
A Proof of Theorem 1 and 2398

Theorem 1 Single-source edge-wise GNN can learn rule-induced subgraph representation if ⊎ =399

+,⊕ = +, ⋄ = +, ⊗1 = ×,⊗2 = ×. i.e., there exists nonzero αi,j such that400

eku,rt,v =

k∑
i=1

∑
(u,rt,v)

∑
(v,y0,x0)

...
∑

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt × αi2ry0
× ...× αiiryi−2

(15)

Proof In this case, the rule-induced subgraph representation is:401

Su,rt,v =

k∑
i=1

∑
(u,rt,v)

∑
(v,y0,x0)

...
∑

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt × αi2ry0
× ...× αiiryi−2

(16)

Then we will show that single-source edge-wise GNN can learn this rule-induced sugraph representa-402

tion in induction.403

k = 1. we have

e1u,rt,v = h1
u + rrt = rrt +

∑
(x0,y0,u)∈T

(h0
x0

+ e0x0,y0,u)× ry0

Note that e0x0,y0,u ̸= 0 if and only if (x0, y0, u) = (u, rt, v). However, this is impossible as u ̸= v.404

Thus e1u,rt,v satisfies the definition of rule-induced subgraph representation.405

k = 2. we have:406

e2u,rt,v = h2
u + e1u,rt,v =

∑
(x0,y0,u)∈T

(h1
x0

+ e1x0,y0,u)× ry0
+ rrt

=
∑

(x0,y0,u)∈T

2h1
x0
× ry0

+ rrt

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

2(h0
x1

+ e0x1,y1,x0
)× ry1

× ry0
+ rrt

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

2e0x1,y1,x0
× ry1

× ry0
+ rrt

(17)

We can find that e0x1,y1,x0
̸= 0 if and only if (x1, y1, x0) = (u, rt, v), i.e. there exists both (u, rt, v)407

and (v, rt, u). Obviously, e2u,rt,v satisfies the definition of rule-induced subgraph representation.408

Assume that this conclusion exists for n ≤ k − 1. Now we check the k-th term.409

eku,rt,v = hk
u +

k−1∑
i=1

∑
(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(v,yi−2,x0)︸ ︷︷ ︸
i−1

αi1rrt ⊗ αi2ryi−2 ⊗ ...⊗ αiiry0 (18)
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First, we consider hk
u.410

hk
u =

∑
(x0,y0,u)

(hk−1
x0

+ ek−1
x0,y0,u)× ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

(hk−2
x1

+ ek−2
x1,y1,x0

)× ry1 × ry0 +
∑

(x0,y0,u)

ek−1
x0,y0,u × ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xk−1,yk−1,xk−2)︸ ︷︷ ︸
k

e0xk−1,yk−1,xk−2
× ryk−1

× ryk−2
× ...× ry0

+
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xk−2,yk−2,xk−3)︸ ︷︷ ︸
k−1

e1xk−2,yk−2,xk−3
× ryk−2

× ...× ry0

+ ...

+
∑

(x0,y0,u)

ek−1
x0,y0,u × ry0

(19)

Notice that
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xk−1,yk−1,xk−2)︸ ︷︷ ︸
k

e0xk−1,yk−1,xk−2
× ryk−1

× ryk−2
× ...× ry0 ̸= 0 if411

and only if (xk−1, yk−1, xk−2) = (u, rt, v). In this situation, this term is exactly the k-th term in the412

expression of eku,rt,v . Now we want to prove that:413

∑
(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xk−2,yk−2,xk−3)︸ ︷︷ ︸
k−1

e1xk−2,yk−2,xk−3
× ryk−2

× ...× ry0

+ ...

+
∑

(x0,y0,u)

ek−1
x0,y0,u × ry0

(20)

can be fused in top k − 1 term of Equation. 16. Let’s check the j-th term of Equation. 20.414
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∑
(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

ek−j
xj−1,yj−1,xj−2

× ryj−1
× ...× ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

(ek−j−1
xj−1,yj−1,xj−2

+ hk−j
xj−1

)× ryj−1 × ...× ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

(e0xj−1,yj−1,xj−2
+ hk−j

xj−1
+ ...++h1

xj−1
)× ryj−1

× ...× ry0

=
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

e0xj−1,yj−1,xj−2
× ryj−1

× ...× ry0

+
∑

(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)

∑
(xj ,yj ,xj−1)︸ ︷︷ ︸

j+1

(hk−j−1
xj

+ ...+ h0
xj

+ ek−j−1
xj ,yj ,xj−1

+ ...+ e0xj ,yj ,xj−1
)× ryj−1

× ...× ry0

(21)

Note that e0xj−1,yj−1,xj−2
̸= 0 if and only if (xj−1, yj−1, xj−2) = (u, rt, v), thus the term can be415

fused into the j-th term of Equation. 16. e0xj ,yj ,xj−1
can be fused into the (j + 1)-th term and so on.416

Therefore, we have:417 ∑
(x0,y0,u)

∑
(x1,y1,x0)

...
∑

(xj−1,yj−1,xj−2)︸ ︷︷ ︸
j

ek−j
xj−1,yj−1,xj−2

× ryj−1 × ...× ry0

=

k∑
i=1

∑
(u,rt,v)

∑
(v,y0,x0)

...
∑

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt × αi2ry0
× ...× αiiryi−2

(22)

There, we prove that single-source edge-wise GNN can learn rule-induced subgraph representation in418

this case. □419

Theorem 2 Single-source edge-wise GNN can learn rule-induced subgraph representation if ⊎ =420

⊕,⊕ = ⊕, ⋄ = ⊕, ⊗1 = ⊗,⊗2 = ⊗, where ⊕ and ⊗ are binary operators that satisfy 0 ⊕ a =421

a, 0⊗ a = 0. i.e., there exists nonzero αi,j such that422

eku,rt,v =

k⊕
i=1

⊕
(u,rt,v)

⊕
(v,y0,x0)

...
⊕

(xi−3,yi−2,u)︸ ︷︷ ︸
i

αi1rrt ⊗ αi2ry0
⊗ ...⊗ αiiryi−2

(23)

Proof Without loss of generality, we can replace + with ⊕ and × with ⊗ to represent a binary423

operator, then we directly get this theorem. Note that we should ensure that ⊕ and ⊗ satisfy424

0⊕ a = a, 0⊗ a = 0, which we use in the process of proof. □425

B Details of Datasets426

We summarize the details of inductive relation prediction benchmark datasets in Table 5.427
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Table 5: Statistics of three inductive datasets, which contain four different versions individually. We
use #E and #R and #TR to denote the number of entities, relations, and triples.

WN18RR FB15k-237 NELL-995
#R #E #TR #R #E #TR #R #E #TR

v1 train 9 2746 6678 183 2000 5226 14 10915 5540
test 9 922 1991 146 1500 2404 14 225 1034

v2 train 10 6954 18968 203 3000 12085 88 2564 10109
test 10 2923 4863 176 2000 5092 79 4937 5521

v3 train 11 12078 32150 218 4000 22394 142 4647 20117
test 11 5084 7470 187 3000 9137 122 4921 9668

v4 train 9 3861 9842 222 5000 33916 77 2092 9289
test 9 7208 15157 204 3500 14554 61 3294 8520

C Implementation Details428

In general, our proposed method is implemented in DGL[34] and PyTorch[33] and trained on single429

GPU of NVIDIA GeForce RTX 3090. We apply Adam optimizer[37] with an initial learning rate430

of 0.0005. Observing that batch size has little effect on the performance of the model, We adjust431

batch size as large as possible for different datasets to accelerate training. We use the binary cross432

entropy loss.The maximum number of training epochs is set to 10. During training, we add reversed433

edges to fully capture relevant rules. The number of hop h is set to 3 which is consistent with existing434

subgraph-based methods. We conduct grid search to obtain optimal hyperparameters, where we435

search subgraph types in {enclosing, unclosing}, embedding dimensions in {16, 32}, number of436

GNN layers in {3, 4, 5, 6} and dropout in {0, 0.1, 0.2}. Configuration for the best performance of437

each dataset is given within the code.438
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