample IT is drawn from N (0, I).
Then ϵ̂ϕ is iteratively used to estimate the sequences of images {IT−1, IT−2, ..., I0} where I0 is the
finally synthesized image.
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Neural Radiance Fields A Neural Radiance Field (NERF) [13] is a parametric representation of
a 3D scene as a continuous volume of emitted color c and density σ. Formally, it can be written as
a mapping Fθ : (x) −→ (c(x), σ(x)) from the 3D coordinates of a point x, to it’s associated color
and density. These radiance fields allow rendering of 2D images by accumulating color over points
sampled on camera rays. For a camera ray r(t) = o + td, the accumulated color is expressed as:

C(r) =
∫
t

T (t)σ(r(t))c(r(t))dt (1)

where T (t) = exp(−
∫ t

0
σ(r(s))ds) is the accumulated transmittance of the volume along the ray.

Learning an accurate representation Fθ of a 3D scene generally requires supervision in the form of
several ground truth samples of C(r) i.e. several images of a scene taken from different viewpoints.
Representing Fθ as a neural network has been shown to demonstrate several desirable properties like
the ability to synthesize novel views and realistic high-resolution renderings of complex scenes.

Image Diffusion to Radiance Fields DreamFusion proposed an approach to leverage a pretrained
image diffusion model and a text prompt to optimize a 3D radiance field. The key idea is to optimize
parameters θ such that the rendering of the radiance field from any viewpoint looks like a sample from
the diffusion model. This is accomplished by randomly sampling camera poses p during training,
rendering images from the radiance field for these viewpoints Ipθ and using a Score Distillation
Sampling objective to optimize the radiance field. The gradient of the Score Distillation Sampling
(SDS) objective LSDS is defined as:

∇θLSDS(ϕ, Ipθ , y) = Et,e

[
w(t)(ϵ̂ϕ(

√
αtI

p
θ +
√
1− αtϵ, y, t)− ϵ)∇θI

p
θ

]
(2)

where w(t) is a timestep dependent weighting function. We refer the readers to [1] for the derivation
of this objective. In practice, each update is computed using a randomly sampled timestep t and
noise sample ϵ. Intuitively, this is equivalent to first perturbing the rendered image using ϵ, t and then
updating the radiance field using the difference between the diffusion model estimated noise and ϵ.

4 Method

4.1 Problem Setup

The goal of this work is to optimize a 3D radiance field Fθ to capture the visible appearance and
geometry of an object depicted in an input image, while inferring a realistic reconstruction of the
unknown/hidden parts. Let the input image be represented by Î and p̂ be a reference camera pose
(which can be arbitrarily chosen) associated with the image. Let Ipθ be the image obtained as a
differentiable rendering of Fθ viewed from camera pose p. The optimal desired representation Fθ̂

should satisfy two criteria: (i) I p̂
θ̂
= Î , and (ii) For all viewpoints p, Ip

θ̂
should be semantically and

geometrically consistent.

A simple approach for satisfying requirement (i) could be to optimizing an L2 distance objective I p̂θ
and Î . Furthermore, Score Distillation Sampling (see Section 3) can be used to satisfy requirement
(ii) by optimizing randomly rendered viewpoints using diffusion model priors. This approach forms
the basis of concurrent works RealFusion[14] and NeuralLift360[15]. We observe in experiments
(Sec 5) that this approach often leads to misaligned final appearance of novel viewpoints.

4.2 ConRad: Image Constrained Radiance Fields

We propose a novel variant of neural radiance fields called Image Constrained Radiance Fields (Con-
Rad) that allows us to effectively satisfy the two objectives. Intuitively, we wish to formulate a
radiance field that accurately depicts the input image in one viewpoint while allowing us to optimize
and infer the other viewpoints. First, we note that the input image depicts a “visible” part of an
object’s surface. Under some assumptions on the object properties2, we can make inferences about
the 3D space around this object. Any point that lies on/in front of the visible surface is known to us
and does not need to be re-inferred in our radiance field. Specifically, points between the reference
camera and the surface should have zero density, and points on the surface should have high density

2The proposed constraints rely on the assumption that the object is opaque.
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and color equal to the corresponding pixel in the input image. Unfortunately, since we do not have
access to the depth map corresponding to the reference view, it is not possible to infer which 3D
points lie in front or behind the surface. As a workaround, we leverage the radiance field to obtain an
estimate of the depth. Using this estimated depth, we propose to incorporate these observations into
the color and density of the radiance field to leverage the input image as an explicit constraint.

Concretely, let the ray corresponding to pixel (i, j) in the reference view be r(i,j)p̂ (t) = op̂ + td(i,j)
p̂ .

We define the visibility depth of this pixel Vp̂[i, j] as the value of t such that

1−
∫ t

0
T (t)σ(r

(i,j)
p (t))∫∞

s=0
T (s)σ(r

(i,j)
p (s))

= η (3)

where η is a small value set to 0.1 in our experiments. Intuitively, the visibility depth for each pixel is
a point on the ray beyond which the contribution of color is minimal (less than 10%).

Let Qp : R3 −→ [−1, 1]× [−1, 1] be the camera projection matrix corresponding to projection from
world coordinates to the normalized reference image coordinates. We can reformulate the color c(x)
of the radiance field Fθ as follows:

vx = 1( ||x− op̂|| < Vp̂[Qp̂(x)] ) (4)

c′(x) = vx ∗ I p̂(Qp̂(x)) + (1− vx) ∗ c(x) (5)

where we use bilinear interpolation to compute pixel values I p̂(Qp̂(x)). This constraint enforces the
appearance of the reference viewpoint to explicitly match the image. Since we only estimate the
depth of each pixel based on a potentially incorrect density field, we enforce that all points in between
the camera and the estimated surface along the ray should have color equal to the corresponding pixel.
As shown in Figure 1, this still constrains the reference view to match the input image but allows the
density to be optimized through our training process.

Additionally, the foreground mask of the input image informs the density of the radiance field. We
estimate the binary foreground mask M̂ using a pretrained foreground estimation method[35]. We
know that any point on the reference rays corresponding to the background pixels should have zero
density. We reformulate the density σ(x) as:

mx = M̂ [Qp̂(x)] (6)

σ′(x) = mx ∗ σ(x) (7)

In summary, ConRad is the radiance field defined by the constrained color c′(x) and density σ′(x).

4.3 Optimizing Image Constrained Radiance Fields

In this section, we present our approach for training a ConRad representation using a single input
image Î . First, we preprocess the input image to extract several supervisory signals. Since we wish to
leverage a text-conditioned diffusion model, we need to generate text embeddings for a caption of
the input image. We use the caption “a photo of a <token>” where the embedding of the special
token is inferred using Textual Inversion[36]. In order to learn an embedding that accurately captures
the input image, we pass in multiple synthetically generated augmentations of the input image by
randomly cropping, resizing and blurring it. Due to space constraints, we presented more details in
the supplementary material. We also estimate a depth map for the reference view D̂ using MiDaS[37].

Diffusion Prior One of the key advantages of ConRad is the simplicity of the training pipeline.
Since ConRad already incorporates the appearance of the reference view, the training algorithm has
minimal deviations from DreamFusion. We simply compute SDS updates on random viewpoints
using the pretrained Diffusion Model conditioned on the previously obtained text embeddings and
update the radiance field to infer the unknown density and color regions.

Depth Loss Since the depth of the reference viewpoint is unknown, we find that providing additional
supervision through the estimated reference depth map D̂ sometimes improves the results of our
training. The preprocessed depth estimate D̂ only provides relative depth values[38]. Therefore, the
ground truth depth should be close to D̂ up to a scalar scaling and translation factor. We accommodate
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CO3D Dataset

Input Image
Source

CO3D Dataset

Stable Diffusion 
“A photo of ironman”

Stable Diffusion 
“A photo of a 

stuffed dinosaur”

Novel View 1 Novel View 2 Novel View 3Input View

ShapeNet Dataset

Figure 2: ConRad Image-to-3D Reconstruction: Here we visualize the 3D structures generated
by our proposed approach using images taken from different sources. We observe that the proposed
ConRad representation leads to high quality realistic reconstructions of the objects while completely
preserving input image details. Please see Appendix for comparison to RealFusion and NeuralLift360
on these input images.
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this in the depth loss Ldep by formulating it as the Pearson Correlation coefficient between D and D̂.
NeuralLift360[15] adopts a similar idea and uses a ranking loss for providing depth supervision.

Warm Start The visibility and mask values in Eq 4 & 6 are non-differentiable and also cause a
sharp boundary in the radiance field. For some input objects, we observe that this disrupts training.
This can easily be resolved by performing a “warm start”. We multiply the visibility and mask scores
in Eq 4 & 6 with a scalar α that is linearly annealed from 0 to 1 over the first 50% of the updates and
then kept constant at 1.

5 Experiments and Results

5.1 Implementation Details

The simplicity of Image Constrained Radiance Fields representations facilitates a straightforward
implementation of the training process. We use Instant-NGP[18] as the base representation comprising
of a shared multi-resolution hash encoding and two separate small MLPs for the unconstrained color
c(x) and density σ(x) respectively. For all experiments in this paper, we choose the reference view
camera to lie at a distance of 3.2 from origin, azimuth angle 0 and elevation 0 except where specified.
We precompute and store rays for the camera corresponding to this reference view. Before each
update, we estimate the Visibility Depth (Eq 4) by evaluating on points along these rays and choosing
the closest solution. For each update, a random camera pose p is obtained by uniformly sampling
elevation angle in [−15◦, 45◦], azimuth angle in [0◦, 360◦] and distance to origin in [3, 3.5]. We
then render the image Ip for this viewpoint using the constrained color c′(x) and density σ′(x). We
also compute the estimated reference view depth Dp̂ using the precomputed rays and radiance field
density σ′(x). We compute the SDS sampling update (Eq 2) using Ip and the gradient of the Depth
Loss Dp̂ to update all the parameters. Additionally, the regularizations proposed in [1] are adopted to
enforce smoothness of surface normals and encourage outward facing surface normals in the radiance
field. We keep all the hyperparamters unchanged for all experiments except when explicitly indicated
(Sec 5.4). Please refer to the supplementary material for details of regularizations and their associated
weights, hyperparameters of Instant-NGP, optimizer hyperparameters and pseudo-code of the training
algorithm.

Note that we do not need to render the image of the reference view during training. This eliminates
the need for tuning viewpoint sampling strategies and additional reference loss hyperparameters,
leading to a simpler and more robust training pipeline. Computation of visibility depth also does not
significantly increase GPU memory consumption since we do not compute its gradients.

5.2 Visualizing 3D Reconstructions

We first visualize the final 3D reconstructions of ConRad representations trained on single images
taken from different sources. In Figure 2, we present the RGB and surface normal reconstructions of
the reference view and three novel viewpoints. Observe that the final representation always accurately
reconstructs the input viewpoint due to the constraints incorporated in ConRad. Furthermore, the
novel viewpoints generally depict a realistic reconstruction of the input object.

We also observe that the reconstructions are faithful to the specific instance of the object, presenting a
smooth transition from reference viewpoint to unobserved viewpoints. This can be attributed to two
aspects of the model: (i) The textual inversion embedding passed to the diffusion model captures the
details of the object and (ii) Since ConRad depicts the input image accurately from beginning of
training, it provides a strong prior for the appearance for the diffusion model, especially around the
reference viewpoint. In Figure 2, “Novel View 1” presents a viewpoint close to the reference view.

Our proposed approach can also be used to generate 3D model from text prompts. To accomplish
this, we can leverage pretrained Stable Diffusion to first generate a 2D image from the text prompt
and then use ConRad to learn a 3D reconstruction of this object. Figure 2 Rows 3 & 4 demonstrate
this capability on two prompts.

5.3 Comparison to existing work

RealFusion[14] relies on alternating between rendering the reference viewpoint and a random
viewpoint. For the reference viewpoint, additional mean squared error objectives are used to distill
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ConRad

RealFusion Melas-Kyriazi et. al 
(taken from paper)

NeuralLift-360 Xu et. al 
(taken from paper)

ConRad

Figure 3: Qualitative comparisons: We perform qualitative comparisons of our approach to state-
of-the-art image to 3D generation methods. For fair comparison and to demonstrate robustness, we
evaluate on images taken from the respective papers. We observe that ConRad is able to generate
higher quality 3D models while more accurately preserving input image details.

the reference RGB and foreground mask values into the 3D representation. For other viewpoints,
Score Distillation Sampling is used to update the representation. Similar to our approach, textual
inversion is used to compute the conditioning text embedding for Stable Diffusion.
NeuralLift360[15] proposes a similar approach to RealFusion. In addition to reference RGB and
foreground mask, NeuralLift360 also utilizes an estimated depth map and the CLIP features of the
input image as supervision. A ranking loss is used to account for the scale and translation ambiguity
in the estimated depth map. This is similar in spirit to our proposed depth objective in Section 4.3.
NeuralLift360 also encourages the CLIP features of renderings from all viewpoints to be consistent
with the input viewpoint.

Qualitative Comparisons In Figure 3, we present qualitative comparisons to ConRad. While
both RealFusion and NeuralLift360 released official implementations, we observed that they require
tuning of hyperparameters or fail to generate meaningful reconstructions for several objects. For
fair comparison, we evaluate our method on images taken from the respective papers. We observe
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ConRad can better capture the details of the input image consistently. In contrast, RealFusion and
NeuralLift360 often generate a similar instance of the same category with a different appearance.

Evaluation Metrics The task of image to 3D generation is difficult to quantitatively evaluate due to
the inherent ambiguity in the expected output i.e. there are several possible realistic reconstructions
of the same object. NeuralLift360[15] evaluates the ability to capture semantic content by measuring
the CLIP feature[4] distance between all viewpoints of the generated object and the single input
reference image. We build upon this idea and propose metrics to evaluate the ability to generate
different viewpoints of an object.

Table 1: Quantitative Comparisons: We perform quantitative comparisons using 3D object data of
20 objects depicting instances of 10 categories taken from the ShapeNet dataset. We evaluate the CLIP
semantic similarity of rendered object viewpoints to ground truth viewpoint samples. We demonstrate
that generating 3D models with ConRad leads to significant improvements over state-of-the-art across
all metrics.

Method All Views Near Reference
dref dall doracle dref dall doracle

PointE[39] 0.496 0.482 0.453 0.496 0.499 0.399
RealFusion[14] 0.495 0.486 0.460 0.483 0.482 0.464
NeuralLift-360[15] 0.528 0.516 0.498 0.543 0.544 0.534
ConRad (ours) 0.332 0.316 0.273 0.286 0.257 0.230

First, we render 20 objects from 10 categories of the ShapeNet[17] dataset viewed from 68 different
camera poses to create a ground truth (GT) set. We choose a front-facing view from each object as
input to an Image-to-3D approach. We then render the generated object from the same 68 camera
poses. Due to ambiguity of depth, corresponding camera poses between GT and rendered images
could depict very different object poses. Using these two sets of images, we compute three metrics –
dref is the mean CLIP feature distance between the reference image and all the rendered viewpoints
(same as [15]). dall is the mean CLIP feature distance between all pairs of GT and rendered images.
doracle is the solution to a linear sum assignment problem[40] where the cost of assigning a GT view
to a rendered image is the CLIP feature distance between them. This evaluates the ability of the
representation to generate images as diverse as the ground truth while preserving semantic content.

We evaluate these three metrics for the two sets of 68 images (“All Views”). We also evaluate on
a subset of camera poses that lie within a 15◦ elevation change and 45◦ azimuth change (“Near
Reference”) giving us 15 images each for ground truth and rendered images. This measures the
semantic consistency in viewpoints where parts of the input image are visible.

ConRad  
- RGB Constr.ConRadInput Image ConRad

- Textual Inv.
ConRad

- Warm Start.
ConRad

- Depth Loss
ConRad  

- RGB  Constr.σ

Figure 4: Ablation Study: We present a qualitative investigation of the importance of various
components proposed in our approach on two prototypical examples. The components are arranged
left to right in decreasing order of importance for final reconstruction quality.
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5.4 Analysis of ConRad Components

Quantitative Evaluation In Table 1, we compare ConRad to RealFusion, NeuralLift360, and
PointE. PointE[39] is a point cloud diffusion model was trained on several million 3D models. It can
directly generate point clouds using CLIP features of the input image. Since there is no corresponding
reference view in the output, we synthesize 150 random views for PointE instead of the 68 chosen
views. For all methods, we use the implementations and hyperparameters provided by the authors.
We observe that ConRad outperforms these methods across all the metrics by a significant margin.
We present a per-object breakdown of these metrics in the supplementary material.

We now investigate the various components of ConRad to understand their significance. In Figure 4,
we present a visualization of the effect of removing each component on two typical examples. In
most experiments, we observe that performing a warm start is not necessary but leads to crisper final
3D structure. We also observe that removing the Depth Loss significantly reduces computational
cost, but this leads to incorrect 3D structure for some objects (see row 2 of Figure 4). Textual
Inversion is crucial to maintain consistent appearance of the object from all viewpoints. Moreover,
removing the color constraint (Eq 4) generally still leads to a realistic 3D model but depicts an
arbitrary object. Finally, removing both color and density constraints (still using the depth loss) leads
to very unrealistic objects.

5.5 Failure Cases and Limitations

Input Image Novel Front View Novel Back View

Figure 5: Failure Cases: On some objects, our
proposed approach suffers from the Janus effect
and is affected by the bias of Stable Diffusion to
produce saturated colors.

While ConRad significantly improves the sim-
plicity and robustness of learning the 3D struc-
ture, it occasionally demonstrates issues that are
common to Image-to-3D methods. In Figure 5,
we present two typical examples of failure cases.
Row 1 demonstrates the Janus effect, where the
final 3D model has two faces. We also observe
that performing score distillation sampling us-
ing Stable Diffusion leads to saturated colors in
the 3D model. Leveraging textual inversion em-
beddings mitigates this issue to some extent, but
still occasionally leads to incorrect appearance
in novel viewpoints, as demonstrated in Row 2.
We also observe that for a few objects, parts of
the generated 3D object is semi-transparent (see
videos in supplementary material).

6 Conclusion

In this work, we present a novel radiance field variant, ConRad, that significantly simplifies the
training pipeline for generating 3D models from a single image. By explicitly incorporating the input
image into the color and density fields, we show that we can eliminate tedious tuning of additional
hyperparameters. We demonstrate that ConRad representations lead to more accurate depiction of the
input image, produce higher quality and more realistic 3D models compared to existing work.
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A Additional Implementation Details

Here we present more details about the implementation of ConRad representation to facilitate
reproducibility of results.

Base Representation As indicated in the main text, we use the Instant-NGP[18] representation
followed by two MLPs to model the density σ(x) and color c(x). For the multi-resolution hash
encoding of Instant-NGP representation, we use 16 levels with a 2-dimensional encoding at each
level. The Instant-NGP encoding is passed to two 3-layer MLPs with a hidden dimension of 64. The
color MLP output is passed through a sigmoid activation to obtain the RGB values additionally. The
density MLP output is passed to the exponential ex activation to obtain the density value.

Regularization Losses In addition to SDS and the Depth Loss, we use three regularizations
proposed in [1] to produce coherent objects. We encourage the radiance field to have either very low
or very high density at any point along the rays by using the following entropy regularizer:

Lent =
∑
x

−α(x) ∗ logα(x)− (1− α(x)) log(1− α(x)) (8)

where α(x) is the rendering weight at point x.

We encourage the surface normals in each rendered view to point towards the camera using the
orientation regularizer:

Lorient =
∑
x

α(x) ∗max(< n(x),d >, 0)2 (9)

where n is the normal at the point x computed using the finite differences method with the density
σ(x) and d is the viewing direction.

Finally, we encourage the smoothness of normals computed at each point along the rays using the
smoothness regularizer:

Lsmooth =
∑
x

|n(x)− n(x+ δ)| (10)

where δ is a random perturbation for each point with a maximum perturbation of 0.01 along each
axis.
Algorithm 1: Optimizing a ConRad representation to reconstruct 3D from a single image.

Data: Image Î , Estimated Depth D̂, Foreground Mask M̂ , Reference Pose p̂
1 Initialize ConRad Fθ;
2 Compute reference rays rp̂;
3 Compute text embeddings t using textual inversion on image Î;
4 for i = 0 to 5000 do
5 V̂ ←− Visibility Depth using rp̂ and σθ(x) (Equation 3);
6 Dp̂ ←− Radiance Field Depth along rays rp̂ using σ′(x) ;
7 Ldep ←− Pearson Correlation between Dp̂ and D̂;

8 p←− sample random camera pose;
9 rp ←− compute rays for viewpoint p;

10 Ip ←− Render reference viewpoint image using rp̂, c
′(x), σ′(x);

11 ∇θLSDS(ϕ, Ipθ , t)←− Using Stable Diffusion, text embedding t and Ip (Eq. 2);
12 Lorient ←− Compute orientation regularization along rp;
13 Lsmooth ←− Compute smoothness regularization along rp;
14 Lent ←− Compute entropy regularization along rp;
15 θ ←− θ−η(∇θLSDS(ϕ, Ipθ , t)+∇θ(10∗Ldepth+0.01∗Lent+0.01∗Lorient+10∗Lsmooth));

Loss Weighting The above losses are all jointly optimized using the following weighted sum:

L = LSDS + 10 ∗ Ldepth + 0.01 ∗ Lent + 0.01 ∗ Lorient + 10 ∗ Lsmooth (11)
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In experiments, we observed that the orientation and entropy regularizer had minimal effect on the
final output and could be turned off on most input images without any loss in quality. However, we
retain these regularizers in all experiments to ensure similarity to DreamFusion.

Textual Inversion Since we aim to use only an image as input, we need to synthesize a text
prompt to pass as conditioning to the text-conditioned diffusion model. Additionally, we need the
text-prompt to be sufficiently descriptive to capture all the details of the specific object instance. Most
pretrained captioning algorithms provide a coarse caption that doesn’t capture such details. Therefore,
in recent research, Textual Inversion[36] proposed an approach that uses input images and a diffusion
model to infer the text embedding of a special token ("<token>"). This token along with its learned
embedding can be passed to the diffusion model to synthesize novel images of the same object. This
approach generally requires 3 to 5 images to accurately capture an object. Since we have access to
only one image, we rely on synthetically augmenting the image to run Textual Inversion. Specifically,
we generate images by randomly flipping horizontally with probability 0.5, extract a random crop
covering 50% to 100% of the image, Gaussian blurring the image with a kernel size 5 and standard
deviation randomly sampled in [0.1, 2] and jittering the hue, saturation, contrast and brightness by a
random value in [0, 0.1]. Furthermore, we perform classification of the input image using a pretrained
CLIP model[4]. The text embedding of the obtained class label is used to initialize the embedding of
the special token "<token>".

Optimization We use the Adan optimizer with 0.005 learning rate and weight decay of 0.00002.
We use a batch size of 1 for each update i.e. one random viewpoint. We keep the learning rate fixed
and train the representation for 5000 updates. The optimization process takes approximately 20
minutes on a single A100 GPU.

B Additional Quantitative Evaluation

In Sec 5.3 of the main text, we present quantitative comparisons of our work to RealFusion[14],
NeuralLift-360[15] and Point-E[39] on objects from the ShapeNet[17] dataset. Here we present more
details on this evaluation to facilitate easy reproduction.

Evaluation Data We choose 20 objects from 10 categories. While we randomly sampled objects,
we manually removed some non-prototypical objects like a triangular bed. In Figure 6, we present
the chosen input image for each object, the ShapeNet object ID and category.

Table 2: Quantitative Comparisons: We present quantitative comparisons using 3D object data of
20 objects the ShapeNet dataset. We present an object-wise breakdown of the performance for each
method. The performance is evaluated on all (68) views of the object. Please refer to the main text
for more details on the evaluation metrics.
Category Object ID dref dall doracle

RealFusion NeuralLift-360 Point-E ConRad RealFusion NeuralLift-360 Point-E ConRad RealFusion NeuralLift-360 Point-E ConRad

airplane 2c9797... 0.418 0.753 0.412 0.251 0.462 0.833 0.441 0.263 0.432 0.833 0.420 0.236
airplane 7d89d6... 0.539 0.543 0.426 0.246 0.658 0.676 0.513 0.279 0.639 0.668 0.487 0.238
bench 5d9880... 0.642 0.737 0.507 0.374 0.583 0.710 0.457 0.355 0.557 0.692 0.427 0.297
bench 62cc45... 0.575 0.585 0.395 0.272 0.599 0.598 0.408 0.309 0.578 0.592 0.366 0.249
bus 2ba84d... 0.533 0.541 0.564 0.335 0.492 0.548 0.501 0.329 0.461 0.537 0.469 0.259
bus 642b3d... 0.485 0.531 0.571 0.356 0.500 0.474 0.574 0.340 0.462 0.416 0.540 0.275
bus 6cc0a9... 0.654 0.588 0.582 0.340 0.610 0.534 0.523 0.295 0.587 0.502 0.490 0.252
car 1abeca... 0.490 0.458 0.578 0.469 0.487 0.455 0.551 0.401 0.460 0.411 0.517 0.350
car 35155f... 0.514 0.396 0.527 0.368 0.504 0.340 0.527 0.311 0.481 0.300 0.501 0.265
car 9807c1... 0.543 0.449 0.582 0.371 0.503 0.377 0.561 0.281 0.482 0.347 0.535 0.238
chair 8ce2e4... 0.562 0.837 0.508 0.370 0.470 0.773 0.432 0.304 0.446 0.773 0.395 0.269
chair ea9181... 0.548 0.517 0.485 0.259 0.522 0.495 0.471 0.248 0.500 0.490 0.452 0.208
flowerpot 8e7642... 0.338 0.505 0.497 0.319 0.299 0.483 0.481 0.307 0.283 0.469 0.467 0.290
flowerpot f25999... 0.399 0.252 0.467 0.198 0.446 0.288 0.491 0.227 0.425 0.264 0.471 0.186
guitar 4c082a... 0.440 0.402 0.558 0.335 0.363 0.340 0.474 0.304 0.336 0.313 0.435 0.274
motorbike 61b17f... 0.407 0.586 0.482 0.327 0.391 0.597 0.508 0.297 0.353 0.593 0.483 0.252
motorbike 6e3761... 0.409 0.395 0.521 0.270 0.410 0.348 0.512 0.267 0.379 0.314 0.491 0.230
sofa 6f8494... 0.551 0.556 0.458 0.328 0.517 0.516 0.424 0.337 0.493 0.512 0.386 0.281
table 5d9f9e... 0.481 0.471 0.387 0.294 0.503 0.478 0.395 0.297 0.477 0.474 0.365 0.252
table bdd12e... 0.380 0.458 0.406 0.560 0.399 0.457 0.394 0.568 0.376 0.451 0.370 0.562

Detailed Quantitative Results In Table 2, we present an object-wise breakup of the results
presented in the main text. We observe that for most objects, ConRad based training leads to
significantly improved results on all metrics.
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Figure 6: ShapeNet Evaluation Data: We present the 20 input images used to evaluate performance
ConRad and existing works in this domain.
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C Additional Qualitative Comparisons

In Figure 2, we present visualizations of 3D models produced by ConRad. Here we present visualiza-
tions for the 3D models produced by RealFusion[14] and NeuralLift360[15] using the same input
images in Figure 7. We observe that both methods generally produce low quality generations when
arbitrary images are used as inputs. We found that NeuralLift360 was successful more frequently
compared to RealFusion but produced inferior 3D models compared to ConRad.

NeuralLift-360 [15] RealFusion [14]

Figure 7: Additional Qualitative Baseline Results: We present additional qualitative baseline
results using reference images presented in the main paper. For both NeuralLift-360 and RealFusion,
we use the official implementations released by the authors.
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