
Bayesian Optimization with Cost-varying
Variable Subsets

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce the problem of Bayesian optimization with cost-varying variable1

subsets (BOCVS) where in each iteration, the learner chooses a subset of query2

variables and specifies their values while the rest are randomly sampled. Each3

chosen subset has an associated cost. This presents the learner with the novel chal-4

lenge of balancing between choosing more informative subsets for more directed5

learning versus leaving some variables to be randomly sampled to reduce incurred6

costs. This paper presents a novel Gaussian process upper confidence bound-based7

algorithm for solving the BOCVS problem that is provably no-regret. We analyze8

how the availability of cheaper control sets helps in exploration and reduces overall9

regret. We empirically show that our proposed algorithm can find significantly10

better solutions than comparable baselines with the same budget.11

1 Introduction12

Bayesian optimization (BO) is a powerful framework for the sample-efficient optimization of costly-13

to-evaluate black-box objective functions [8] and has been successfully applied to many experimental14

design problems of significance such as hyperparameter optimization [3, 35], chemical synthesis [27],15

and particle accelerator control [26], among others. Conventional BO assumes that the learner has16

full control over all query variables (i.e., all variables in the input to the objective function). However,17

in many real-world optimization problems, some of the query variables may be subject to randomness18

affecting their values. In some cases, the randomness affecting a specific variable can be eliminated19

(by allowing the learner to select its value), but at a cost. We illustrate with a few concrete scenarios:20

In precision agriculture, consider a farm aiming to find the optimal conditions for largest crop yield21

where the query variables are a set of soil nutrient concentrations (e.g., Ca, B, NH3, K) and pH. The22

farm may rely on the naturally-occurring quantities of these nutrients in the available soil, but these23

quantities will be randomly sampled. Alternatively, they may control some subset of these quantities24

(via manufactured soil and fertilizers) at a higher cost. In advanced manufacturing where random25

variation occurs in every operation [30], certain specifications of a product may be left unspecified26

by the manufacturer and randomly determined, or specified but at a higher cost. In ad revenue27

maximization or crowdsourcing where information is gathered from a large number of individuals via28

ad platforms or crowdsourcing platforms such as Amazon Mechanical Turk, suppose that the query29

variables describe the demographics of the individual, such as country of origin or income level. The30

learner may allow the platform to randomly assign the task to any individuals, or the learner may31

demand a specific subgroup of individuals at a higher cost. In all these practical scenarios, the goal is32

to find the maximizer with as little incurred cost as possible. At each query iteration, the learner is33

faced with the non-trivial problem of deciding which variables to specify (for more directed learning)34

vs. which variables to allow to be randomly sampled (to reduce incurred costs), in addition to the35

usual BO problem of deciding the specified variables’ values.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

To the best of our knowledge, there are no existing works that tackle this problem precisely. The work37

of [10] introduced the problem of BO with partially specified queries (BOPSQ) in which the subset38

of deterministically selected variables (control set) and randomly sampled variables (random set) can39

also be chosen by the learner, but it does not consider the costs incurred by such choices. This is a40

non-trivial limitation as the presence of costs can significantly alter the learner’s decisions. Under41

such a formulation, if a control set is a strict subset of another, then the former will never be chosen42

as there is no benefit to having variable values be randomly sampled instead of chosen by the learner.43

Consequently, if there exists a control set that includes all the variables in a query, then all other44

control sets will not be used and the problem reduces to conventional BO. In practice, however, the45

availability of other control sets confers an advantage if these other control sets are cheaper. Having46

access to cheaper but more random control sets allows the learner to explore the query space cheaply47

and then use costlier but more deterministic control sets to exploit high-value regions. BOPSQ in its48

current formulation excludes the analysis of such strategies and is akin to multi-fidelity BO [12] but49

without modeling the costs of the different information sources: In this case, the learner would simply50

choose the highest-fidelity information source all the time, thus making the problem setting trivial.51

This paper introduces the problem of BO with cost-varying variable subsets (BOCVS) that explicitly52

models the cost of each control set and is more useful in practical scenarios. Our work generalizes53

BOPSQ and argues that BOCVS problems are much richer when analyzed from a similar perspective54

as multi-fidelity BO, and the various control sets are treated as information sources with different55

levels of usefulness and costs. By using cheap control sets for exploration and expensive control56

sets for exploitation, we show that with an appropriately designed algorithm, a learner can find57

significantly better solutions with a lower cost expenditure. To achieve this, we leverage the Gaussian58

process upper confidence bound (GP-UCB) acquisition function [4, 29] to design a novel no-regret59

algorithm, i.e., its incurred simple regret tends to 0 as the number of iterations tends to infinity,60

and the algorithm’s best chosen query converges to the optimal solution. We additionally analyze61

the impact of the availability of cheaper control sets on the regret incurred by the most expensive62

control set. We observe that our algorithm generally outperforms the non-cost-aware baselines, while63

simple extensions based on Thompson sampling, maximizing UCB or expected improvement-based64

acquisition scores per unit cost [28, Sec. 3.2] either fail to converge or fail to utilize cheap control65

sets effectively. Concretely, the contributions of our work in this paper include the following:66

• We introduce the BOCVS problem (Sec. 4) and solve it by designing a novel UCB-based algorithm67

(Sec. 4.1) with a theoretical analysis of its properties, including the conditions under which it is68

provably no-regret and the impact of the availability of cheaper control sets on the regret incurred69

by the most expensive control set, and discuss the practical considerations (Sec. 4.2);70

• We empirically evaluate the performance of our proposed algorithm against the baselines under71

several experimental settings with synthetic and real-world datasets (Sec. 5), including a plant72

growth dataset and an airfoil self-noise dataset corresponding, respectively, to the precision73

agriculture and advanced manufacturing use cases motivated earlier in this section.74

2 Related Work75

The work of [10] introduced BO with partially specified queries (BOPSQ) and tackled the problem76

with Thompson sampling. However, it fails to consider the relative costs of control sets, which hinders77

the learner’s ability to take advantage of all control sets even in the presence of more deterministic78

control sets. The work of [22] proposed BO with uncertain inputs in which the executed query79

is sampled from a probability distribution depending on the proposed query. Though related, its80

problem setting is motivated more by uncertainty in the input query even post-observation and does81

not involve variable subset selection. These two works are part of a line of research investigating BO82

in situations where the learner may not have full control over all variables in a query, which includes83

BO for expected values [34], risk-averse BO [2, 18, 19], and distributionally robust BO [14, 21, 33].84

These works also do not consider variable subset selection. Our treatment of the BOCVS problem is85

inspired by multi-fidelity BO in which the learner has access to cheap, low-fidelity surrogates of the86

true objective function [12, 24, 31, 32]. In such works (and in ours), modeling costs is crucial as the87

learner would simply choose the highest-fidelity information source (in ours, the most deterministic88

control set) otherwise. While the general idea of paying less for potentially less informative queries89

is similar, our problem setting is fundamentally different: The lack of informativeness comes from90

the uncertainty of the executed query as opposed to a bias in the observed function values.91

2

3 BO and Gaussian Processes92

We will first give a brief review of conventional BO [8]. Given a query set X and an objective function93

f : X → R, a learner wishes to find the maximizing query x∗ := argmaxx∈X f(x). However, f is94

black-box (i.e., not available in closed form) and can only be learned by submitting a query xt ∈ X95

in each iteration t for function evaluation and receiving a noisy observation yt := f(xt) + ξt where96

each ξt is an i.i.d. noise with a zero mean. Each function evaluation is assumed to be expensive in97

some way, such as in terms of money or time spent. So, the learner must be sample-efficient and98

find x∗ in as few iterations as possible. BO achieves sample efficiency by leveraging a Bayesian99

model to represent a probabilistic belief of the function values at unobserved regions of X in a100

principled manner. While any Bayesian model may be used for BO, Gaussian processes (GPs) [38]101

are a common choice as they enable exact posterior inference: The GP posterior belief of f at any102

query x ∈ X after t iterations is a Gaussian with posterior mean and variance given by103

µt(x) := kt(x)
⊤(Kt + λI)−1yt , σ2

t (x) := k(x,x)− kt(x)
⊤(Kt + λI)−1kt(x) (1)

where yt := (yj)
t
j=1 ∈ Rt, k is a positive semidefinite kernel (covariance function), kt(x) :=104

(k(x,xj))
t
j=1 ∈ Rt, Kt := (k(xj ,xj′))

t
j,j′=1 ∈ Rt×t, and λ is an algorithm parameter; if the noise105

is a Gaussian with variance σ2, then the true posterior is recovered with λ = σ2. The kernel k is an106

important modeling choice as the GP posterior mean will reside in the reproducing kernel Hilbert107

space (RKHS) associated with k. For simplicity, we assume w.l.o.g. that k(x,x′) ≤ 1 for any pair of108

queries x,x′ ∈ X . Kernel k affects the maximum information gain (MIG) defined as109

γT (X) := max
{xt}T

t=1⊆X
0.5 log

∣∣I+ λ−1KT

∣∣ .
The MIG characterizes the statistical complexity of a problem and plays an integral role in the110

theoretical analysis. For the commonly used squared exponential kernel, γT (X) = O((log T)d+1),111

while for the Matérn kernel with ν > 1, γT (X) = O(T d(d+1)/(2v+d(d+1))(log T)) [29]. Importantly,112

γT (X) is increasing in the volume of X [29, Theorem 8].113

4 BO with Cost-varying Variable Subsets (BOCVS)114

The BOCVS problem consists of a compact query set X ⊂ Rd and an objective function f : X → R115

in the RKHS of k with the RKHS norm upper bounded by B. For simplicity, assume w.l.o.g. that116

X = [0, 1]d. Let [d] := {1, 2, ..., d}. The learner is given a collection I ⊆ 2[d] of control sets117

indexed by 1, 2, . . . ,m := |I|. Each control set i ∈ [m], denoted by Ii ⊆ [d], indicates the variables118

in a query with values that can be chosen by the learner. The complement Ii := [d] \ Ii of Ii is119

the corresponding random set indicating the variables in a query with values that will be randomly120

sampled from some distribution. A query x ∈ X can be represented by a combination of partial121

queries [xi,x−i] comprising the control partial query xi := (xℓ)ℓ∈Ii (i.e., xi collects the variables122

indexed by Ii) and the random partial query x−i := (xℓ)ℓ∈Ii
where xℓ denotes the ℓ-th variable in123

the query vector x. Note that [xi,x−i] is not a simple vector concatenation as the variables may need124

to be reordered according to their indices. Furthermore, let X i := {xi | x ∈ X}.125

In iteration t, the learner chooses control set it ∈ I and specifies the values in control partial query126

xit . The random partial query x−it will then be randomly sampled from the environment. For127

example, if d = 4 and Iit = {1, 3}, then Iit = {2, 4} and the learner will be able to choose the128

values in xit (i.e., the 1st and 3rd variables) but not those in x−it (i.e., the 2nd and 4th variables).129

The full query in iteration t is then xt = [xit ,x−it] = (xt,ℓ)ℓ∈[d]. Each observed variable xt,ℓ for130

ℓ ∈ Iit is a realization of a random variable Xt,ℓ ∼ Pℓ. The observed x−it is then a realization of131

the random vector X−it := (Xt,ℓ)ℓ∈Iit
∼ P−it where P−it is the product measure×ℓ∈Iit

Pℓ. In132

other words, each variable in a random partial query is independently sampled from a probability133

distribution that governs that variable. All distributions are assumed to be known. The learner then134

observes yt := f(xt) + ξt where each ξt is i.i.d. σ-sub-Gaussian noise with a zero mean. Fig. 1135

illustrates two iterations in a BOCVS problem setting.136

The learner wishes to find the optimal control set i∗ and specified values in control partial query xi∗137

that maximize the expected value of f([xi,X−i]) where the expectation is w.r.t. X−i ∼ P−i:138

(i∗,xi∗) := argmax
(i,xi)∈[m]×X i

E
[
f([xi,X−i])

]
.

3

Figure 1: Two iterations in a BOCVS problem setting. The grey boxes are isometric views of a query
set X ⊂ R3. The blue regions depict the probability densities of random vectors [xit ,X−it] and
[xit+1 ,X−it+1]. In iteration t, the learner chooses the control set it = 1 and specifies the value (of
the first variable xt,1) in control partial query xit , while the last two variables Xt,2, Xt,3 in random
partial query X−it will be randomly sampled. In iteration t+ 1, the learner chooses the control set
it+1 = 2 and specifies the values (of the first two variables xt,1, xt,2) in control partial query xit+1 ,
while the last variable Xt,3 in random partial query X−it+1 will be randomly sampled.

The learner has an initial budget C ∈ R+ and every control set Ii has an associated cost ci > 0 for139

all i ∈ [m]. Let the control set indices be defined such that c1 ≤ c2 ≤ . . . ≤ cm.1140

In every iteration t, the learner pays cit . The learning procedure ends after T iterations when141

C −
∑T

t=1 cit < ciT+1
, i.e., the learner has not enough budget left to pay for the chosen control142

set. T will now be a random variable depending on the algorithm and the random outcomes of the143

learning procedure. The cost-varying cumulative regret is defined as144

RT :=
∑T

t=1 cit
(
E
[
f([xi∗ ,X−i∗])

]
− E

[
f([xit ,X−it])

])
.

The regret incurred by choosing a sub-optimal control set and specifying sub-optimal values in the145

control partial query is weighted by the cost of that control set. This naturally incorporates the notion146

that the penalty for sub-optimal plays is lower if the play was cheap, while also penalizing using147

the entire budget on sub-optimal plays, regardless of whether those plays are cheap or expensive.148

Intuitively, to minimize the cost-varying regret, a learner would attempt to use the cheap control sets149

(i.e., low ci, low E
[
f([xi,X−i])

]
) to explore the query space, and use the expensive control sets (i.e.,150

high ci, high E
[
f([xi,X−i])

]
) to exploit control partial queries with high expected function values.1151

When all ci = 1, we recover the BOPSQ problem [10], and C is simply the number of iterations152

in the learning trajectory. In fact, BOPSQ reduces to a simpler problem if there exists a full query153

control set that allows the learner to choose the values of all d variables. If [d] ∈ I, then Ii∗ = [d]154

and E
[
f([xi∗ ,X−i∗])

]
= maxx∈X f(x) since expectations of a function are never greater than the155

maximum value of the function. In other words, the full query control set is guaranteed to be the156

optimal control set and the BOPSQ problem reduces to one of conventional BO. In general, under157

BOPSQ, any control set that is a strict subset of another will never be chosen.158

4.1 UCB-CVS159

Alg. 1 describes our UCB-CVS algorithm for solving the BOCVS problem. In iteration t, it uses the160

GP posterior belief of f to construct an upper confidence bound (UCB) ut−1 of f :161

ut−1(x) = µt−1(x) + βtσt−1(x)

where the sequence (βt)t≥1 is an algorithm parameter that controls the tradeoff between exploration162

and exploitation. UCB-based algorithm design is a classic strategy in the stochastic bandits [16,163

Ch. 7] and BO literature [4, 29] and makes use of the “optimism in the face of uncertainty” (OFU)164

principle [15]: Queries with a large posterior standard deviation (i.e., high uncertainty) are given high165

acquisition scores as the function values at those queries may be potentially high. UCB-CVS adapts166

this strategy by taking the expectation of the UCB as part of the acquisition process. Due to the167

monotonicity of expectation, if ut−1 is an upper bound of f (i.e., ut−1(x) ≥ f(x) for any x ∈ X),168

then E
[
ut−1([x

i,X−i])
]

is also an upper bound of E
[
f([xi,X−i])

]
for any i ∈ [m],xi ∈ X i.169

1While our problem definition does not require that ci ≤ cj ⇔ maxxi∈X i E
[
f([xi,X−i])

]
≤

maxxj∈Xj E
[
f([xj ,X−j])

]
, one might reasonably expect this to be the case in real-world problems, i.e.,

"better" control sets cost more to specify. This also implies that Ii ⊆ Ij ⇒ ci ≤ cj .

4

Algorithm 1 UCB-CVS
1: Input: GP with kernel k, budget C, control sets I, costs (ci)mi=1, ϵ-schedule (ϵt)

∞
t=1

2: for iteration t = 1 to ∞ do
3: gt := max(i,xi)∈[m]×X i E

[
ut−1([x

i,X−i])
]

4: S1 := {i ∈ [m] | maxxi∈X i E
[
ut−1([x

i,X−i])
]
+ ϵt ≥ gt}

5: S2 := {i ∈ S1 | ci = minj∈S1
cj}

6: (it,x
it) := argmax(i,xi)∈S2×X i E

[
ut−1([x

i,X−i])
]

7: break if C −
∑t−1

τ=1 ciτ < cit
8: Observe x−it drawn from P−it

9: Observe yt := f(xt) + ξt
10: Dt := {(xτ , yτ)}tτ=1
11: end for
12: return Dt

UCB-CVS also takes as input an ϵ-schedule (ϵt)
∞
t=1 where ϵt ≥ 0 for all t. To choose the control170

set in iteration t, it first computes gt which is the expected UCB of the best control set and specified171

values in the control partial query (Step 3). It then collects every control set i that fulfills the condition172

maxxi∈X i E
[
ut−1([x

i,X−i])
]
+ ϵt ≥ gt into a set S1 (Step 4). It further reduces this set S1 to S2173

by retaining only the control sets with the lowest cost (Step 5). Finally, it chooses the control set from174

S2 with the largest expected UCB value (Step 6). Each ϵt thus serves as a relaxation that enables175

exploration with cheaper control sets. Choosing many ϵt to be large results in many iterations of176

choosing cheaper control sets; conversely, choosing ϵt = 0 for all t ignores all costs.177

Our first result upper bounds the cost-varying cumulative regret incurred by UCB-CVS. Define178

the feasible set X̃i :=×d

ℓ=1
[aiℓ, b

i
ℓ] for each control set i such that aiℓ = 0, biℓ = 1 if ℓ ∈ Ii, and179

aiℓ = sup{a ∈ [0, 1] | Fℓ(a) = 0}, biℓ = inf{b ∈ [0, 1] | Fℓ(b) = 1} otherwise, where Fℓ is the CDF180

of Xℓ ∼ Pℓ. X̃i is a subset of X in which any query chosen with control set i must reside. Define Ti181

as the total number of iterations in which control set i is chosen.182

Theorem 4.1. With probability at least 1− δ, UCB-CVS (Alg. 1) incurs a cost-varying cumulative183

regret bounded by184

RT ≤ O

((
B +

√
γT (X) + log

m+ 1

δ

)(
m∑
i=1

ci

(√
TiγTi

(X̃i) + log
m+ 1

δ

)))
+ cm

T∑
t=1

ϵt

by setting βt = B + σ
√
2 (γt−1(X) + 1 + log((m+ 1)/δ)).185

For any appropriately chosen kernel such that γT (X) < O(
√
T) (e.g., commonly used squared186

exponential kernel, see Sec. 3) and ϵ-schedule such that
∑T

t=1 ϵt is sublinear in T , the cumulative187

regret incurred will be sublinear in T : limT→∞ RT /T = 0. Since the mean of a sequence is188

no less than the minimum, and all ci > 0, this further implies the desired no-regret property:189

limT→∞ min1≤t≤T (E
[
f([xi∗ ,X−i∗])

]
− E

[
f([xit ,X−it])

]
) = 0, i.e., the best control set and190

specified values in control partial query in the algorithm’s choices eventually converge to the optimal191

solution. The proof of Theorem 4.1 relies on choosing an appropriate sequence of βt such that192

ut−1(x) ≥ f(x) for any x ∈ X , t ≥ 1 with high probability [4, Theorem 2]. The cumulative regret193

is bounded by a sum of expectations of posterior standard deviations, which can then be bounded by194

a sum of posterior standard deviations plus some additional terms [13, Lemma 3] and in turn bounded195

in terms of the MIG [4, Lemma 4]. The proofs of all results in this paper are provided in Appendix A.196

Since each γTi
(X̃i) is increasing in the volume of X̃i, Theorem 4.1 states that control sets with197

smaller feasible sets will incur less regret. If the size of a feasible set is taken to be a reasonable198

surrogate for the diffuseness of the probability distributions involved, Theorem 4.1 then suggests199

that control sets with corresponding random sets whose probability distributions are less diffuse will200

incur less regret.2 Theorem 4.1 also informs us that one sufficient condition on the ϵ-schedule for201

2The feasible set of control set i is defined in a worst-case manner, which may be too conservative to be
a good surrogate for diffuseness, especially for concentrated probability distributions with non-zero density
everywhere. Nevertheless, it facilitates the worst-case analysis of the regret bounds.

5

the cost-varying regret to be sublinear in T is that
∑T

t=1 ϵt is sublinear in T . Our next proposition202

provides an alternative condition (neither is more general than the other):203

Proposition 4.2. If there exists a ϵ̃ > 0 s.t. for all i ̸= i∗, ϵt ≤ E
[
f([xi∗ ,X−i∗])

]
−204

maxxi∈X i E
[
f([xi,X−i])

]
− ϵ̃ eventually (i.e., the inequality holds for all t ≥ q for some q ≥ 1),205

and γT (X) < O(
√
T), then limT→∞ Ti/T = 0 for all i ̸= i∗ and UCB-CVS incurs a cost-varying206

cumulative regret that is sublinear in T by setting βt = B+σ
√
2 (γt−1(X) + 1 + log((m+ 1)/δ)).207

The above results have shown that with an appropriately chosen ϵ-schedule, UCB-CVS satisfies the208

no-regret property. However, ignoring all costs by setting ϵt = 0 for all t also achieves no-regret.209

This begs the question: In what way does a good ϵ-schedule improve UCB-CVS? Supposing the210

most expensive control set is the full query control set, the presence of queries chosen with cheaper211

control sets should reduce the cost-varying regret incurred by the full query control set by ruling212

out low function value regions and directing the full queries towards high function value regions.213

Additionally, it is reasonable to conjecture that the more diffuse each variable’s (indexed by ℓ)214

probability distribution Pℓ is, the more the cheaper control sets would explore the query space and215

thus, the lower the cost-varying regret incurred by the full query control set. To derive such a result,216

the plan of attack is to relate the variances (i.e., notion of diffuseness) of the probability distributions217

to the distances between queries chosen with the cheaper control sets, followed by analyzing the218

effect of these distances and the number of times cheaper control sets were played on the MIG term219

of the most expensive control set. Our next result relates the distance between pairs of queries chosen220

with control set i to the variance V[Xℓ] of every probability distribution Pℓ for ℓ ∈ Ii:221

Lemma 4.3. Suppose that for each control set i, the random variable Yi :=
∥∥[0,X−i

1]− [0,X−i
2]
∥∥2222

has a median Mi s.t. E[Yi|Yi > Mi] ≤ hiMi for some hi > 0 where X−i
1 ,X−i

2 ∼ P−i. With223

probability at least 1− δ, there will be at least Ni non-overlapping pairs of queries x and x′ chosen224

by UCB-CVS (Alg. 1) with control set i s.t. ∥x− x′∥2 ≥ Mi where225

Ni =
⌊
(Ti − 1)/4−

√
(Ti/4) log(1/δ)

⌋
and Mi ≥ (4/(hi + 1))

∑
ℓ∈Ii

V[Xℓ] . (2)

From (2), the higher the variances of the distributions that govern the variables in the random set,226

the larger the lower bound Mi on the squared distance between at least Ni pairs of queries chosen227

with control set i. As expected, the number Ni of pairs increases with Ti (i.e., the total number of228

iterations in which control set i is chosen). The assumption on Yi is mild: As long as Yi has at least229

1 non-zero median, it will hold. The assumption excludes the case in which Pℓ for all ℓ ∈ Ii are230

degenerate with all probability mass on a single point. With Lemma 4.3, we now derive an alternative231

regret bound that depends on the variances of the distributions and the number of plays of cheaper232

control sets:233

Theorem 4.4. Suppose that the following hold:234

• Assumption of Lemma 4.3 holds;235

• k(x,x′) is an isotropic kernel which only depends on distance between x & x′ and can be written236

as k(∥x− x′∥);237

• There exists an iteration r s.t. for all t ≤ r, it ≤ m− 1, and for all t > r, it = m .238

Then, with probability at least 1 − δ, UCB-CVS (Alg. 1) incurs a cost-varying cumulative regret239

bounded by240

RT ≤ O

((
B +

√
γT (X) + log

2m

δ

)(
cm

(√
TγT (X)− L+ log

2m

δ

)

+

m−1∑
i=1

ci

(√
TiγTi(X̃i) + log

2m

δ

)))
+ cm

T∑
t=1

ϵt

L := λ

(
m−1∑
i=1

Ni log
(
Vi − 2k

(√
Mi

)
− k
(√

Mi

)2)
+W

)
by setting βt = B + σ

√
2 (γt−1(X) + 1 + log((2m)/δ)) where Ni and Mi are previously defined241

in Lemma 4.3, and Vi and W are residual terms defined in Appendix A.4.242

6

Theorem 4.4 shows that the MIG term pertaining to the most expensive control set m is reduced by243

L which increases as Ni increases, which in turn increases as Ti increases. This suggests that an244

ϵ-schedule that increases the number of times cheaper control sets are played can reduce the MIG245

term. L also increases as k(
√
Mi) decreases. For common kernels such as the squared exponential246

or Matérn kernel with ν > 1 (which satisfy the second assumption on isotropic kernel), k(
√
Mi)247

decreases as Mi increases, from which we may conclude that higher variance probability distributions248

governing each Xℓ lead to a larger L due to (2) and hence a larger decrease on the MIG term. In249

cases where cm ≫ ci for all i ̸= m, a carefully chosen ϵ-schedule can thus lead to a large decrease in250

the regret bound via L. The third assumption is (informally) approximately true in practice due to the251

design of UCB-CVS: If a decreasing ϵ-schedule is used, the algorithm will choose the cheaper but252

sub-optimal control sets at the start. After ϵt has decreased past a certain value, the algorithm will253

only choose the optimal (and likely most expensive) control set. The proof sketch upper bounds the254

sum of posterior standard deviations of queries chosen with control set m with the MIG term minus255

the sum of posterior standard deviations of queries chosen with all other control sets. This latter sum256

is then lower bounded by a log determinant of the prior covariance matrix which is then decomposed257

into a sum of log determinants of pairs of queries. The dependence on the distances between the pairs258

can be made explicit in this form. Neither Theorems 4.1 nor 4.4 is more general than the other.259

4.2 Practical Considerations260

UCB-CVS is presented with the ϵ-schedule formulation for generality and ease of theoretical analysis.261

In practice, however, the ϵ-schedule is a hyperparameter that is difficult to interpret and choose.262

We propose a simple explore-then-commit (ETC) variant with which the learner only chooses the263

number of plays of each cost group (i.e., defined as a collection of control sets with the same cost264

that is not the maximum cost). In each iteration, the algorithm will choose the cost group with the265

lowest cost and non-zero remaining plays, and then choose the control set within that cost group with266

the largest expected UCB (similar to Step 6 in Alg. 1). Once all cost groups have zero remaining267

plays, the algorithm chooses the control set with the largest expected UCB among all control sets.268

This algorithm is highly interpretable and is equivalent to UCB-CVS with a specific sublinear ϵ-269

schedule (that cannot be known a priori). Furthermore, the learner should choose the number of plays270

adaptively depending on the cost of each cost group. On computational considerations, UCB-CVS271

may be computationally expensive if the number m of control sets is large (e.g., if every subset of272

variables is available as a control set and m = 2d) as each control set requires a maximization of the273

expected UCB (which can be approximated with Monte Carlo sampling). In such cases, the learner274

has the option to simply ignore any number of control sets to reduce m, as long as i∗ is not ignored.275

5 Experiments and Discussion276

This section empirically evaluates the performance of the tested algorithms with 4 objective functions:277

(a) function samples from a GP prior (3-D), (b) the Hartmann synthetic function (3-D), (c) a plant278

growth simulator built from real-world data where the variables are nutrients such as NH3 and pH (5-279

D), and (d) a simulator built from the airfoil self-noise dataset (5-D) from the UCI Machine Learning280

Repository [6]. For the first 2 objective functions, the control sets are all possible subsets of the 3281

variables except the empty set, which leads to 7 control sets. For the plant growth objective function,282

we pick 7 control sets including the full query control set. For the airfoil self-noise objective function,283

similar to that of [10], we pick 7 control sets of 2 variables each that are not subsets of each other.284

We use 3 different sets of costs for the 7 control sets: cheap ({0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 1}),285

moderate ({0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 1}), and expensive ({0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 1}). Using286

these sets of costs, the control sets are ordered such that ci < cj ⇒ maxxi∈X i E
[
f([xi,X−i])

]
≤287

maxxj∈X j E
[
f([xj ,X−j])

]
. These cost sets have fixed the optimal (i.e., last) control set to have288

a cost of 1. While these cost sets may (at first glance) seem arbitrary, it is the algorithms’ relative289

performance across these cost sets rather than the absolute performance on a single cost set that290

allows us to understand the conditions under which particular algorithms perform better or worse.291

Real-world applications (unlike the experiments conducted here) will come with their own cost sets292

defined by real-world constraints. If the real costs can also be categorized in a similar relative way293

like the above cheap, moderate, and expensive cost sets, then the results are expected to be similar.294

Every probability distribution Pℓ is a truncated normal distribution with mean 0.5 and the same295

variance which is one of 0.02, 0.04, and 0.08 (the uniform distribution on [0, 1] has variance 1/12).296

7

Figure 2: Mean and standard error (over 10 RNG seeds) of the simple regret (lower is better) incurred
against cost spent (budget) C by TS-PSQ, UCB-PSQ, ETC-50, ETC-100, and ETC-Ada with
varying objective functions, cost sets, and variances of distributions. A diamond indicates the average
budget after which an algorithm only chooses the optimal control set.

8

We compare the performance of our algorithm against that of the baseline Thompson sampling297

(TS-PSQ) algorithm developed in [10]. We test UCB-PSQ (ϵ-schedule with ϵt = 0 for all t) along298

with the ETC variant of UCB-CVS (Sec. 4.2) with 3 sets of hyperparameters: 50 plays per cost group299

(ETC-50), 100 plays per cost group (ETC-100), and a cost-adaptive version with 4/cj plays per cost300

group where cj is the cost of the control sets in that cost group (ETC-Ada). We also investigated301

simple extensions of TS-PSQ, UCB-PSQ, and expected improvement (adapted for BOPSQ) for the302

BOCVS problem by dividing the acquisition score of a control set by its cost in a manner similar to303

that in [28, Sec. 3.2]. We observed that these naive methods generally do not work well; we defer the304

results and discussion of these methods to Appendix B. Refer to Appendix C for full descriptions of305

all experimental settings and algorithm hyperparameters. The code for the experiments may be found306

at <to-be-disclosed-upon-acceptance>.307

Fig. 2 shows the mean and standard error (over 10 RNG seeds) of the simple regret308

min1≤t≤T (C) E
[
f([xi∗ ,X−i∗])

]
− E

[
f([xit ,X−it])

]
(lower is better) incurred against cost spent309

(budget) C by each algorithm with varying objective functions, cost sets, and variances of distributions310

where T (C) denotes the maximum iteration reached after spending C. The simple regret encodes311

the value of the best solution an algorithm has chosen within a certain budget and is a measure of312

cost efficiency. We report the observations below:313

(1) UCB-CVS variants outperform TS-PSQ and UCB-PSQ under cheap/moderate costs when314

the full query control set is available. With the GP sample, Hartmann, and plant growth objective315

functions, the full query control set is available. TS-PSQ and UCB-PSQ only choose the full query316

control set in every iteration and are very cost inefficient under cheap and moderate costs, while317

UCB-CVS variants are able to use the cheaper control sets for exploration, followed by using the full318

query control set for exploitation, and find much better solutions with the same budget. As expected,319

their performance advantage reduces as the costs increase and cm gets closer to ci for all i ̸= m.320

(2) Cost-adaptive UCB-CVS (ETC-Ada) can maintain competitive performance under expensive321

costs. The non-cost-adaptive variants, ETC-50 and ETC-100, perform worse than TS-PSQ and UCB-322

PSQ under expensive costs. In contrast, it can be observed that ETC-Ada generally performs well323

under all costs by tuning the number of plays of suboptimal cost groups according to their costs. We324

recommend practitioners to use adaptive algorithms to achieve good performance under any cost set.325

(3) TS-PSQ and UCB-PSQ perform relatively well when the control sets are not subsets of each326

other. With the airfoil self-noise objective function, TS-PSQ and UCB-PSQ perform better as the327

control sets with this objective function are not subsets of each other and thus, they can also use the328

cheaper control sets during learning, while the UCB-CVS variants suffer worse performance here329

due to artificially selecting suboptimal control sets and queries with the ϵ-relaxations. This worse330

performance is encoded in Theorems 4.1 and 4.4 as the sum of ϵt terms.331

(4) Increasing the variance of the probability distributions has competing effects on the simple332

regret. Of the 42 experimental settings (combinations of objective function, cost set, and algorithm)333

in which the variance makes a difference (excluding TS-PSQ and UCB-PSQ for all objective functions334

except airfoil), the settings with variance 0.02, 0.04, and 0.08 achieved the lowest mean simple regret335

by the end 11, 6, and 25 times, respectively. This generally supports Theorem 4.4’s prediction that336

higher variances decrease the upper bound on regret. However, due to the looseness of the bound,337

this effect is not guaranteed and there are still cases where lower variances lead to a lower regret,338

as suggested by the argument about feasible sets when discussing Theorem 4.1; note that the same339

MIGs of the feasible sets for control sets 1 to m− 1 appear in Theorem 4.4. We observe competing340

effects and conclude that the effect of increasing variance is problem- and algorithm-dependent.341

While higher variances may lead to more exploration, they may also result in too much smoothing of342

function values which may hinder the learner’s ability to focus on high-value query regions.343

6 Conclusion344

This paper introduces the BOCVS problem and describes the UCB-CVS algorithm that is provably345

no-regret in solving this problem. We show that our algorithm performs well across several different346

experimental settings and achieves the desired goal of finding significantly better solutions within the347

same budget. This work opens up avenues of future research: In particular, an entropy search-based348

algorithm [11, 20, 37] that chooses control sets and queries based on expected information gain per349

unit cost is a non-trivial and promising direction for alternative methods of solving BOCVS.350

9

<to-be-disclosed-upon-acceptance>

References351

[1] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy.352

BoTorch: A framework for efficient Monte-Carlo Bayesian optimization. In Proc. NeurIPS,353

pages 21524–21538, 2020.354

[2] S. Cakmak, R. Astudillo Marban, P. Frazier, and E. Zhou. Bayesian optimization of risk355

measures. In Proc. NeurIPS, pages 20130–20141, 2020.356

[3] Y. Chen, A. Huang, Z. Wang, I. Antonoglou, J. Schrittwieser, D. Silver, and N. de Freitas.357

Bayesian optimization in AlphaGo. arXiv:1812.06855, 2018.358

[4] S. R. Chowdhury and A. Gopalan. On kernelized multi-armed bandits. In Proc. ICML, pages359

844–853, 2017.360

[5] D. E. Crabtree and E. V. Haynsworth. An identity for the Schur complement of a matrix.361

Proceedings of the American Mathematical Society, 22(2):364–366, 1969.362

[6] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.363

uci.edu/ml.364

[7] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. GPyTorch: Blackbox365

matrix-matrix Gaussian process inference with GPU acceleration. In Proc. NeurIPS, pages366

7587–7597, 2018.367

[8] R. Garnett. Bayesian Optimization. Cambridge University Press, 2023. To appear.368

[9] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,369

E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,370

M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,371

T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with372

NumPy. Nature, 585(7825):357–362, 2020.373

[10] S. Hayashi, J. Honda, and H. Kashima. Bayesian optimization with partially specified queries.374

Machine Learning, 111(3):1019–1048, 2022.375

[11] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search for376

efficient global optimization of black-box functions. In Proc. NIPS, pages 918–926, 2014.377

[12] K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schneider, and B. Póczos. Gaussian process bandit378

optimisation with multi-fidelity evaluations. In Proc. NIPS, pages 1000–1008, 2016.379

[13] J. Kirschner and A. Krause. Information directed sampling and bandits with heteroscedastic380

noise. In Proc. COLT, pages 358–384, 2018.381

[14] J. Kirschner, I. Bogunovic, S. Jegelka, and A. Krause. Distributionally robust Bayesian382

optimization. In Proc. AISTATS, pages 2174–2184, 2020.383

[15] T. L. Lai, H. Robbins, et al. Asymptotically efficient adaptive allocation rules. Advances in384

Applied Mathematics, 6(1):4–22, 1985.385

[16] T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.386

[17] J. Mockus, V. Tiešis, and A. Žilinskas. The application of Bayesian methods for seeking the387

extremum. In L. C. W. Dixon and G. P. Szegö, editors, Towards Global Optimization 2, pages388

117–129. North-Holland Publishing Company, 1978.389

[18] Q. P. Nguyen, Z. Dai, B. K. H. Low, and P. Jaillet. Optimizing conditional value-at-risk of390

black-box functions. In Proc. NeurIPS, pages 4170–4180, 2021.391

[19] Q. P. Nguyen, Z. Dai, B. K. H. Low, and P. Jaillet. Value-at-risk optimization with Gaussian392

processes. In Proc. ICML, pages 8063–8072, 2021.393

[20] Q. P. Nguyen, Z. Wu, B. K. H. Low, and P. Jaillet. Trusted-maximizers entropy search for394

efficient Bayesian optimization. In Proc. UAI, pages 1486–1495, 2021.395

[21] T. Nguyen, S. Gupta, H. Ha, S. Rana, and S. Venkatesh. Distributionally robust Bayesian396

quadrature optimization. In Proc. AISTATS, pages 1921–1931, 2020.397

[22] R. Oliveira, L. Ott, and F. Ramos. Bayesian optimisation under uncertain inputs. In Proc.398

AISTATS, pages 1177–1184, 2019.399

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,400

N. Gimelshein, L. Antiga, et al. PyTorch: An imperative style, high-performance deep learning401

library. In Proc. NeurIPS, pages 8026–8037, 2019.402

[24] M. Poloczek, J. Wang, and P. Frazier. Multi-information source optimization. In Proc. NIPS,403

pages 4288–4298, 2017.404

[25] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Proc. NIPS,405

pages 1177–1184, 2007.406

[26] R. Shalloo, S. Dann, J.-N. Gruse, et al. Automation and control of laser wakefield accelerators407

using Bayesian optimization. Nature Communications, 11(1):1–8, 2020.408

[27] B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P.409

Adams, and A. G. Doyle. Bayesian reaction optimization as a tool for chemical synthesis.410

Nature, 590(7844):89–96, 2021.411

[28] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning412

algorithms. In Proc. NIPS, pages 2951–2959, 2012.413

[29] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit414

setting: no regret and experimental design. In Proc. ICML, pages 1015–1022, 2010.415

[30] P. M. Swamidass. Encyclopedia of production and manufacturing management. Springer416

Science & Business Media, 2000.417

[31] K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimization. In Proc. NIPS, pages418

2004–2012, 2013.419

[32] S. Takeno, H. Fukuoka, Y. Tsukada, T. Koyama, M. Shiga, I. Takeuchi, and M. Karasuyama.420

Multi-fidelity Bayesian optimization with max-value entropy search and its parallelization. In421

Proc. ICML, pages 9334–9345, 2020.422

[33] S. S. Tay, C. S. Foo, U. Daisuke, R. Leong, and B. K. H. Low. Efficient distributionally robust423

Bayesian optimization with worst-case sensitivity. In Proc. ICML, pages 21180–21204, 2022.424

[34] S. Toscano-Palmerin and P. I. Frazier. Bayesian optimization with expensive integrands. SIAM425

Journal on Optimization, 32(2):417–444, 2022.426

[35] R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon. Bayesian427

optimization is superior to random search for machine learning hyperparameter tuning: Anal-428

ysis of the black-box optimization challenge 2020. In Proc. NeurIPS 2020 Competition and429

Demonstration Track, pages 3–26, 2021.430

[36] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,431

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,432

N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,433

E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,434

C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0435

Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature436

Methods, 17:261–272, 2020.437

[37] Z. Wang and S. Jegelka. Max-value entropy search for efficient Bayesian optimization. In Proc.438

ICML, pages 3627–3635, 2017.439

[38] C. K. Williams and C. E. Rasmussen. Gaussian Processes for Machine Learning. MIT Press,440

Cambridge, MA, 2006.441

11

A Proofs442

A.1 Proof of Theorem 4.1443

Theorem 4.1. With probability at least 1− δ, UCB-CVS (Alg. 1) incurs a cost-varying cumulative444

regret bounded by445

RT ≤ O

((
B +

√
γT (X) + log

m+ 1

δ

)(
m∑
i=1

ci

(√
TiγTi

(X̃i) + log
m+ 1

δ

)))
+ cm

T∑
t=1

ϵt.

by setting βt = B + σ
√
2 (γt−1(X) + 1 + log((m+ 1)/δ)).446

Proof.

RT :=

T∑
t=1

cit

(
E
[
f([xi∗ ,X−i∗])

]
− E

[
f([xit ,X−it])

])
≤

T∑
t=1

cit

(
E
[
ut−1([x

i∗ ,X−i∗])
]
− E

[
f([xit ,X−it])

])
(i)

≤
T∑

t=1

cit
(
E
[
ut−1([x

it ,X−it])
]
− E

[
f([xit ,X−it])

]
+ ϵt

)
≤

T∑
t=1

cit
(
E
[
ut−1([x

it ,X−it])
]
− E

[
f([xit ,X−it])

])
+ cm

T∑
t=1

ϵt (3)

=

T∑
t=1

cit
(
E
[
ut−1([x

it ,X−it])− f([xit ,X−it])
])

+ cm

T∑
t=1

ϵt

=

 m∑
i=1

ci
∑
t∈T̃i

E
[
ut−1([x

it ,X−it])− f([xit ,X−it])
]+ cm

T∑
t=1

ϵt

(ii)

≤

 m∑
i=1

ci(2βT)
∑
t∈T̃i

E
[
σt−1([x

it ,X−it])
]+ cm

T∑
t=1

ϵt

(iii)

≤

 m∑
i=1

ci(2βT)

2
∑
t∈T̃i

σt−1(xt) + 4 log
m+ 1

δ
+ 8 log(4) + 1

+ cm

T∑
t=1

ϵt (4)

(iv)

≤

(
m∑
i=1

ci(2βT)

(
2

√
4(Ti + 2)γTi

(X̃i) + 4 log
m+ 1

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

= O

(
m∑
i=1

ciβT

(√
TiγTi

(X̃i) + log
m+ 1

δ

))
+ cm

T∑
t=1

ϵt (5)

= O

((
B +

√
γT (X) + log

m+ 1

δ

)(
m∑
i=1

ci

(√
TiγTi(X̃i) + log

m+ 1

δ

)))
+ cm

T∑
t=1

ϵt

where T̃i is the ordered sequence of iterations at which control set i is chosen, (i) follows from the447

algorithm’s choice of xit , (ii) follows from Lemma A.3 with probability δ/(m+ 1), (iii) follows448

from Lemma A.4 with probability δ/(m+ 1), bt = 1 for all t ≥ 1, Xt = σt−1([x
it ,X−it]), and the449

assumption that k(x, x) = 1 which implies σt−1(x) ≤ 1 for all x ∈ X and all t ≥ 1, applied once450

for each control set i 3, and (iv) follows from Lemma A.2 and the definition of X̃i as the feasible set451

for control set i. A union bound over the m+ 1 events comprising the m applications of Lemma A.4452

and single application of Lemma A.3 yields the desired 1− δ probability bound.453

3For each such application of Lemma A.4, Xτ = σα(τ)−1([x
iα(τ) ,X−iα(τ)]), α(τ) := [T̃i]τ is the τ -th

element of the ordered set of iterations T̃i.

12

A.2 Proof of Proposition 4.2454

Proposition 4.2. If there exists a ϵ̃ > 0 s.t. for all i ̸= i∗,455

ϵt ≤ E
[
f([xi∗ ,X−i∗])

]
− max

xi∈X i
E
[
f([xi,X−i])

]
− ϵ̃

eventually (i.e., the inequality holds for all t ≥ q for some q ≥ 1), and γT (X) < O(
√
T), then456

limT→∞ Ti/T = 0 for all i ̸= i∗ and UCB-CVS incurs a cost-varying cumulative regret that is457

sublinear in T by setting βt = B + σ
√

2 (γt−1(X) + 1 + log((m+ 1)/δ)).458

Proof. Define xi
t := argmaxxi∈X i E

[
ut−1([x

i,X−i])
]
, and jt :=459

argmaxi∈[m] maxxi∈X i E
[
ut−1([x

i,X−i])
]
. Using 1 [A] to denote the indicator function460

that is equal to 1 when the event A is true and 0 otherwise,461

Ti

(i)

≤
T∑

t=1

1

[
E
[
ut−1([x

i
t,X

−i])
]
+ ϵt ≥ E

[
ut−1([x

jt
t ,X−jt])

]]
(ii)

≤
T∑

t=1

1

[
E
[
ut−1([x

i
t,X

−i])
]
+ ϵt ≥ E

[
ut−1([x

i∗ ,X−i∗])
]]

≤
T∑

t=1

1

[
E
[
ut−1([x

i
t,X

−i])
]
+ ϵt ≥ E

[
f([xi∗ ,X−i∗])

]]
=

T∑
t=1

1

[
E
[
ut−1([x

i
t,X

−i])
]
≥ E

[
f([xi∗ ,X−i∗])

]
− ϵt

]
≤ q − 1 +

T∑
t=q

1

[
E
[
ut−1([x

i
t,X

−i])
]
≥ E

[
f([xi∗ ,X−i∗])

]
− ϵt

]

≤ q − 1 +

T∑
t=q

1

[
E
[
ut−1([x

i
t,X

−i])
]
≥ max

xi∈X i
E
[
f([xi,x−i])

]
+ ϵ̃

]

≤ q − 1 +

T∑
t=q

1
[
E
[
ut−1([x

i
t,X

−i])
]
≥ E

[
f([xi

t,X
−i])

]
+ ϵ̃
]

= q − 1 +

T∑
t=q

1
[
E
[
ut−1([x

i
t,X

−i])
]
− E

[
f([xi

t,X
−i])

]
≥ ϵ̃
]

≤ q − 1 +
1

ϵ̃

T∑
t=q

E
[
ut−1([x

i
t,X

−i])
]
− E

[
f([xi

t,X
−i])

]
(iii)

≤ q − 1 +O∗
(
1

ϵ̃

√
T − q + 1

(
B
√
γT−q+1(X) + γT−q+1(X)

))
where (i) follows since control set i is only played when the condition on the RHS is true, (ii) follows462

from the definitions of jt and xjt
t , and (iii) follows from the steps from (3) to (5) in the proof of463

Theorem 4.1, and O∗ denotes suppressing logarithmic factors. Now dividing both sides by T and464

taking the limit as T goes to infinity,465

lim
T→∞

Ti

T
≤ lim

T→∞

1

T

(
q − 1 +O∗

(
1

ϵ̃

√
T − q + 1

(
B
√
γT−q+1(X) + γT−q+1(X)

)))
= 0

which follows from γT (X) < O(
√
T) and completes the proof that, if the conditions in the proposi-466

tion are fulfilled, suboptimal control sets will only be played a number of times that is sublinear in467

T . The proof that RT will then also be sublinear in T is straightforward. Assuming without loss of468

13

generality that i∗ = m,469

RT :=

T∑
t=1

cit

(
E
[
f([xi∗ ,X−i∗])

]
− E

[
f([xit ,X−it])

])
=

m∑
i=1

∑
t∈T̃i

ci

(
E
[
f([xi∗ ,X−i∗])

]
− E

[
f([xit ,X−it])

])

≤
m−1∑
i=1

Tici

(
E
[
f([xi∗ ,X−i∗])

]
− min

xi∈X i
E
[
f([xi,X−i])

])
+ cm

∑
t∈T̃m

(
E
[
f([xi∗ ,X−i∗])

]
− E

[
f([xit ,X−it])

])

=

m−1∑
i=1

TiCi + cm
∑
t∈T̃m

(
E
[
f([xi∗ ,X−i∗])

]
− E

[
f([xit ,X−it])

])
(i)

≤
m−1∑
i=1

TiCi +O

(
cm

(
B +

√
γT (X) + log

m+ 1

δ

)(√
TmγTm

(X̃m) + log
m+ 1

δ

))

where T̃i is the ordered sequence of iterations at which control set i is chosen and Ci :=470

ci
(
E
[
f([xi∗ ,X−i∗])

]
−minxi∈X i E

[
f([xi,X−i])

])
, and (i) follows from the steps in the proof of471

Theorem 4.1 but only for control set m and without accounting for the ϵ-schedule. Since each Ti is472

sublinear in T , dividing both sides by T , using the fact that γT (X) < O(
√
T), and taking the limit473

as T → ∞ yields the desired result and completes the proof.474

A.3 Proof of Lemma 4.3475

Lemma 4.3. Assume that, for each control set i, the random variable Yi :=
∥∥[0,X−i

1]− [0,X−i
2]
∥∥2476

has a median Mi such that E[Yi|Yi > Mi] ≤ hiMi for some hi > 0, where X−i
1 ,X−i

2 ∼ P−i. With477

probability at least 1− δ, there will be at least Ni non-overlapping pairs of queries x and x′ chosen478

by UCB-CVS (Alg. 1) with control set i such that ∥x− x′∥2 ≥ Mi, where479

Ni =

⌊
1

4
(Ti − 1)−

√
1

4
Ti log

1

δ

⌋
,

Mi ≥
4

hi + 1

∑
ℓ∈Ii

V[Xℓ].

Proof. Consider two queries x = [xi,x−i] and x′ = [x′i,x′−i] chosen with control set i. The learner480

only selects xi and x′i while x−i and x′−i are sampled from the environment. Before they are481

sampled, the queries may be considered themselves random vectors composed of one deterministic482

partial query and one random partial query. Denote these random vectors as X = [xi,X−i] and483

X′ = [x′i,X′−i]. ∥X−X′∥2 is therefore a random variable as well. Observe that484

∥X−X′∥2 =
∑
j∈Ii

(xj − x′
j)

2 +
∑
ℓ∈Ii

(Xℓ −X ′
ℓ)

2

≥
∑
ℓ∈Ii

(Xℓ −X ′
ℓ)

2

=
∥∥[0,X−i

1]− [0,X−i
2]
∥∥2

= Y ′
i .

where Y ′
i is a random variable that is i.i.d. with Yi. Therefore, any ∥X−X′∥2 can be treated as a485

random variable equal to some Y ′
i that is i.i.d. with Yi plus some non-negative term. The rest of486

14

this proof will use lower bounds on random variables i.i.d. with Yi, which will in turn imply lower487

bounds on ∥X−X′∥2.488

E [Yi] = E

∑
ℓ∈Ii

(Xℓ −X ′
ℓ)

2


=
∑
ℓ∈Ii

E
[
(Xℓ −Xℓ − (X ′

ℓ −Xℓ))
2
]

=
∑
ℓ∈Ii

E
[
((Xℓ −Xℓ)− (X ′

ℓ −X
′
ℓ))

2
]

=
∑
ℓ∈Ii

E
[
(Xℓ −Xℓ)

2 − 2(Xℓ −Xℓ)(X
′
ℓ −X

′
ℓ) + (X ′

ℓ −X
′
ℓ)

2
]

=
∑
ℓ∈Ii

E
[
(Xℓ −Xℓ)

2
]
− E

[
(Xℓ −Xℓ)(X

′
ℓ −X

′
ℓ)
]
+ E

[
(X ′

ℓ −X
′
ℓ)

2
]

=
∑
ℓ∈Ii

E
[
(Xℓ −Xℓ)

2
]
+ E

[
(X ′

ℓ −X
′
ℓ)

2
]

=
∑
ℓ∈Ii

2V[Xℓ]. (6)

We will now construct a lower bound for a median of Yi denoted Mi.489

E [Yi] = E[Yi|Yi < Mi] · P (Yi < Mi) + E[Yi|Yi = Mi] · P (Yi = Mi) + E[Yi|Yi > Mi] · P (Yi > Mi)

≤ Mi · P (Yi ≤ Mi) + E[Yi|Yi > Mi] · P (Yi > Mi)

(i)

≤ Mi · P (Yi ≤ Mi) + hiMi · P (Yi > Mi)

(ii)

≤ 1

2
Mi +

1

2
(hi ·Mi)

=
hi + 1

2
Mi

where (i) follows from our assumption on the median Mi and (ii) follows from the definition of a490

median: P (Yi ≤ Mi) ≥ 1/2. Substituting in (6) completes our construction of the lower bound for491

Mi:492

Mi ≥
2

hi + 1
E [Yi]

≥ 4

hi + 1

∑
ℓ∈Ii

V[Xℓ].

Now consider the ⌊Ti/2⌋ non-overlapping pairs of queries chosen with control set i 4. Associate each493

pair with a random variable Yij such that we have ⌊Ti/2⌋ i.i.d. random variables Yi1, Yi2, ..., Yi⌊Ti/2⌋.494

From the definition of a median, P (Yi ≥ Mi) ≥ 1/2. Without loss of generality, assume the worst-495

case such that P (Yi ≥ Mi) = 1/2. We can now construct ⌊Ti/2⌋ i.i.d. Bernoulli random variables496

Z1, Z2, ..., Zn, n = ⌊Ti/2⌋, with p = 1/2 where a success (Zj = 1) corresponds to Yij ≥ Mi and a497

failure (Zj = 0) corresponds to Yij < Mi. Further define the random variable Z :=
∑n

j=1 Zj .498

Applying Hoeffding’s inequality,499

4While we technically have
(
Ti
2

)
(overlapping) pairs, the squared distances between each such pair will be

identically distributed but not independent. For example, if Ti ≥ 3 and we knew that
(
Ti
2

)
− 1 of the squared

distances were equal to 0 (i.e., all the queries are exactly the same), the last squared distance must also be equal
to 0.

15

P

 1

n

n∑
j=1

(Zj − p) ≤ −t

 ≤ exp (−2nt2)

P

(
1

n
Z − p ≤ −t

)
≤ exp (−2nt2)

P (Z ≤ n(p− t)) ≤ exp (−2nt2).

Choosing t = p− α/n for some constant α,500

P (Z ≤ α) ≤ exp

(
−2n

(
p− α

n

)2)
.

For P (Z ≤ α) ≤ δ,501

exp

(
−2n

(
p− α

n

)2)
= δ

α = np−
√

n

2
log

1

δ

α =
1

2

⌊
Ti

2

⌋
−

√
1

2

⌊
Ti

2

⌋
log

1

δ

α ≥ 1

4
(Ti − 1)−

√
1

4
Ti log

1

δ

α ≥

⌊
1

4
(Ti − 1)−

√
1

4
Ti log

1

δ

⌋
.

Therefore, with probability more than 1−δ, Z > Ni :=
⌊
1
4 (Ti − 1)−

√
1
4Ti log

1
δ

⌋
, i.e., the number502

of non-overlapping pairs with squared distance greater than Mi is at least Ni, which completes the503

proof.504

A.4 Proof of Theorem 4.4505

Theorem 4.4. If the following assumptions hold:506

1. The assumption of Lemma 4.3 holds;507

2. The kernel k(x,x′) is an isotropic kernel (which only depends on distance and can be508

written as k(∥x− x′∥));509

3. There exists an iteration r such that for all t ≤ r, it ≤ m− 1 and for all t > r, it = m;510

then with probability at least 1 − δ, UCB-CVS (Alg. 1) incurs a cost-varying cumulative regret511

bounded by512

RT ≤ cm

T∑
t=1

ϵt +O

((
B +

√
γT (X) + log

2m

δ

)(
cm

(√
TγT (X)− L+ log

2m

δ

)
+

m−1∑
i=1

ci

(√
TiγTi

(X̃i) + log
2m

δ

)))
513

L := λ

(
m−1∑
i=1

Ni log
(
Vi − 2k

(√
Mi

)
− k

(√
Mi

)2)
+W

)
by setting βt = B + σ

√
2 (γt−1(X) + 1 + log((2m)/δ)), where Ni and Mi are defined as in514

Lemma 4.3, and Vi and W are residual terms defined in (10).515

16

Proof. We first construct a lower bound on the sum of posterior standard deviations of the queries up516

to iteration r, i.e., the queries that were chosen with any control set except the last.517

r∑
t=1

σt−1(xt)
(i)

≥
r∑

t=1

σ2
t−1(xt)

= λ

r∑
t=1

λ−1σ2
t−1(xt)

(ii)

≥ λ

r∑
t=1

log(1 + λ−1σ2
t−1(xt))

(iii)
= λ log

∣∣I+ λ−1Kr

∣∣
= λ log

(
λ−r |λI+Kr|

)
= λ (−r log λ+ log |λI+Kr|)
(iv)

≥ λ(log |λI+Kr| − 2) (7)

where (i) follows from the assumption that k(x, x) = 1 which implies σt−1(x) ≤ 1 for all x ∈ X518

and all t ≥ 1, (ii) follows since log(1 + x) ≤ x for all x > −1, (iii) follows from Lemma A.1, and519

(iv) follows from λ = 1 + 2
T (Lemma A.3), noting that T ≥ r, and taking limr→∞ −r log λ.520

From Lemma 4.3 with probability δ/(2m), there will be at least Ni pairs of queries chosen with521

control set i with squared distance at least Mi, where522

Ni =

⌊
1

4
(Ti − 1)−

√
1

4
Ti log

2m

δ

⌋

Mi =
4

hi + 1

∑
ℓ∈Ii

V[Xℓ]

Gather these 2
∑m−1

i=1 Ni queries in an ordered sequence S and keep paired queries adjacent to each523

other. The sequence should be ordered such that, for any control sets i and j, if i < j, then queries524

chosen with i should appear in the sequence before queries chosen with j. Denote as T̃ the ordered525

sequence of iterations at which each of these queries were chosen by the learner where the order526

corresponds to the order in S . Using row and column swaps on Kr, construct a new Gram matrix Ks527

such that, for all j, ℓ ≤ 2
∑m−1

i=1 Ni,528

[Ks]jℓ = [Kr]T̃j T̃ℓ
.

In other words, we have simply reordered the underlying queries that result in the Gram matrix Kr to529

produce a new Gram matrix Ks such that the first 2
∑m−1

i=1 Ni rows (and columns) correspond to the530

2Ni queries, and paired queries (that have at least Mi squared distance between them) are kept in531

adjacent rows (and columns). Note that532

[λI+Kr]T̃j T̃ℓ
= [λI+Ks]jℓ

i.e., the same row and column swap operations on λI+Kr result in λI+Ks. Note that swapping533

the positions of two queries corresponds to a row swap and a column swap in the Gram matrix. We534

can thus conclude that535

|λI+Kr| = |λI+Ks| (8)

since determinants are invariant under an even number of row or column swaps.536

Write |λI+Ks| as537

|λI+Ks| =
[
A1 B1

C1 D1

]
where A1 is a 2× 2 matrix. Since A1 is invertible,538

|λI+Ks| = |A1|
∣∣D1 −C1A

−1
1 B1

∣∣
17

where D1 −C1A
−1
1 B1 is the Schur complement of A1. Observe that539

D1 −C1A
−1
1 B1 = λI+Ks−2 − k⊤

2,s−2(K2 + λI)−1k2,s−2

= λI+ K̂s−2

where K2 and Ks−2 are the prior covariance matrices of the first 2 queries and last r − 2 queries540

respectively, k2,s−2 is the prior covariance between the first 2 queries and the last r − 2 queries, and541

K̂s−2 is the posterior covariance matrix of the last r − 2 queries conditioned on observations at the542

first 2 queries. We can repeat this decomposition:543

λI+ K̂s−2 =

[
A2 B2

C2 D2

]
∣∣∣λI+ K̂s−2

∣∣∣ = |A2|
∣∣D2 −C2A

−1
2 B2

∣∣
D2 −C2A

−1
2 B2 = λI+ K̂s−4

where K̂s−4 is the posterior covariance matrix of the last r − 4 queries conditioned on observations544

at the first 4 queries, by the quotient property of the Schur complement [5]. Define N :=
∑m−1

i=1 Ni.545

Performing this decomposition N times yields546

|λI+Ks| =
N∏
j=1

|Aj |
∣∣∣λI+ K̂s−2N

∣∣∣
where each Aj is the 2× 2 posterior covariance matrix of a pair of queries chosen with some control547

set i that have least Mi squared distance between them conditioned on observations at the first 2(j−1)548

queries in the sequence, plus λI. From (7) and (8),549

r∑
t=1

σt−1(xt) ≥ λ

 N∑
j=1

log |Aj |+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

 . (9)

Let x̂j and x̂′
j refer to the pair of queries associated with Aj , and k̃j to the posterior covariance550

function conditioned on observations at the first 2(j − 1) queries in the sequence. Define kj and k′
j551

as the R2(j−1) vectors of the prior covariance between the first 2(j − 1) queries in the sequence and552

x̂j and x̂′
j respectively. Further define Mj := K2(j−1) + λI. Use ⟨u,v⟩M to denote u⊤Mv, and553

∥u∥M to denote
√
⟨u,u⟩M. Each |Aj | can be lower bounded as554

|Aj | = (k̃j(x̂j , x̂j) + λ)(k̃j(x̂
′
j , x̂

′
j) + λ)− k̃j(x̂j , x̂

′
j)

2

= k̃j(x̂j , x̂j)k̃j(x̂
′
j , x̂

′
j) + λk̃j(x̂j , x̂j) + λk̃j(x̂

′
j , x̂

′
j) + λ2 − k̃j(x̂j , x̂

′
j)

2

(i)
=
(
1− ∥kj∥2M−1

j

)(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ

(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

−
(
k(x̂j , x̂

′
j)−

〈
kj ,k

′
j

〉
M−1

j

)2

=
(
1− ∥kj∥2M−1

j

)(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ

(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

− k(x̂j , x̂
′
j)

2 + 2k(x̂j , x̂
′
j)
〈
kj ,k

′
j

〉
M−1

j

−
〈
kj ,k

′
j

〉2
M−1

j

(ii)

≥
(
1− ∥kj∥2M−1

j

)(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ

(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

− k(x̂j , x̂
′
j)

2 − 2k(x̂j , x̂
′
j) ∥kj∥M−1

j

∥∥k′
j

∥∥
M−1

j

− ∥kj∥2M−1
j

∥∥k′
j

∥∥2
M−1

j

= 1− ∥kj∥2M−1
j

−
∥∥k′

j

∥∥2
M−1

j

+ λ
(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

− k(x̂j , x̂
′
j)

2 − 2k(x̂j , x̂
′
j) ∥kj∥M−1

j

∥∥k′
j

∥∥
M−1

j

18

(iii)

≥ 1− ∥kj∥2M−1
j

−
∥∥k′

j

∥∥2
M−1

j

+ λ
(
1− ∥kj∥2M−1

j

)
+ λ

(
1−

∥∥k′
j

∥∥2
M−1

j

)
+ λ2

− k(x̂j , x̂
′
j)

2 − 2k(x̂j , x̂
′
j)

= λ2 − 1 + (λ+ 1)
(
1− ∥kj∥2M−1

j

)
+ (λ+ 1)

(
1−

∥∥k′
j

∥∥2
M−1

j

)
− 2k(x̂j , x̂

′
j)− k(x̂j , x̂

′
j)

2

= λ2 − 1 + (λ+ 1)
(
k̃j(x̂j , x̂j) + k̃j(x̂

′
j , x̂

′
j)
)
− 2k(x̂j , x̂

′
j)− k(x̂j , x̂

′
j)

2

where (i) follows from our assumption that k(x,x) = 1, (ii) follows from the Cauchy-Schwarz555

inequality, and (iii) follows since 1− ∥kj∥2M−1
j

≤ 1 and 1−
∥∥k′

j

∥∥2
M−1

j

≤ 1.556

Define Si :=
∑i

ℓ=1 Ni and ṽi := minSi−1+1≤j≤Si

1
2 (k̃j(x̂j , x̂j) + k̃j(x̂

′
j , x̂

′
j)). Substituting this557

result into (9),558

r∑
t=1

σt−1(xt) ≥ λ

(
N∑
j=1

log
(
λ2 − 1 + (λ+ 1)

(
k̃j(x̂j , x̂j) + k̃j(x̂

′
j , x̂

′
j)
)
− 2k(x̂j , x̂

′
j)− k(x̂j , x̂

′
j)

2
)

+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

)

= λ

(
m−1∑
i=1

Si∑
j=Si−1+1

log
(
λ2 − 1 + (λ+ 1)

(
k̃j(x̂j , x̂j) + k̃j(x̂

′
j , x̂

′
j)
)
− 2k(x̂j , x̂

′
j)

− k(x̂j , x̂
′
j)

2
)
+ log

∣∣∣λI+ K̂s−2N

∣∣∣− 2

)

≥ λ

(
m−1∑
i=1

Si∑
j=Si−1+1

log
(
λ2 − 1 + 2(λ+ 1)ṽi − 2k(x̂j , x̂

′
j)− k(x̂j , x̂

′
j)

2
)

+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

)
(i)

≥ λ

(
m−1∑
i=1

Si∑
j=Si−1+1

log

(
λ2 − 1 + 2(λ+ 1)ṽi − 2k

(√
Mi

)
− k

(√
Mi

)2)

+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

)

= λ

(
m−1∑
i=1

Ni log

(
λ2 − 1 + 2(λ+ 1)ṽi − 2k

(√
Mi

)
− k

(√
Mi

)2)

+ log
∣∣∣λI+ K̂s−2N

∣∣∣− 2

)

= λ

(
m−1∑
i=1

Ni log

(
Vi − 2k

(√
Mi

)
− k

(√
Mi

)2)
+W

)
(10)

=: L (11)

where Vi := λ2 − 1+2(λ+1)ṽi and W := log
∣∣∣λI+ K̂s−2N

∣∣∣− 2, (i) follows from our assumption559

that the kernel k is stationary and can be written in a single argument form as k(∥x− x′∥) = k(x,x′)560

and the fact that every pair of queries in S chosen with control set i has squared distance at least Mi.561

19

Starting from (4) in the proof of Theorem 4.1 except replacing the probabilities of all events with562

2m/δ,563

RT ≤

 m∑
i=1

ci(2βT)

2
∑
t∈T̃i

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

+ cm

T∑
t=1

ϵt

= 2βT

(
cm

(
2
∑
t∈T̃m

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

)

+

m−1∑
i=1

ci

(
2
∑
t∈T̃i

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

(i)

≤ 2βT

(
cm

(
2
∑
t∈T̃m

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

)

+

m−1∑
i=1

ci

(
2

√
4(Ti + 2)γTi

(X̃i) + 4 log
2m

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

(ii)

≤ 2βT

(
cm

(
2
√
4(T + 2)γT (X)−

r∑
t=1

σt−1(xt) + 4 log
2m

δ
+ 8 log(4) + 1

)

+

m−1∑
i=1

ci

(
2

√
4(Ti + 2)γTi(X̃i) + 4 log

2m

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

(iii)

≤ 2βT

(
cm

(
2
√
4(T + 2)γT (X)− L+ 4 log

2m

δ
+ 8 log(4) + 1

)

+

m−1∑
i=1

ci

(
2

√
4(Ti + 2)γTi(X̃i) + 4 log

2m

δ
+ 8 log(4) + 1

))
+ cm

T∑
t=1

ϵt

= O

((
B +

√
γT (X) + log

2m

δ

)(
cm

(√
TγT (X)− L+ log

2m

δ

)
+

m−1∑
i=1

ci

(√
TiγTi

(X̃i) + log
2m

δ

)))
+ cm

T∑
t=1

ϵt

where (i) follows from Lemma A.2, (ii) follows from Lemma A.2 again and the resulting inequality564 ∑r
t=1 σt−1(xt) +

∑T
t=r+1 σt−1(xt) ≤

√
4(T + 2)γT (X), and (iii) follows from substituting565

in (11). A union bound over the events of the single application of Lemma A.3, m applications of566

Lemma A.4, and m− 1 applications of Lemma 4.3 yields the desired 1− δ probability bound, which567

completes the proof.568

A.5 Other Lemmas569

Lemma A.1 ([4] Lemma 3). Let (xt)
T
t=1 be a sequence of queries that the algorithm selects. Then,570

the mutual information I(y1:T ; f1:T) between the noisy observations y1:T and the function values571

f1:T at the queries is given by572

I(y1:T ; f1:T) =
1

2
log
∣∣I+ λ−1Kt

∣∣ = 1

2

T∑
t=1

log(1 + λ−1σ2
t−1(xt)).

Lemma A.2 ([4] Lemma 4). Let (xt)
T
t=1 be a sequence of queries that the algorithm selects. Then573

T∑
t=1

σt−1(xt) ≤
√
4(T + 2)γT (X) .

20

Figure 3: Mean and standard error (over 10 RNG seeds) of the simple regret (lower is better) incurred
against cost spent (budget) C by all algorithms including TS-PSQ per unit cost, UCB-PSQ per unit
cost, and EI per unit cost, with samples from the GP prior as the objective function, moderate cost
set, and all variances. A diamond indicates the average budget after which an algorithm only chooses
the optimal control set.

Lemma A.3 ([4] Theorem 2). Let βt := B + σ
√

2 (γt−1(X) + 1 + log(1/δ)) where B is the upper574

bound of the RKHS norm of f . With probability at least 1− δ, for all x ∈ X and t ≥ 1,575

|µt−1(x)− f(x)| ≤ βtσt−1(x)

where µi,t−1 and σt−1 are defined in (1) with λ = 1 + η and η := 2/T .576

Lemma A.4 ([13] Lemma 3). Let Xτ be any non-negative stochastic process adapted to a filtration577

{Fτ}, and define mτ := E [Xτ |Fτ]. Further assume that Xτ ≤ bτ for a fixed, non-decreasing578

sequence (bτ)τ≥1. With probability at least 1− δ, for any T ≥ 1,579

T∑
τ=1

mτ ≤ 2

T∑
τ=1

Xτ + 4bT log
1

δ
+ 8bT log(4bT) + 1

B Comparison to Naive Baselines580

We investigated simple extensions of TS-PSQ, UCB-PSQ, and EI-PSQ (i.e., the classic expected581

improvement algorithm [17] adapted for BOPSQ, see Appendix C for details) for the cost-varying582

problem by dividing the acquisition score of a control set by its cost in a manner similar to Snoek583

et al. [28, Sec. 3.2]. Fig. 3 shows the mean and standard error of the simple regret incurred over 10584

RNG seeds for one set of experiments. We found that these naive methods generally do not work585

well. For TS per unit cost and UCB-PSQ per unit cost, if a suboptimal control set is very cheap, its586

acquisition score may remain artificially high throughout, and the algorithm fails to converge. EI per587

unit cost was slightly more promising, but suffered from the inverse problem: the suboptimal control588

sets had 0 expected improvement very quickly and dividing by the cost had no effect. This algorithm589

thus fails to encourage exploration with cheaper control sets. Furthermore, the EI algorithm was590

computationally expensive due to the double Monte Carlo expectation computation. In general, we591

see that the UCB-CVS algorithm is able to use the cheaper control sets much more effectively for592

exploration and hence find better solutions.593

C Experimental Details594

All experiments use a squared exponential kernel with ARD lengthscales that depend on the objective595

function, k(x,x′) = 1, Gaussian observation noise with σ = 0.01, and 5 initial query-observation596

pairs with queries drawn uniformly at random. All expectations are approximated with Monte Carlo597

sampling with 1024 samples. All acquisition maximizations are performed with L-BFGS-B with598

random restarts. All query sets are [0, 1]d.599

21

C.1 Objective functions600

The control sets described here are given in an order corresponding to their costs given in Sec. 5.601

For example, for the GP samples objective, under the cheap cost set, control set {1} has cost 0.01,602

control set {1, 2} has cost 0.1, and control set {1, 2, 3} has cost 1.603

Samples from GP prior (3-D): We use samples from the same kernel k used to model604

the GP posteriors during learning. We use a kernel lengthscale of 0.1 and control sets605

{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.606

Hartmann (3-D): We use a kernel lengthscale of 0.1 and control sets607

{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.608

Plant growth simulator (5-D): The plant growth simulator is a GP built from private data collected609

on the maximum leaf area achieved by Marchantia plants depending on input variables Ca, B, NH3, K,610

and pH. We use min-max feature scaling to scale all input variables to [0, 1] and standardize the output611

values. We use the posterior mean of the GP as the objective function. We use a kernel lengthscale of612

0.2 and control sets {{1, 2}, {3, 4}, {4, 5}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2, 3, 4, 5}}.613

Airfoil self-noise (5-D): We use the airfoil self-noise dataset from the UCI Machine Learning614

Repository [6]. To scale all input variables to [0, 1], we first take the natural logarithm of vari-615

ables 1 and 5, then do min-max feature scaling on all input variables. We also standardize the616

output values. We then feed the data into a default SingleTaskGP from BoTorch and use the617

posterior mean as the objective function. We use a kernel lengthscale of 0.2 and control sets618

{{4, 5}, {2, 5}, {1, 4}, {2, 3}, {3, 5}, {1, 2}, {3, 4}}.619

C.2 Algorithms620

UCB-PSQ and UCB-CVS: For the experiments, we set βt = 2 for all t.621

TS-PSQ: Following [10], we use random Fourier features (RFF) [25] to approximately sample from622

a GP posterior. We use RFF with 1024 features.623

EI-PSQ: We adapt the BoTorch acquisition NoisyExpectedImprovement to the BOPSQ problem624

setting. To evaluate the acquisition score of a partial query, we first sample 32 fantasy models of f625

from the GP posterior. For each fantasy model, we compute the expected value of the partial query626

and take the best value as the value of the best observation so far (assuming the full query control set627

is available). We then compute the improvement score as the expected value minus the best value,628

and then average the improvement score over all fantasy models.629

C.3 Implementation630

The experiments were implemented in Python. The major libraries used were NumPy [9], SciPy [36],631

PyTorch [23], GPyTorch [7] and BoTorch [1]. For more details, please refer to the code repository.632

C.4 Compute633

The following CPU times in seconds were collected on a server running Ubuntu 20.04.4 LTS with634

2× Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz and 256 GB of RAM. We measure the CPU time635

for 1 iteration of TS-PSQ and UCB-CVS with a dataset of 100 observations. In general, none of the636

algorithms in the settings tested in this paper require a significant amount of compute.637

GP sample Hartmann Plant Airfoil

TS-PSQ 6.27 4.14 8.96 232.27
UCB-CVS 37.92 52.34 61.96 87.09

638

D Limitations639

A limitation of our work is that the theoretical guarantees of UCB-CVS rely on a few assumptions640

that may not hold in practice. For example, the regularity assumption that assumes the objective641

function f resides in some RKHS may not be true in some problems. The kernel corresponding642

22

to this RKHS may not be known either. The work also assumes that the probability distributions643

governing each variable are independent and fixed. In practice, these assumptions may be violated, if644

the probability distributions have some dependence on one another, or may change over time.645

23

	Introduction
	Related Work
	BO and Gaussian Processes
	BO with Cost-varying Variable Subsets (BOCVS)
	UCB-CVS
	Practical Considerations

	Experiments and Discussion
	Conclusion
	Proofs
	Proof of Theorem 4.1
	Proof of Proposition 4.2
	Proof of Lemma 4.3
	Proof of Theorem 4.4
	Other Lemmas

	Comparison to Naive Baselines
	Experimental Details
	Objective functions
	Algorithms
	Implementation
	Compute

	Limitations

