
Searching for Optimal Per-Coordinate Step-sizes
with Multidimensional Backtracking

Frederik Kunstner Victor S. Portella Mark Schmidt† Nick Harvey
{kunstner,victorsp,schmidtm,nickhar}@cs.ubc.ca

University of British Columbia Canada CIFAR AI Chair (Amii)†

Abstract
The backtracking line-search is an effective technique to automatically tune the
step-size in smooth optimization. It guarantees similar performance to using the
theoretically optimal step-size. Many approaches have been developed to instead
tune per-coordinate step-sizes, also known as diagonal preconditioners, but none of
the existing methods are provably competitive with the optimal per-coordinate step-
sizes. We propose multidimensional backtracking, an extension of the backtracking
line-search to find good diagonal preconditioners for smooth convex problems. Our
key insight is that the gradient with respect to the step-sizes, also known as hyper-
gradients, yields separating hyperplanes that let us search for good preconditioners
using cutting-plane methods. As black-box cutting-plane approaches like the el-
lipsoid method are computationally prohibitive, we develop an efficient algorithm
tailored to our setting. Multidimensional backtracking is provably competitive with
the best diagonal preconditioner and requires no manual tuning.

1 Introduction
When training machine learning models, tuning the hyperparameters of the optimizer is often a major
challenge. For example, finding a reasonable step-size hyperparameter for gradient descent typically
involves trial-and-error or a costly grid search. In smooth optimization, a common approach to set the
step-size without user input is a backtracking line-search: start with a large step-size, and decrease
it when it is too big to make sufficient progress. For ill-conditioned problems, however, there are
limits to the improvement achievable by tuning the step-size. Per-coordinate step-sizes—also known
as diagonal preconditioners—can drastically improve performance. Many approaches have been
developed to automatically tune per-coordinate step-sizes. Those are often described as “adaptive”
methods, but the meaning of this term varies widely, from describing heuristics that set per-coordinate
step-sizes, to ensuring performance guarantees as if a particular property of the problem were known
in advance. Yet, even on the simplest case of a smooth and strongly convex deterministic problem
where a good fixed diagonal preconditioner exists (i.e., one that reduces the condition number), none
of the existing adaptive methods are guaranteed to find per-coordinate step-sizes that improve the
convergence rate. We discuss approaches to adaptive methods in the next section.

Contribution. We propose multidimensional backtracking, an extension of the standard backtracking
line-search to higher dimension, to automatically find good per-coordinate step-sizes. Our method
recovers the convergence rate of gradient descent with the optimal preconditioner for the problem, up
to a
√
2d factor where d is the number of coordinates. This is a direct generalization of the line-search

guarantee, with a penalty depending on dimension due to the extra degrees of freedom, as expected.

1.1 Adaptive step-sizes and preconditioning methods
Adaptive and parameter-free methods in online learning are an example where adaptive methods
have a well-defined meaning. AdaGrad (McMahan and Streeter, 2010; Duchi et al., 2011) and
Coin Betting (Orabona and Pál, 2016; Orabona and Tommasi, 2017) can adapt to problem-specific
constants without user input and have strong guarantees, even in the adversarial setting. However,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

this resilience to adversaries is a double-edged sword; to satisfy this definition of adaptivity, AdaGrad
uses monotonically decreasing step-sizes. While AdaGrad still converges at the desired asymptotic
rate on smooth, Lipschitz functions (Ward et al., 2019; Li and Orabona, 2019), its performance can
be worse than plain gradient descent. This motivated investigations of workarounds to avoid the
monotonically decreasing updates, including augmenting the update with an increasing step-size
schedule (Agarwal et al., 2020), a line-search (Vaswani et al., 2020), or modifying the update to the
preconditioner (Defazio et al., 2022). Methods commonly used in deep learning, such as RMSProp
and Adam (Hinton et al., 2012; Kingma and Ba, 2015), are often motivated as adaptive by analogy to
AdaGrad, but without decreasing step-sizes (e.g., Défossez et al., 2022, §4.3). This change is crucial
for their practical performance, but nullifies their online-learning adaptivity guarantees.

Adaptive gain and hypergradient heuristics. Many heuristics that tune the hyperparameters of
the optimization procedure use the gradient with respect to the hyperparameters, or hypergradients
(Maclaurin et al., 2015). Methods have been proposed to tune the step-size (Masse and Ollivier, 2015),
a preconditioner (Moskovitz et al., 2019), any hyperparameter (Baydin et al., 2018), or to maintain a
model of the objective (Bae et al., 2022). “Stacking” such optimizers recursively has been shown to
reduce the dependency on user-specified hyperparameters in practice (Chandra et al., 2022). This idea
pre-dates the hypergradient nomenclature; Kesten (1958) presents a method to update the step-size
based on the sign of successive gradients, and Saridis (1970) presents a control perspective for
per-coordinate step-sizes, which can be cast as a hypergradient update to a diagonal preconditioner.1
This approach has led to adaptive gain methods such as Delta-Delta and variants (Barto and Sutton,
1981; Jacobs, 1988; Silva and Almeida, 1990; Sutton, 1992a,b), and further developed using the sign
of the hypergradient (Riedmiller and Braun, 1993), full-matrix updates (Almeida et al., 1999), a larger
history (Plagianakos et al., 2001), updates in log-space (Schraudolph, 1999; Schraudolph et al., 2005),
heuristics to adjust the outer step-size (Mahmood et al., 2012), or multiplicative weight updates (Amid
et al., 2022). While showing promising practical performance in some settings, existing methods are
often motivated from intuition rather than a formal definition of adaptivity, giving no guarantee that
the tuned method will converge faster, if at all. Indeed, hypergradient methods are often unstable, and
may require as much manual tuning as the original optimizer they are intended to tune.

Second-order methods. A classical approach to preconditioning is to use second-order information,
as in Newton’s method or its regularized variants (e.g., Nesterov and Polyak, 2006). To avoid the
load of computing and inverting the Hessian, quasi-Newton methods (Dennis and Moré, 1977) such
as L-BFGS (Liu and Nocedal, 1989) fit an approximate Hessian using the secant equation. Variants
using diagonal approximations have also been proposed, framed as Quasi-Cauchy, diagonal BFGS,
or diagonal Barzilai-Borwein methods (Zhu et al., 1999; Andrei, 2019; Park et al., 2020), while other
methods use the diagonal of the Hessian (LeCun et al., 2012; Yao et al., 2021). Some second-order
and quasi-Newton methods converge super linearly (although not the diagonal or limited memory
variants used in practice), but those guarantees only hold locally when close to the minimum. To work
when far from a solution, those methods require “globalization” modifications, such as regularization
or a line-search. Unfortunately, analyses of second-order methods do not capture the global benefit of
preconditioning and instead lead to worse rates than gradient descent, as in the results of Byrd et al.
(2016, Cor. 3.3), Bollapragada et al. (2018, Thm. 3.1), Meng et al. (2020, Thm. 1), Yao et al. (2021,
Apx.), Berahas et al. (2022, Thm. 5.2), or Jahani et al. (2022, Thm. 4.9).

Line-searches. Adaptivity in smooth optimization is most closely related to line-searches. The
standard guarantee for gradient descent on an L-smooth function requires a step-size of 1/L, but L
is typically unknown. The backtracking line-search based on the Armijo condition (Armijo, 1966)
approximately recovers this convergence guarantee by starting with a large step-size, and backtracking;
halving the step-size whenever it does not yield sufficient improvement. However, line-searches are
often overlooked in the discussion of adaptive methods, as they do not provide a way to set more
than a scalar step-size. While line-searches can be shown to work in the stochastic overparameterized
setting and have been applied to train neural networks (Vaswani et al., 2019), improvements beyond
backtracking have been limited. Additional conditions (Wolfe, 1969), non-monotone relaxations
(Grippo et al., 1986), or solving the line-search to higher precision (Moré and Thuente, 1994) can
improve the performance in practice, but even an exact line-search cannot improve the convergence
rate beyond what is achievable with a fixed step-size (Klerk et al., 2017).

1The hypergradient with respect to a diagonal preconditioner P = Diag(p) is, by the chain rule, the element-
wise product (⊙) of subsequent gradients, −∇pf(x−Diag(p)∇f(x)) = ∇f(x)⊙∇f(x−Diag(p)∇f(x)).

2

0 200 400 600 800 1000
Gradient evaluations

10 1

101

103 Optimality gap

GD+LS
* GD

Box MB
Ellipsoid MB

1 3 5 7 9 11 13
Coordinate

10 10

10 2

106

T=0
T=30
T=45
T=65

Per-coordinate stepsizes

Figure 1: Multidimensional backtracking can find the optimal diagonal preconditioner. Example
on a linear regression where the optimal preconditioner can be computed. Left: Performance of
Gradient Descent (GD), optimally preconditioned GD (P∗GD) with a line-search (+LS), and Multidi-
mensional Backtracking (MB) with the strategies in Section 5. The ellipsoid variant can outperform
the globally optimal preconditioner by selecting preconditioners that leads to more local progress.
Right: Optimal per-coordinate step-sizes () and the ones found by MB (box) across iterations.

1.2 Summary of main result: adaptivity to the optimal preconditioner

Our approach is inspired by the work discussed above, but addresses the following key limitation:
none of the existing methods attain better global convergence rates than a backtracking line-search.
Moreover, this holds even on smooth convex problems for which a good preconditioner exists.

We generalize the backtracking line-search to handle per-coordinate step-sizes and find a good pre-
conditioner. As in quasi-Newton methods, we build a preconditioner based on first-order information.
However, instead of trying to approximate the Hessian using past gradients, our method searches
for a preconditioner that minimizes the objective function at the next step. Our convergence result
depends on the best rate achievable by an optimal diagonal preconditioner, similarly to how methods
in online learning are competitive against the best preconditioner in hindsight. However, our notion of
optimality is tailored to smooth strongly-convex problems and does not require decreasing step-sizes
as in AdaGrad. Our update to the preconditioner can be interpreted as a hypergradient method, but
instead of a heuristic update, we develop a cutting-plane method that uses hypergradients to guarantee
a good diagonal preconditioner. Our main theoretical contribution is summarized below.

Theorem 1.1 (Informal). On a smooth, strongly-convex function f in d dimensions, steps accepted
by multidimensional backtracking guarantee the following progress

f(xt+1)− f(x∗) ≤
(
1− 1√

2d

1

κ∗

)(
f(xt)− f(x∗)

)
,

where κ∗ is the condition number achieved by the optimal preconditioner defined in Section 2. The
number of backtracking steps is at most linear in d and logarithmic in problem-specific constants.

Multidimensional backtracking finds per-coordinate step-sizes that lead to a provable improvement
over gradient descent on badly conditioned problems that can be improved by diagonal precondition-
ing, i.e., if the condition number of f is at least

√
2d · κ∗. Moreover, this guarantee is worst-case,

and multidimensional backtracking can outperform the globally optimal preconditioner by finding a
better local preconditioner, as illustrated on an ill-conditioned linear regression problem in Figure 1.

To find a competitive diagonal preconditioner, we view backtracking line-search as a cutting-plane
method and generalize it to higher dimensions in Section 3. In Section 4 we show how to use
hypergradients to find separating hyperplanes in the space of preconditioners, and in Section 5 we
develop an efficient cutting-plane methods tailored to the problem. In Section 6, we illustrate the
method through preliminary experiments and show it has consistent performance across problems.

Notation. We use standard font weight d, n, α for scalars, bold x, y for vectors, and capital bold P, A
for matrices. We use p[i] for the i-th entry of p, use ⊙ for element-wise multiplication, and define
p2 := p⊙p. We use P = Diag(p) to denote the diagonal matrix with diagonal p, and p = diag(P)
to denote the vector of diagonal entries of P. We say A is larger than B, A ⪰ B, if A−B is positive
semidefinite. If A = Diag(a), B = Diag(b), the ordering A ⪰ B is equivalent to a[i] ≥ b[i] for
all i, which we write a ≥ b. We use I for the identity matrix and 1 for the all-ones vector.

3

2 Optimal preconditioning and sufficient progress
Consider a twice-differentiable function f : Rd → R that is L-smooth and µ-strongly convex,2 i.e.,

µ 1
2∥x− y∥2 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ L 1

2∥y − x∥2, for all x,y,

or µI ⪯ ∇2f(x) ⪯ LI for all x. We measure the quality of a preconditioner P by how well P−1

approximates the Hessian∇2f(x). We define an optimal diagonal preconditioner for f as

P∗ ∈ argminP⪰0,diagonal κ such that 1
κP

−1 ⪯ ∇2f(x) ⪯ P−1 for all x, (1)

and denote by κ∗ the optimal κ above. A related and known measure for the convergence rate of
preconditioned methods is κ(P1/2∇2f(x)P1/2) (Bertsekas, 1999, §1.3.2). Moreover, (1) reduces to
the definition of optimal preconditioning for linear systems (Jambulapati et al., 2020; Qu et al., 2022)
when f is quadratic. Alternatively, the optimal preconditioner can be viewed as the matrix P∗ such
that f is 1-smooth and maximally strongly-convex in the norm ∥x∥2P−1

∗
=
〈
x,P−1

∗ x
〉
,

1
κ∗

1
2∥x− y∥2P−1

∗
≤ f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ 1

2∥y − x∥2P−1
∗

, for all x,y. (2)

Similar definitions of smoothness and strong-convexity relative to a matrix are common in coordinate
descent methods (e.g., Qu et al., 2016; Safaryan et al., 2021), where the matrices are assumed to be
known a priori. If we knew P∗, preconditioned gradient descent using P∗ would converge at the rate

f(x−P∗∇f(x))− f(x∗) ≤
(
1− 1

κ∗

)
(f(x)− f(x∗)),

where x∗ minimizes f . We do not know P∗ and will be searching for a good approximation.

For the standard backtracking line-search on L-smooth functions, the goal is to find a step-size that
works as well as 1/L without knowledge of L. To do so, we can start with a large step-size α≫ 1/L
and check the Armijo condition: the step-size α makes progress as if f were 1/α-smooth, that is,

f(x− α∇f(x)) ≤ f(x)− α 1
2∥∇f(x)∥2. (3)

If the condition is satisfied, we take the step x− α∇f(x). By the descent lemma, (Bertsekas, 1999,
A.24), the condition is satisfied if α ≤ 1/L. So if the condition fails, we know α is too large and can
decrease α. For diagonal preconditioners, the Armijo condition checks whether the preconditioner
makes sufficient progress in the norm induced by P−1, as if f were 1-smooth in Equation (2), that is,

f(x−P∇f(x)) ≤ f(x)− 1
2∥∇f(x)∥2P. (4)

As with a scalar step-size, sufficient progress holds for any matrix P that satisfies∇2f(x) ⪯ P−1.

3 Multidimensional Backtracking
The typical presentation of the backtracking line-search maintains a step-size and decreases it
when the Armijo condition fails (e.g., Nocedal and Wright, 1999, Alg 3.1). We instead take the
following non-standard view, which generalizes more naturally to high dimension; as maintaining a
set containing the optimal step-size, and using bisection to narrow down the size of the set. Starting
with an interval S = [0, αmax] containing 1/L, we pick a candidate step-size α by “backtracking” by
γ < 1 from the largest step-size in S, taking α = γαmax to balance two properties;
1. Large progress: If the candidate step-size satisfies the Armijo condition and the step is accepted,

the value of f decreases proportionally to α as in (3). To maximize the progress, γ should be large.
2. Volume shrinkage: If the candidate step-size fails the Armijo condition, we learn that α > 1/L

and can cut the interval to S ′ = [0, γαmax]. To ensure the interval shrinks fast, γ should be small.
Taking γ = 1/2 balances both properties; α is at least 1/2 as large as any step-size in S, and we can
halve the interval if the Armijo condition fails. We do not use αmax as a candidate since, although the
largest in S , it would give no information to update the interval in case it failed the Armijo condition.

For multidimensional backtracking, we can check whether a candidate preconditioner yields sufficient
progress with Equation (4) instead of the Armijo condition, and replace the intervals by sets of
diagonal preconditioners. The high-level pseudocode is given in Figure 2, where each iteration either
leads to an improvement in function value or shrinks the sets of potential step-sizes/preconditioners.

2While we use strong-convexity and twice-differentiability of f to define the optimal preconditioner, those
assumptions can be relaxed to only rely on the PL inequality (Polyak, 1963; Łojasiewicz, 1963) (see Appendix B).

4

Backtracking line-search

Input: starting point x0, backtracking coefficient γ, set
S0 = [0, αmax

0] containing the optimal step-size 1/L.

Iterate for t in 0, 1, ..., T
Pick step-size αt = γαmax

t

If (xt, αt) satisfy the Armijo condition (3)
Accept xt+1 = xt − αt∇f(xt)
Keep max step-size αmax

t+1 = αmax
t

Otherwise,
Don’t move, xt+1 = xt

Cut max step-size αmax
t+1 = γαmax

t

Output: xT

Multidimensional Backtracking

Input: starting point x0, backtracking coefficient γ, set
S0 of preconditioners containing the optimal P∗.

Iterate for t in 0, 1, ..., T
Pick step-sizes Pt = CANDIDATE(St, γ,xt) (†)
If (xt,Pt) satisfy the Armijo condition (4)

Accept xt+1 = xt −Pt∇f(xt)
Keep set St+1 = St

Otherwise,
Don’t move, xt+1 = xt

Cut set St+1 = CUT(St,xt,Pt) (†)
Output: xT

Figure 2: Pseudocode for the backtracking line-search and multidimensional backtracking. We
view backtracking as maintaining a set of step-sizes, testing one at each iteration that either make
progress on f or reduce the size of the set. Steps marked by (†), are the subject of Sections 3–5.

To complete the algorithm, we need to define the steps marked as (†) to select preconditioners that
lead to large progress when the step is accepted, while significantly reducing the search space when
the preconditioner does not yield sufficient progress. For computational efficiency, we want methods
that take O(d) time and memory like plain gradient descent.

3.1 Guaranteed progress competitive with the optimal preconditioner
We start by formalizing the progress guarantee. If Pt satisfies the Armijo condition (4) at xt, the func-
tion value decreases by at least ∥∇f(xt)∥2Pt

. If we can guarantee that ∥∇f(xt)∥2Pt
≥ γ∥∇f(xt)∥2P∗

for some γ > 0, we can recover the convergence rate of gradient descent preconditioned with P∗ up
to a factor of γ. However, we do not know P∗, but know a set St that contains preconditioners we
have not yet ruled out, including P∗. To guarantee that Pt is competitive with P∗, we can enforce that
Pt is competitive with all the preconditioners in St, as captured by the following definition.

Definition 3.1 (γ-competitive candidate preconditioners). A matrix Pt ∈ St is γ-competitive in St,
for a gradient∇f(xt), if ∥∇f(xt)∥2Pt

≥ γ∥∇f(xt)∥2Q for any Q ∈ St.
If Pt is γ-competitive, then it is competitive with P∗ as maxQ∈St ∥∇f(xt)∥2Q ≥ ∥∇f(xt)∥2P∗ . How-
ever, this is a strong requirement. To illustrate what competitive ratios are attainable, we show in
Appendix B that even the optimal preconditioner P∗ might only be 1/d-competitive, as other precondi-
tioners can lead to more local progress depending on ∇f(xt), whereas P∗ is a fixed global optimal
preconditioner. This also suggests that selecting a preconditioner that guarantees more local progress
may lead to better performance, which we take advantage of to ensure a γ = 1/

√
2d competitive ratio.

To see how to ensure a competitive ratio, consider the case where S contains diagonal preconditioners
whose diagonals come from the box B(b) := {p ∈ Rd

≥0 : p ≤ b}. To select a candidate precondi-
tioner that is γ-competitive in S , we can backtrack from the largest vector in B(b) by some constant
γ < 1, and take P = γDiag(b). While a large γ leads to more progress when the step is accepted,
we will see that we need a small γ to ensure the volume shrinks when the step is rejected.

We can obtain the convergence rate of Theorem 1.1 depending on γ and the optimal preconditioned
condition number κ∗ if we ensure P∗ ∈ St and that Pt is γ-competitive for all t.

Proposition 3.2. Let P∗, κ∗ be an optimal preconditioner and condition number for f (1). If the set
St from the algorithm in Figure 2 contains P∗, and Pt ∈ St is γ-competitive (Definition 3.1), then

f(xt+1)− f(x∗) ≤
(
1− γ

κ∗

)
(f(xt)− f(x∗))

whenever the candidate step leads to sufficient progress and is accepted.
Proof. The proof relies on three inequalities. (a) The iterate xt+1 yields sufficient progress (Eq. 4),
(b) any accepted preconditioner Pt is γ-competitive in St and thus with P∗, and (c) f is 1/κ∗-strongly
convex in ∥·∥P−1

∗
, which implies κ∗ 1

2∥∇f(xt)∥2P∗ ≥ f(xt)− f(x∗). Combining those yields

f(xt+1)
(a)

≤ f(xt)−
1

2
∥∇f(xt)∥2Pt

(b)

≤ f(xt)− γ
1

2
∥∇f(xt)∥2P∗

(c)

≤ f(xt)−
γ

κ∗
(f(xt)− f(x∗)).

Subtracting f(x∗) on both sides yields the contraction guarantee.

5

.P

0
.P∗

(a) Failing the Armijo condition
cuts the interval in half in one di-
mension, but only removes 1/2d of
the volume in d dimensions.

.P

0
.P∗

v

(b) Half-space H>(v) obtained by
using the hypergradient when fail-
ing the Armijo condition at P in
Proposition 4.2.

.P

0
.P∗

v

u

(c) Stronger half-space H>(u) de-
scribed by Proposition 4.3, remov-
ing P′ ≻P for any P ruled out by
H>(v) in Proposition 4.2.

Figure 3: Lack of information from the ordering and separating hyperplanes.

4 Separating hyperplanes in higher dimensions
In one dimension, if the step-size α does not satisfy the sufficient progress condition (3), we know
α > 1/L and can rule out any α′ ≥ α. We are looking for a generalization to higher dimensions: if
the queried preconditioner fails the sufficient progress condition, we should be able to discard all
larger preconditioners. The notion of valid preconditioners formalizes this idea.

Definition 4.1 (Valid preconditioner). A preconditioner P is valid if P1/2∇2f(x)P1/2 ⪯ I for all x,
which guarantees that P satisfies the sufficient progress (4) condition, and invalid otherwise.

Validity is a global property: a preconditioner P might lead to sufficient progress locally but still
be invalid. Using the partial order, if P is invalid then any preconditioner P′ ⪰ P is also invalid.
However, this property alone only discards an exceedingly small portion of the feasible region in high
dimensions. Consider the example illustrated in Figure 3a: if the diagonals are in a box B(b), the
fraction of volume discarded in this way if (1/2)Diag(b) is invalid is only 1/2d.

To efficiently search for valid preconditioners, we show that if f is convex, then the gradient of the
sufficient progress condition gives a separating hyperplane for valid preconditioners. That is, it gives
a vector u ∈ Rd such that if p ∈ Rd

≥0 satisfies ⟨u,p⟩ > 1, then Diag(p) is invalid, as illustrated in
Figure 3b. We use the following notation to denote normalized half-spaces:

H>(u) := {p ∈ Rd
≥0 : ⟨u,p⟩ > 1} and H≤(u) := {p ∈ Rd

≥0 : ⟨u,p⟩ ≤ 1}.

Proposition 4.2 (Separating hyperplane in preconditioner space). Suppose Q = Diag(q) ≻ 0 does
not lead to sufficient progress (4) at x, and let h(q) be the gap in the sufficient progress condition,

h(q) := f(x−Q∇f(x))− f(x) + 1
2∥∇f(x)∥

2
Q > 0.

Then Diag(p) for any p in the following half-space satisfies h(p) > 0 and is also invalid,

{p ∈ Rd : ⟨∇h(q),p⟩ > ⟨∇h(q),q⟩ − h(q)}, (5)

This half-space is equal toH>(v) with v given by v = ∇h(q)/(⟨∇h(q),q⟩−h(q)), or

v :=
(12g − g+)⊙ g

f(x)− ⟨g+,Qg⟩ − f(x+)
, with

{
x+ := x−Q∇f(x),

(g,g+) := (∇f(x),∇f(x+)).
(6)

Proof idea. If f is convex, then h also is. Convexity guarantees that h(p) ≥ h(q) + ⟨∇h(q),p− q⟩
for any p. A sufficient condition for h(p) > 0, which means p is invalid, is whether h(q) +
⟨∇h(q),p− q⟩ > 0 holds. Reorganizing yields Equation (5), and Equation (6) expresses the half-
space in normalized form,H>(v), expanding h in terms of f , its gradients, and Q.

The half-space in Proposition 4.2 is however insufficient to find good enough cutting-planes, as it
uses convexity to invalidate preconditioners but ignores the ordering that if P is invalid, any P′ ⪰ P
is also invalid. If such preconditioners are not already ruled out by convexity, we can find a stronger
half-space by removing them, as illustrated in Figure 3c. We defer proofs to Appendix C.

Proposition 4.3 (Stronger hyperplanes). If H>(v) is a half-space given by Proposition 4.2, then
H>(u) where u := max{v, 0} element-wise is a stronger half-space in the sense that H>(v) ⊆
H>(u), andH>(u) contains only invalid preconditioners.

6

.B(bt+1).

.

Pt

ut

B(bt)

(a) Minimum-volume box containing the intersection. We
maintain sets of low-complexity by computing the minimum-
volume box B(bt+1) containing the intersection of the initial box
B(bt) and the half-space H≤(ut) obtained from Proposition 4.3
when the preconditioner Pt fails to yield sufficient decrease.

.
.

Pt

ut

B(bt)

(b) Need sufficient backtracking. If the
candidate preconditioner Pt selected inside
the initial box B(bt) is not close enough
to 0, there might not be a box smaller than
B(bt) that contains the intersection.

Figure 4: Minimum-volume enclosing boxes

5 Cutting-plane methods
The multidimensional backtracking method is in fact a cutting-plane method that uses separating
hyperplanes (from Proposition 4.3) to search for valid preconditioners. The canonical example is the
ellipsoid method (Yudin and Nemirovski, 1976; Shor, 1977), but its computational cost is Ω(d2) in Rd.
We now describe cutting-plane methods with three desirable properties: the preconditioners have good
competitive ratios, the feasible set shrinks significantly when backtracking, and the computational
cost is O(d). There are many details, but the overall idea is similar to the ellipsoid method.

A simple warm-up: boxes. Consider the case when S0 consists of diagonal matrices with diagonals
in the box B(b0) = {p ∈ Rd

≥0 : p ≤ b0}. We pick a candidate preconditioner by backtracking from
the largest point in B(b0) by some constant γ < 1, taking P := γDiag(b0). If P satisfies the Armijo
condition (4), we take a gradient step. If it does not, we compute the vector u0 as in Proposition 4.3,
and obtain a half-spaceH>(u0) that contains only invalid preconditioners. We then know we only
need to search inside S0 ∩ H≤(u0). However, maintaining the set S0 ∩ H≤(u0) ∩ · · · ∩ H≤(ut)
would be too complex to fit in O(d) time or memory. To reduce complexity, we define St+1 as the
box B(bt+1) of minimum volume containing B(bt) ∩ H≤(ut), as illustrated in Figure 4a. Due to
this restriction, we might not be able to find a smaller set; the original box B(bt) may already be the
minimum volume box containing B(bt) ∩H≤(ut) if ut does not cut deep enough, as illustrated in
Figure 4b. However, with enough backtracking (γ < 1/d), we can show that the new box is smaller.
This yields the following subroutines to fill in the gaps of Figure 2 (detailed in Appendix D)

CANDIDATE(St, γ,xt) := γDiag(bt), CUT(St,Pt) := {Diag(p) : pt ∈ B(bt+1)}, (7)

where St = B(bt) and bt+1 := min{bt, 1/ut} element-wise, which give the following guarantees.

Theorem 5.1. Consider the multidimensional backtracking from Figure 2 initialized with a set
S0 = {Diag(p) : p ∈ B(b0)} containing P∗, with the subroutines in Equation (7) with γ = 1/2d.
Then: (a) P∗ ∈ St, (b) the candidate preconditioner Pt is 1/2d-competitive in St for any t, and

(c) Vol(B(bt+1)) ≤ 1
d+1 Vol(B(bt)) when Pt fails Equation (4).

In particular, CUT is not called more than d logd+1(L∥b0∥∞) times.

Proof idea. To guarantee that the box shrinks, we have to guarantee that the half-spaceH≤(ut) cuts
deep enough. We know that the half-space has to exclude the query point Pt, i.e. ⟨pt,ut⟩ ≥ 1, by
Proposition 4.2 and that ut ≥ 0 by Proposition 4.3. Querying Pt sufficiently close to the origin,
by taking γ = 1/2d, is then enough to guarantee the decrease. To bound the total number of cuts,
we note that the sets B(bt) have a minimum volume Volmin, as they have to contain the valid
preconditioners. The number of cuts is at most logc(Vol(B(b0))/Volmin) for c = d + 1. We then
bound Vol(B(b0)) ≤ ∥b0∥d∞ and Volmin ≥ 1/Ld as (1/L)I is a valid preconditioner.

5.1 Multidimensional Backtracking with Centered Axis-aligned Ellipsoids
We now improve the competitive ratio from O(1/d) to O(1/

√
d) by switching from boxes to ellipsoids.

Whereas general ellipsoids would require Ω(d2) complexity (as they involve a d×d matrix), we
consider centered, axis-aligned ellipsoids, defined by a diagonal matrix A = Diag(a), of the form
E(a) := {p ∈ Rd

≥0 : ∥p∥A ≤ 1}, where ∥p∥2A = ⟨p,Ap⟩. As preconditioners are non-negative, we
consider only the positive orthant of the ellipsoid. For simplicity, we refer to those sets as ellipsoids.

7

Candidate preconditioner. In the box example, we selected the candidate preconditioner by back-
tracking from the largest preconditioner in the box. With an ellipsoid, there is no largest preconditioner.
We need to choose where to backtrack from. To ensure the candidate preconditioner P is competitive
(Definition 3.1), we backtrack from the preconditioner that maximizes the progress ∥∇f(x)∥2P,

argmax
p∈E(a)

∥∇f(x)∥2P =
A−1∇f(x)2
∥∇f(x)2∥A−1

,
(
where∇f(x)2 := ∇f(x)⊙∇f(x)

)
. (8)

This lets us pick the preconditioner that makes the most progress for the current gradient, and will let
us improve the competitive ratio by allowing a backtracking coefficient of 1/

√
d instead of 1/d.

Cutting. To complete the algorithm, we need to find a new set E(bt+1) with smaller volume which
contains the intersection of the previous set E(bt) and the half-space H≤(ut). Unlike the box
approach, the minimum volume ellipsoid has no closed form solution. However, if we backtrack
sufficiently, by a factor of γ < 1/

√
d, we can find an ellipsoid guaranteed to decrease the volume.

Lemma 5.2. Consider the ellipsoid E(a) defined by A = Diag(a) for a ∈ Rd
>0. Let p ∈ E(a) be

a point sufficiently deep inside the ellipsoid, such that ∥p∥A ≤ 1/
√
2d, and H>(u) be a half-space

obtained from Proposition 4.3 at p. The intersection E(a) ∩H(u)≤ is contained in the new ellipsoid

E(a+(a,u)), where a+(a,u) = λa+ (1− λ)u2, λ = ℓ
d
d−1
ℓ−1 , ℓ = ∥u∥2A−1 , (9)

which has a smaller volume, Vol(E(a+(a,u)) ≤ cVol(E(a)), where c = 4
√
e/

√
2 ≈ 0.91.

Proof idea. The new ellipsoid in (9) is a convex combination between E(a) and the minimum volume
ellipsoid containing the set {p ∈ Rd : ⟨u, |p|⟩ ≤ 1} where |p| is the element-wise absolute value
of p. The choice of λ in (9) is not optimal, but suffices to guarantee progress as long as ∥p∥A is
small. A similar approach was used by Goemans et al. (2009) to approximate submodular functions,
although they consider the polar problem of finding a maximum-volume enclosed ellipsoid. The full
proof and discussion on the connections to the polar problem are deferred to Appendix D.

To improve the cuts, we can refine the estimate of λ in Lemma 5.2 by minimizing the volume
numerically. We include this modification, detailed in Appendix D, in our experiments in Section 6.

Overall guarantees. We can now define the two subroutines for the ellipsoid method, and obtain the
main result that we stated informally in Theorem 1.1, by combining the guarantees of the ellipsoid
approach with the convergence result of Proposition 3.2.

Theorem 5.3. Consider the multidimensional backtracking from Figure 2 initialized with the set
S0 = {Diag(p) : p ∈ E(a0)} containing P∗, given by some scaling α0 > 0 of the uniform vector,
a0 = α01. For St, let At = Diag(at). Define the subroutines

Pt = CANDIDATE(St, γ,xt) := γ
A−1

t ∇f(xt)
2

∥∇f(xt)2∥A
−1
t

, CUT(St,Pt) := {Diag(p) : p ∈ E(a+(at,ut))},

where ut is the vector given by Proposition 4.3 when Pt fails the Armijo condition at xt, and a+ is
computed as in (9). If γ = 1/

√
2d, then: (a) P∗ ∈ St for all t, (b) the candidate preconditioners Pt are

1/
√
2d-competitive in St, and (c) CUT is called no more than 12d log(L/α0) times.

6 Experiments
To illustrate that multidimensional backtracking finds good preconditioners and improves over
gradient descent on ill-conditioned problems even when accounting for the cost of backtracking, we
run experiments on small but very ill-conditioned and large (d ≈ 106) problems.

As examples of adaptive gain and hypergradient methods, we include RPROP (Riedmiller and Braun,
1993) and GD with a hypergradient-tuned step-size (GD-HD, Baydin et al. 2018, multiplicative
update). As examples of approximate second-order methods, we include diagonal BB (Park et al.,
2020) and preconditioned GD using the diagonal of the Hessian. We use default parameters, except
for the hypergradient method GD-HD, where we use 10−10 as the initial step-size instead of 10−3 to
avoid immediate divergence. We include AdaGrad (diagonal), but augment it with a line-search as
suggested by Vaswani et al. (2020), to make it competitive in the deterministic setting.

Line-searches and forward steps. For all methods that use a line-search, we include a forward step,
a common heuristic in line-search procedures to allow for larger step-sizes when possible, although it

8

0 500 1000 1500
f/grad evals

10 2

100

102

104

O
pt

im
al

ity
 g

ap

Linear - cpusmall

0 500 1000
f/grad evals

10 5

10 3

10 1

101

Logistic - Breast-cancer

0 500 1000 1500
f/grad evals

10 5

10 3

10 1

101
Logistic - News20 GD+LS

Ellipsoid MB
Diag. Hessian+LS
Diag. BB+NMLS
Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

Figure 5: Multidimensional backtracking finds a good preconditioner, when there is one. Exper-
iments on regularized linear and logistic regression on small but ill-conditioned datasets, cpusmall
and breast-cancer (left, middle), and the large dataset News20 (right, d ≈ 106). Methods used:
Gradient Descent (GD) Multidimensional Backtracking (MB) with ellipsoids, diagonal Hessian,
diagonal BB, and diagonal AdaGrad—all of which use a line-search (+LS)— RPROP, and GD with
hypergradient-tuned step-size (GD-HD) using the multiplicative update. Details in Appendix E.

can increase the number of backtracking steps. When a step-size or preconditioner is accepted, we
increase the size of the set, allowing for larger (scalar or per-coordinate) step-sizes by a factor of 1.1.

Performance comparison. To capture the overhead of backtracking and provide a fair evaluation,
Figures 1 and 5 compare performance per function and gradient evaluations (see Appendix E.1).

On a small but extremely ill-conditioned problems, our method is the only one that gets remotely
close to being competitive with preconditioning with the diagonal Hessian—while only using first-
order information. The diagonal Hessian is very close to the optimal preconditioner for those
problems. On the cpusmall dataset, it reduces the condition number from κ ≈ 5 · 1013 to ≈ 300,
while κ∗ ≈ 150. All other methods struggle to make progress and stall before a reasonable solution
is achieved, indicating they are not competitive with the optimal preconditioner.

On large regularized logistic regression on News20 (d ≈ 106), gradient descent performs relatively
better, suggesting the problem is less ill-conditioned to begin with (the regularized data matrix has
condition number κ ≈ 104). Despite the bound of O(d) backtracking steps, our methods finds
a reasonable preconditioner within 100 gradient evaluations. Despite the high dimensionality, it
improves over gradient descent when measured in number of oracle calls.

Using plain gradient updates on the hyperparameters in GD-HD leads to unstable behavior, but
diagonal BB and even RPROP, perform remarkably well on some problems—even outperforming
preconditioning with the diagonal Hessian, which uses second-order information. However, they fail
on other ill-conditioned problems, even when a good diagonal preconditioner exists. This pattern
holds across other problems, as shown in Appendix E. Multidimensional backtracking demonstrates
robust performance across problems, a clear advantage of having worst-case guarantees.

7 Conclusion
We designed multidimensional backtracking, an efficient algorithm to automatically find diagonal
preconditioners that are competitive with the optimal diagonal preconditioner. Our work provides
a definition of adaptive step-sizes that is complementary to the online learning definition. While
online learning focuses on the adversarial or highly stochastic setting, we define and show how to find
optimal per-coordinate step-sizes in the deterministic smooth convex setting. We show it is possible
to build provably robust methods to tune a preconditioner using hypergradients. While our specific
implementation uses cutting-planes, the general approach may lead to alternative algorithms, that
possibly tune other hyperparameters, with similar guarantees.

The main limitation of our approach is its reliance on the convex deterministic setting. The results
might transfer to the stochastic overparametrized regime using the approach of Vaswani et al. (2019),
but the non-convex case seems challenging. It is not clear how to get reliable information from a
cutting-plane perspective using hypergradients without convexity. As the first method to provably
find competitive preconditioners, there are likely modifications that lead to practical improvements
while preserving the theoretical guarantees. Possible ideas to improve practical performances include
better ways to perform forward steps, using hypergradient information from accepted steps (which
are currently ignored), or considering alternative structures to diagonal preconditioners.

9

Acknowledgments and Disclosure of Funding
We thank Aaron Mishkin for helpful discussions in the early stages of this work, and Curtis Fox
and Si Yi (Cathy) Meng for providing comments on an early version of the manuscript, and for the
feedback from anonymous reviewers. This research was partially by the Canada CIFAR AI Chair
Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery
Grants RGPIN-2022-03669, and Borealis AI through the Borealis AI Global Fellowship Award.

References
Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang (2020). Disentangling

Adaptive Gradient Methods from Learning Rates. arXiv/2002.11803.

Luís B. Almeida, Thibault Langlois, José F. M. Amaral, and Alexander Plakhov (1999). “Parameter
adaptation in stochastic optimization”. In: On-line learning in neural networks, pp. 111–134.

Ehsan Amid, Rohan Anil, Christopher Fifty, and Manfred K. Warmuth (2022). Step-size Adaptation
Using Exponentiated Gradient Updates. Presented at the ICML Workshop Beyond First Order
Methods in ML Systems.

Neculai Andrei (2019). “A diagonal quasi-Newton updating method for unconstrained optimization”.
In: Numerical Algorithms 81.2, pp. 575–590.

Larry Armijo (1966). “Minimization of functions having Lipschitz continuous first partial derivatives”.
In: Pacific Journal of mathematics 16.1, pp. 1–3.

Juhan Bae, Paul Vicol, Jeff Z. HaoChen, and Roger B. Grosse (2022). “Amortized Proximal Opti-
mization”. In: NeurIPS, pp. 8982–8997.

Andrew G. Barto and Richard S. Sutton (1981). Goal Seeking Components for Adaptive Intelli-
gence: An Initial Assessment. Tech. rep. AFWAL-TR-81-1070. (Appendix C). Air Force Wright
Aeronautical Laboratories/Avionics Laboratory.

Atılım Güneş Baydin, Robert Cornish, David Martínez-Rubio, Mark Schmidt, and Frank Wood
(2018). “Online Learning Rate Adaptation with Hypergradient Descent”. In: ICLR.

Albert S. Berahas, Majid Jahani, Peter Richtárik, and Martin Takáč (2022). “Quasi-Newton methods
for machine learning: forget the past, just sample”. In: Optimization Methods and Software 37.5,
pp. 1668–1704.

Dimitri P. Bertsekas (1999). Nonlinear Programming. Athena Scientific.

Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun Michael Shi, and Ping Tak Peter
Tang (2018). “A Progressive Batching L-BFGS Method for Machine Learning”. In: ICML, pp. 619–
628.

Richard H. Byrd, Samantha L. Hansen, Jorge Nocedal, and Yoram Singer (2016). “A Stochastic
Quasi-Newton Method for Large-Scale Optimization”. In: SIAM Journal on Optimization 26.2,
pp. 1008–1031.

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer (2022). “Gradient Descent:
The Ultimate Optimizer”. In: NeurIPS, pp. 8214–8225.

Chih-Chung Chang and Chih-Jen Lin (2011). “LIBSVM: A Library for Support Vector Machines”.
In: ACM Transatctions on Intelligent Systems and Technology 2.3.

Aaron Defazio, Baoyu Zhou, and Lin Xiao (2022). Grad-GradaGrad? A Non-Monotone Adaptive
Stochastic Gradient Method. arXiv/2206.06900.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier (2022). “A Simple Convergence
Proof of Adam and Adagrad”. In: Transactions on Machine Learning Research.

John E. Dennis Jr. and Jorge J. Moré (1977). “Quasi-Newton methods, motivation and theory”. In:
SIAM review 19.1, pp. 46–89.

Steven Diamond and Stephen Boyd (2016). “CVXPY: A Python-embedded modeling language for
convex optimization”. In: Journal of Machine Learning Research 17.83, pp. 1–5.

Dheeru Dua and Casey Graff (2017). UCI Machine Learning Repository.

10

John C. Duchi, Elad Hazan, and Yoram Singer (2011). “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. In: Journal of Machine Learning Research 12, pp. 2121–
2159.

Gary William Flake and Steve Lawrence (2002). “Efficient SVM Regression Training with SMO”.
In: Mach. Learn. 46.1-3, pp. 271–290.

Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab Mirrokni (2009). “Approximat-
ing submodular functions everywhere”. In: ACM-SIAM SODA 2009, pp. 535–544.

Luigi Grippo, Francesco Lampariello, and Stephano Lucidi (1986). “A Nonmonotone Line Search
Technique for Newton’s Method”. In: SIAM Journal on Numerical Analysis 23.4, pp. 707–716.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky (2012). Neural Networks for Machine
Learning. lecture 6.

Robert A. Jacobs (1988). “Increased rates of convergence through learning rate adaptation”. In:
Neural Networks 1.4, pp. 295–307.

Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik, Michael W. Mahoney, and Martin
Takac (2022). “Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order
Information”. In: ICLR.

Arun Jambulapati, Jerry Li, Christopher Musco, Aaron Sidford, and Kevin Tian (2020). Fast and
Near-Optimal Diagonal Preconditioning. arXiv/2008.01722.

Hamed Karimi, Julie Nutini, and Mark Schmidt (2016). “Linear Convergence of Gradient and
Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition”. In: ECML, pp. 795–811.

S. Sathiya Keerthi and Dennis DeCoste (2005). “A Modified Finite Newton Method for Fast Solution
of Large Scale Linear SVMs”. In: Journal of Machine Learning Research 6.12, pp. 341–361.

R. Kelley Pace and Ronald Barry (1997). “Sparse spatial autoregressions”. In: Statistics & Probability
Letters 33.3, pp. 291–297.

Harry Kesten (1958). “Accelerated Stochastic Approximation”. In: The Annals of Mathematical
Statistics 29.1, pp. 41–59.

Diederik P. Kingma and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization”. In: ICLR.

Etienne de Klerk, François Glineur, and Adrien B. Taylor (2017). “On the worst-case complexity of
the gradient method with exact line search for smooth strongly convex functions”. In: Optimization
Letters 11.7, pp. 1185–1199.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller (2012). “Efficient BackProp”.
In: Neural Networks: Tricks of the Trade - Second Edition. Vol. 7700, pp. 9–48.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li (2004). “RCV1: A New Benchmark
Collection for Text Categorization Research”. In: Journal of Machine Learning Research 5,
pp. 361–397.

Xiaoyu Li and Francesco Orabona (2019). “On the Convergence of Stochastic Gradient Descent with
Adaptive Stepsizes”. In: AISTATS 2019, pp. 983–992.

Dong C. Liu and Jorge Nocedal (1989). “On the limited memory BFGS method for large scale
optimization”. In: Mathematical programming 45.1-3, pp. 503–528.

S. Łojasiewicz (1963). “Une propriété topologique des sous-ensembles analytiques réels”. In: Les
Équations aux Dérivées Partielles, pp. 87–89.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams (2015). “Gradient-based Hyperparameter
Optimization through Reversible Learning”. In: ICML, pp. 2113–2122.

Ashique Rupam Mahmood, Richard S. Sutton, Thomas Degris, and Patrick M. Pilarski (2012).
“Tuning-free step-size adaptation”. In: ICASSP, pp. 2121–2124.

Pierre-Yves Masse and Yann Ollivier (2015). Speed learning on the fly. arXiv/1511.02540.

H. Brendan McMahan and Matthew J. Streeter (2010). “Adaptive Bound Optimization for Online
Convex Optimization”. In: COLT, pp. 244–256.

11

Si Yi Meng, Sharan Vaswani, Issam Hadj Laradji, Mark Schmidt, and Simon Lacoste-Julien (2020).
“Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation”. In: AIS-
TATS, pp. 1375–1386.

Jorge J. Moré and David J. Thuente (1994). “Line search algorithms with guaranteed sufficient
decrease”. In: ACM Transactions on Mathematical Software (TOMS) 20.3, pp. 286–307.

Ted Moskovitz, Rui Wang, Janice Lan, Sanyam Kapoor, Thomas Miconi, Jason Yosinski, and Aditya
Rawal (2019). First-Order Preconditioning via Hypergradient Descent. arXiv/1910.08461.

Yurii E. Nesterov and Boris T. Polyak (2006). “Cubic regularization of Newton method and its global
performance”. In: Mathematical Programming 108.1, pp. 177–205.

Jorge Nocedal and Stephen J. Wright (1999). Numerical Optimization. Springer.

Francesco Orabona and Dávid Pál (2016). “Coin Betting and Parameter-Free Online Learning”. In:
NeurIPS, pp. 577–585.

Francesco Orabona and Tatiana Tommasi (2017). “Training Deep Networks without Learning Rates
Through Coin Betting”. In: NeurIPS, pp. 2160–2170.

Youngsuk Park, Sauptik Dhar, Stephen P. Boyd, and Mohak Shah (2020). “Variable Metric Proximal
Gradient Method with Diagonal Barzilai-Borwein Stepsize”. In: ICASSP, pp. 3597–3601.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala (2019). “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: NeurIPS, pp. 8024–8035.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12, pp. 2825–2830.

Vassilis P. Plagianakos, George D. Magoulas, and Michael N. Vrahatis (2001). “Learning rate adapta-
tion in stochastic gradient descent”. In: Advances in Convex Analysis and Global Optimization:
Honoring the Memory of C. Caratheodory (1873–1950), pp. 433–444.

Boris T. Polyak (1963). “Gradient methods for minimizing functionals”. In: Ž. Vyčisl. Mat i Mat. Fiz.
3, pp. 643–653.

Zhaonan Qu, Wenzhi Gao, Oliver Hinder, Yinyu Ye, and Zhengyuan Zhou (2022). Optimal Diagonal
Preconditioning: Theory and Practice. arXiv/2209.00809.

Zheng Qu, Peter Richtárik, Martin Takác, and Olivier Fercoq (2016). “SDNA: Stochastic Dual
Newton Ascent for Empirical Risk Minimization”. In: ICML, pp. 1823–1832.

Martin A. Riedmiller and Heinrich Braun (1993). “A direct adaptive method for faster backpropaga-
tion learning: the RPROP algorithm”. In: ICNN, pp. 586–591.

Mher Safaryan, Filip Hanzely, and Peter Richtárik (2021). “Smoothness Matrices Beat Smoothness
Constants: Better Communication Compression Techniques for Distributed Optimization”. In:
NeurIPS, pp. 25688–25702.

George N. Saridis (1970). “Learning Applied to Successive Approximation Algorithms”. In: IEEE
Transactions on Systems Science and Cybernetics 6.2, pp. 97–103.

Nicol N. Schraudolph (1999). “Local gain adaptation in stochastic gradient descent”. In: ICANN,
569–574 vol.2.

Nicol N. Schraudolph, Douglas Aberdeen, and Jin Yu (2005). “Fast Online Policy Gradient Learning
with SMD Gain Vector Adaptation”. In: NeurIPS, pp. 1185–1192.

Naum Z. Shor (1977). “Cut-off method with space extension in convex programming problems”. In:
Cybernetics 13.1, pp. 94–96.

Fernando M. Silva and Luís B. Almeida (1990). “Acceleration techniques for the backpropagation
algorithm”. In: Neural Networks, pp. 110–119.

12

Richard S. Sutton (1992a). “Adapting Bias by Gradient Descent: An Incremental Version of Delta-
Bar-Delta”. In: Proceedings of the 10th National Conference on Artificial Intelligence, San Jose,
CA, USA, July 12-16, 1992, pp. 171–176.

Richard S. Sutton (1992b). “Gain adaptation beats least squares”. In: Proceedings of the 7th Yale
workshop on adaptive and learning systems, p. 166.

Pınar Tüfekci (2014). “Prediction of full load electrical power output of a base load operated combined
cycle power plant using machine learning methods”. In: International Journal of Electrical Power
& Energy Systems 60, pp. 126–140.

Sharan Vaswani, Frederik Kunstner, Issam H. Laradji, Si Yi Meng, Mark Schmidt, and Simon
Lacoste-Julien (2020). Adaptive Gradient Methods Converge Faster with Over-Parameterization
(and you can do a line-search). arXiv/2006.06835.

Sharan Vaswani, Aaron Mishkin, Issam H. Laradji, Mark Schmidt, Gauthier Gidel, and Simon
Lacoste-Julien (2019). “Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence
Rates”. In: NeurIPS, pp. 3727–3740.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors (2020). “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In:
Nature Methods 17, pp. 261–272.

Rachel Ward, Xiaoxia Wu, and Léon Bottou (2019). “AdaGrad stepsizes: sharp convergence over
nonconvex landscapes”. In: ICML, pp. 6677–6686.

Philip Wolfe (1969). “Convergence conditions for ascent methods”. In: SIAM review 11.2, pp. 226–
235.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney
(2021). “AdaHessian: An Adaptive Second Order Optimizer for Machine Learning”. In: AAAI
35.12, pp. 10665–10673.

I.-Cheng Yeh (1998). “Modeling of strength of high-performance concrete using artificial neural
networks”. In: Cement and Concrete Research 28.12, pp. 1797–1808.

David B. Yudin and Arkadi S. Nemirovski (1976). “Informational complexity and effective methods
for the solution of convex extremal problems”. In: Èkonom. i Mat. Metody 12.2, pp. 357–369.

Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal (1997). “Algorithm 778: L-BFGS-B:
Fortran Subroutines for Large-Scale Bound-Constrained Optimization”. In: ACM Transactions on
Mathematical Software 23.4, pp. 550–560.

M. Zhu, John L. Nazareth, and Henry Wolkowicz (1999). “The Quasi-Cauchy Relation and Diagonal
Updating”. In: SIAM Journal on Optimization 9.4, pp. 1192–1204.

13

Supplementary Material

Contents

A Full pseudocode of the algorithms 15
A.1 Subroutines for standard backtracking line-search 17
A.2 Separating hyperplanes used by multidimensional backtracking 17
A.3 Multidimensional backtracking using boxes . 18
A.4 Multidimensional backtracking using ellipsoids 19
A.5 Implementable pseudocode . 21

B Optimal preconditioners, valid preconditioners and competitive ratios 23
B.1 Defining optimal preconditioners without twice-differentiability or strong-convexity 24
B.2 Valid and optimal preconditioners with singular matrices 24
B.3 Best competitive ratio achievable by the optimal preconditioner 25

C Separating hyperplanes 27
C.1 Stronger hyperplanes . 27
C.2 Separating hyperplanes for invalid preconditioners 28

D Cutting-plane methods 29
D.1 Boxes . 29
D.2 Axis-aligned ellipsoids . 30

E Experiments 36
E.1 Performance comparison . 38
E.2 Additional results . 38

Code available at https://github.com/fKunstner/multidimensional-backtracking

14

https://github.com/fKunstner/multidimensional-backtracking

A Full pseudocode of the algorithms
We first give with a generic version using the subroutines INITIALIZE, CANDIDATE and CUT, to be
specialized for the backtracking line-search (Figure 8), multidimensional backtracking using boxes
(Figure 10), and ellipsoids (Figure 11). The generic pseudocode is written in terms of preconditioners,
but also applies to the step-size version, which we can consider as looking for a preconditioner
constrained to isotropic diagonal preconditioners, that is, preconditioners in the set {αI : α ∈ R≥0}.
Although we write the pseudocode maintaining at each iteration an abstract set of preconditioners S ,
the only information the algorithm needs to maintain on each iteration for the implementation in the
different cases is

• For the line-search:
the current maximum step-size αmax defining the interval of valid step-sizes, [0, αmax] such that
the set of preconditioners is S = {αI : α ∈ [0, αmax]};

• For multidimensional backtracking with boxes:
the vector b defining the maximum corner of the box B(b) = {p ∈ Rd

≥0 : p ≤ b} used to define
the candidate diagonals preconditioners in the set S = {Diag(p) : p ∈ B(b)};

• For multidimensional backtracking with ellipsoids:
the vector a defining the axis-aligned ellipsoid E(a) = {p ∈ Rd

≥0 : ⟨p,Diag(a)p⟩ ≤ 1} used to
define the candidate diagonal preconditioners in the set S = {Diag(p) : p ∈ E(a)}.

The pseudocode in Figure 6 updates (xt,St) to (xt+1,St+1) at each iteration, and ensures that either
the function value decreases, f(xt+1) < f(xt), or the volume decreases, Vol(St+1) < Vol(St).
We give an alternative pseudocode in Figure 7, which defines iterations as updates to the iterates xt

that decrease the function value, and uses a while-loop to backtrack. Since it more closely resemble
standard ways backtracking line-search is described, some reader may find it easier to understand.
We stress, however, that this is still the same algorithm as Figure 6 but written differently.

The pseudocode in Figures 6–11, are expressed in a modular form to highlight how the algorithm
works and its similarity to a line-search. In Appendix A.5, we give a more directly implementable
pseudocode of multidimensional backtracking in both box and ellipsoid variants solely relying on
vector notation.

15

Figure 6: Generic pseudocode for the line-search or multidimensional backtracking. uses the
subroutines INITIALIZE, CANDIDATE, CUT defined in the later sections.

Backtracking Preconditioner Search with Sets
Input:

A starting point x0 ∈ Rd;
A backtracking coefficient γ ∈ [0, 1];
A scalar c0 > 0 larger than the optimal preconditioner, i.e., such that P∗ ⪯ c0I.

S0 = INITIALIZE(c0)

Iterate for t in 0, 1, ..., T − 1
Pt = CANDIDATE(St, γ,∇f(xt))
If f(xt −Pt∇f(xt)) ≤ f(xt)− 1

2∥∇f(xt)∥2Pt
//Armijo condition Equation (4)

(xt+1,St+1) = (xt −Pt∇f(xt),St)
Otherwise,

(xt+1,St+1) = (xt, CUT(St,xt,Pt))

Output: xT

Figure 7: Alternative pseudocode for the line-search or multidimensional backtracking. Uses a
while-loop for backtracking and only updates the iterates xt when they lead to progress.

Backtracking Preconditioner Search with Sets – while-loop variant
Input:

A starting point x0 ∈ Rd;
A backtracking coefficient γ ∈ [0, 1];
A scalar c0 > 0 larger than the best preconditioner, that is, P∗ ⪯ c0I.

Initialize the set S = INITIALIZE(c0)
Iterate for t in 0, 1, ..., T − 1

Pt ← CANDIDATE(Sb, γ,∇f(xt))
While f(xt −Pt∇f(xt)) ≤ f(xt)− 1

2∥∇f(xt)∥2Pt
//Armijo condition Equation (4)

S ← CUT(S,xt,Pt)
Pt ← CANDIDATE(S, γ,∇f(xt))

xt+1 = xt −Pt∇f(xt)

Output: xT

16

A.1 Subroutines for standard backtracking line-search
Implementation of the subroutines for the standard backtracking line-search. Although written in
terms of sets, the algorithm only needs to maintain the maximum step-size in the interval [0, αmax] at
each iteration. The corresponding preconditioners are the matrices S = {αI : α ∈ [0, αmax]}.

Figure 8: Specialization of the subroutines for the backtracking line-search

INITIALIZE(c0)

Input:
A scaling c0 larger than the optimum step-size, that is, such that 1/L ≤ c0.

Output: Set of preconditioners S = {αI : α ∈ [0, c0]}.

CANDIDATE(S, γ,x)
Input:

Set of scalar preconditioners S = {αI : α ∈ [0, αmax]};
Backtracking coefficient γ ∈ [0, 1];
Current iterate x ∈ Rd. //Not used for the step-size version.

Output: Preconditioner γαmaxI

CUT(S,x,P)

Input:
Set of scalar preconditioners S = {αI : α ∈ [0, αmax]};
Current iterate x ∈ Rd; //Not used for the step-size version.
Preconditioner P = αbadI that failed the Armijo condition at x.

Output: Set of scalar preconditioners with reduced interval, S = {αI : α ∈ [0, αbad]}

A.2 Separating hyperplanes used by multidimensional backtracking
Both versions of multidimensional backtracking need a direction to update the set of precondi-
tioners in the CUT subroutine. We define the subroutine SEPARATINGHYPERPLANE in Figure 9.
The description of the separating hyperplane and their properties can be found in Section 4 and
Appendix C.

Figure 9: Separating hyperplane used by both variants of multidimensional backtracking.

SEPARATINGHYPERPLANE(x,P) for diagonal preconditioners
Input:

Current iterate x ∈ Rd;
Diagonal preconditioner P = Diag(p) that failed the Armijo condition at x.

x+ = x−P∇f(x)
g = ∇f(x)
g+ = ∇f(x+)

v =

(
1
2g − g+

)
⊙ g

f(x)− f(x+)− ⟨g,Pg+⟩ //Separating hyperplane from Proposition 4.2

Output: u = max{v, 0} element-wise //Stronger hyperplane from Proposition 4.3

17

A.3 Multidimensional backtracking using boxes
The implementation of multidimensional backtracking with boxes only needs to maintain a vector b,
representing the maximum step-size for each coordinate that has not been ruled out, in the box B(b).
The associated sets of preconditioners S are

B(b) = {p ∈ Rd
≥0 : p ≤ b}, S = {Diag(p) : p ∈ B(b)}.

The description of boxes and the theoretical guarantees when using them in multidimensional
backtracking can be found in Section 5 and Appendix D.1. The subroutines used by the algorithm
with boxes are:

• INITIALIZE: initializes b to c01 so that the diagonal preconditioner c0I is in S0.

• CANDIDATE: backtracks from the largest diagonal in B(b), returning γDiag(b).

• SEPARATINGHYPERPLANE: computes the vector u defining the half-space of invalid pre-
conditionersH>(u) obtained when the preconditioner P fails the Armijo condition at x as
described in Proposition 4.2 and Proposition 4.3.

• CUT: returns the minimum volume box B(b+) containing the intersection B(b) ∩H≤(u).

Figure 10: Specialization of the subroutines for multidimensional backtracking with boxes

INITIALIZE(c0)

Input:
A scalar c0 such that c0I is larger than the optimal diagonal preconditioner, i.e., P∗ ⪯ c0I.

Output: Set S = {Diag(p) : p ∈ B(b)} with B(b) = {p ∈ Rd
≥0 : p ≤ b} where b := c01

CANDIDATE(S, γ,x)
Input:

Set of preconditioners S = {Diag(p) : p ∈ B(b)} with B(b) = {p ∈ Rd
≥0 : p ≤ b};

Backtracking coefficient γ ∈ [0, 1];
Current iterate x ∈ Rd. //Not used for the box version.

Output: Preconditioner γDiag(b)

CUT(S,x,P)

Input:
Set of preconditioners S = {Diag(p) : p ∈ B(b)} with B(b) = {p ∈ Rd

≥0 : p ≤ b};
Backtracking coefficient γ ∈ [0, 1];
Preconditioner Pbad that failed the Armijo condition at x.

u = SEPARATINGHYPERPLANE(xt,Pbad)
b+ = max{b, 1/u} //Minimum volume box B(b+) containing B(b) ∩H≤(u)

Output: Set of diagonal preconditioners S = {Diag(p) : p ∈ B(b+)}.

18

A.4 Multidimensional backtracking using ellipsoids
The implementation only needs to maintain a vector a representing the diagonal of the matrix defining
the (centered, axis-alligned) ellipsoid E(a) and the associated set of preconditioners S given by

E(a) = {p ∈ Rd
≥0 : ⟨p,Diag(a)p⟩ ≤ 1}, S = {Diag(p) : p ∈ E(a)}.

The description of the ellipsoids and their properties can be found in Section 5 and Appendix D.2.
The subroutines used by the algorithm with boxes are:

• INITIALIZE: initializes a to (1/dc20)1 so that c01 ∈ E(a), implying the diagonal precondi-
tioner c0I is in S.

• CANDIDATE: backtracks from the diagonal preconditioner in S that maximizes the gradient
norm. Let E(a) be the set of candidate diagonals and define A = Diag(a). The subroutine
returns γPmax, where

Pmax := argmax
P∈S

∥∇f(x)∥2P.

Writing this in terms of the diagonal vector pmax := diag(Pmax) yields

pmax = argmax
p∈E(a)

∥∇f(x)∥2Diag(p),

= argmax
p

〈
∇f(x)2,p

〉
: ∥p∥A ≤ 1 =

A−1∇f(x)2
∥∇f(x)∥A−1

,

where∇f(x)2 = ∇f(x)⊙∇f(x).
• SEPARATINGHYPERPLANE: computes the vector u defining the half-space of invalid pre-

conditionersH>(u) obtained when the preconditioner P fails the Armijo condition at x as
described in Proposition 4.2 and Proposition 4.3.

• CUT: returns an ellipsoid E(a+) containing the intersection of E(a)∩H≤(u) with guaranteed
volume decrease from E(a). As there is no closed-form solution for the minimum volume
ellipsoid, we set a+ as a convex combination between the original ellipsoid E(a) and the
minimum volume axis-aligned ellipsoid containingH≤(u), given by E(u2), that is,

a+ := λa+ (1− λ)u2, where λ :=
ℓ

d

d− 1

ℓ− 1
and ℓ := ∥u∥2A−1 , (10)

where A := diag(a). Although the above choice of λ has guaranteed volume decrease, we
can find a better value of λ by solving the minimum volume ellipsoid as a function of λ
numerically. Namely, approximating

λ∗ := argmin
0<λ<1

− log(det(λDiag(a) + (1− λ)Diag(u2))).‘′

In our experiments, we start with λ as in (10) and, starting from it, we solve the above
minimization problem numerically using L-BFGS-B (Zhu et al., 1997) in SciPy (Virtanen et
al., 2020). This preserves the theoretical guarantee while improving empirical performance.

19

Figure 11: Specialization of the subroutines for multidimensional backtracking with ellipsoids

INITIALIZE(c0)

Input:
A scalar c0 > 0 such that c0I is larger than the optimal diagonal preconditioner, i.e., P∗ ⪯ c0I.

Output: S = {Diag(p) : p ∈ E(a)} with E(a) = {p ∈ Rd
≥0 : ⟨p,Diag(a)p⟩ ≤ 1} for a = 1

dc20
1

CANDIDATE(S, γ,x)
Input:

A set S = {Diag(p) : p ∈ E(a)} where E(a) = {p ∈ Rd
≥0 : ⟨p,Diag(a)p⟩ ≤ 1}, and

a ∈ Rd
>0;

Backtracking coefficient γ ∈ [0, 1];
Current iterate x ∈ Rd.

d = ∇f(x) ◦ ∇f(x)
pmax =

A−1d

∥d∥A−1

//Where A = Diag(a)

Output: Preconditioner γDiag(pmax)

CUT(S,x,P)

Input:
A set S = {Diag(p) : p ∈ E(a)}, where E(a) = {p ∈ Rd

≥0 : ⟨p,Diag(a)p⟩ ≤ 1}, and
a ∈ Rd

>0;
Current iterate x ∈ Rd;
Preconditioner Pbad that failed the Armijo condition at x.

u = SEPARATINGHYPERPLANE(xt,Pbad)

ℓ = ∥u∥2A−1

λ = ℓ
d
d−1
ℓ−1

(
or numerically solve λ = argmin0<c<1− log(det(cDiag(a) + (1− c)Diag(u2)))

)
a+ = λa+ (1− λ)u2 //Approx. min. volume ellipsoid E(a+) containing E(a) ∩H≤(u)

Output: The set S = {Diag(p) : p ∈ E(a+)}

20

A.5 Implementable pseudocode
The pseudocode in Figures 6–11 are expressed in a modular form to highlight how the algorithm works
and its similarity to a line-search. In this section, we give a more directly implementable pseudocode
of multidimensional backtracking, in both the box and ellipsoid variants, using mostly vector notation.
Scalar operations on vectors such as u/a,

√
u, u2 are understood to be taken element-wise.

Multidimensional backtracking using boxes Direct implementation
Input:

Function to optimize f : Rd → R ;
Starting point x0 ∈ Rd;
A scalar for the scale of initial set of preconditioners c0 > 0;
Backtracking coefficient γ < 1/d.

b = c01 //Initialize box

Iterate for t in 0, 1, ...

pt = γb //Get candidate preconditioner

gt = ∇f(xt) //Get candidate point
x+
t = xt − pt ◦ gt

While f(x+
t) > f(xt)− 1

2

〈
g2
t ,pt

〉
//Armijo condition fails

g+
t = ∇f(x+

t) //Get next gradient to compute
dt = (12gt − g+

t) ◦ gt //the separating hyperplane direction,
ct = f(xt)− f(x+

t)−
〈
gt ◦ pt,g

+
t

〉
//the normalization constant,

ut = max{dt/ct, 0} (element-wise) //and truncate it

b = 1/max{1/b,ut} (element-wise) //Find new minimum volume box.
//(∞-free min{b,1/u})

pt = γb //Pick next candidate preconditioner

x+
t = xt − pt ◦ gt //and next candidate point

xt+1 = x+
t //Accept new point

Output: xt

21

Multidimensional backtracking using ellipsoids Direct implementation
Input:

Function to optimize f : Rd → R ;
Starting point x0 ∈ Rd;
A scalar for the scale of initial set of preconditioners c0 > 0;
Backtracking coefficient γ < 1/

√
d

a = 1/(dc20) //Initialize ellipsoid

Iterate for t in 0, 1, ...

gt = ∇f(xt)
pt = g2

t /a (element-wise) //Get candidate preconditioner
pt = γpt/

∥∥g2
t /
√
a
∥∥ (element-wise) //normalize it

x+
t = xt − pt ◦ gt //Get candidate point

While f(x+
t) > f(xt)− 1

2

〈
g2
t ,pt

〉
//Armijo condition fails

g+
t = ∇f(x+

t) //Get next gradient to compute
dt = (12gt − g+

t) ◦ gt //the separating hyperplane direction,
ct = f(xt)− f(x+

t)−
〈
gt ◦ pt,g

+
t

〉
//the normalization constant,

ut = max{dt/ct, 0} (element-wise) //and truncate it

take λ = ℓ(d−1)
d(ℓ−1) where ℓ =

〈
u2, 1/a

〉
//Approx. min. vol. new ellipsoid

or //
find λ by numerically minimizing ϕ(λ) where //Find better approximation of min.
ϕ(λ) = −∑d

i=1 log(λa[i] + (1− λ)ut[i]
2) //of volume of new ellipsoid

a = λa+ (1− λ)u2 //New ellipsoid

pt = g2
t /a (element-wise) //Get new candidate preconditioner,

pt = γpt/
∥∥g2

t /
√
a
∥∥ (element-wise) //normalized,

x+
t = xt − pt ◦ gt //and new candidate point

xt+1 = x+
t //Accept new point

Output: xt

22

2 1 0 1 2
2

1

0

1

2
Function

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.4

0.8

1.2

1.6

2.0

Valid Preconditioners
1/L

Figure 12: Set of valid diagonal preconditioners (step-sizes p1 and p2) for the quadratic in Equa-
tion (11). Preconditioned gradient descent can use a larger step-size in the first coordinate.

B Optimal preconditioners, valid preconditioners and competitive ratios
In Section 2, we defined the optimal preconditioner P∗ as the preconditioner that is the best overall
approximation to the inverse Hessian. Formally, we define the optimal diagonal preconditioner P∗ as

P∗ := argmin
P≻0,diagonal

κ such that
1

κ
P−1 ⪯ ∇2f(x) ⪯ P−1 for all x. (1)

One way to interpret this definition is that P−1
∗ is the tightest diagonal approximation to∇2f(x).

We remark that we do not need f to be (strongly-)convex to define the theoretically optimal step-size
of 1/L for gradient descent. Thus, one may wonder why we need strong-convexity (although we relax
this to requiring f to be PL in Appendix B.1) to define what an optimal preconditioner is in (1).

The main difference between the scalar step-size and per-coordinate step-sizes settings is whether the
“largest” step-size or preconditioner is well-defined. In the scalar setting, the largest step-size that is
guaranteed to lead to progress everywhere (i.e., a step-size that satisfies the Armijo condition (3) for
all x) is well-defined and equal to α∗ := 1/L for L-smooth function f . Equivalently,

α∗ = sup

{
α > 0 : ∇2f(x) ⪯ 1

α
I

}
= sup

x∈Rd

λmax(∇2f(x)),

where λmax(∇2f(x)) is the largest eigenvalue of ∇2f(x). But in the case of preconditioners, the
ordering on positive definite matrices is not complete, so there is no single “largest” preconditioner P
that satisfies ∇2f(x) ⪯ P−1. We can still describe “good” preconditioners, that are guaranteed to
satisfy the Armijo condition (Equation (4)) everywhere; this is the notion of valid preconditioners
defined in Definition 4.1, which in set notation is V := {P ≻ 0 : ∇2f(x) ⪯ P−1}. With this
definition, we can consider the set of valid preconditioners P for which there are no bigger valid
preconditioners, that is, P := {P ∈ V : ̸ ∃P′ ∈ V s.t. P ≺ P′}. However, P contains incomparable
preconditioners, that is, distinct matrices A,B ∈ P that neither A ⪰ B nor A ⪯ B hold.

Let us look at an example with a quadratic function (illustrated in Figure 12)

f(x) =
1

2
⟨x,Ax⟩ with Hessian A =

[
.5 .1
.1 1.0

]
. (11)

There are many preconditioners that are valid,3 for example using the per-coordinate step-sizes

PL ≈
[
.91 0
0 .91

]
, P1 =

[
2.0 0
0 0.0

]
, P2 =

[
0.0 0
0 1.0

]
, P∗ ≈

[
1.75 0
0 0.87

]
.

The preconditioner PL corresponds to the 1/L step-size, P1 and P2 take the largest possible step-
size in each coordinate, and P∗ is the optimal preconditioner according to Equation (1). Those
preconditioners are not comparable to each other, as neither PL ≺ P∗ nor P∗ ≺ PL hold. Instead
of looking at the matrices themselves, we use in (1) the condition number4 of P1/2∇2f(x)P1/2 as
a measure of quality of P. This allows for a well-defined optimal preconditioner as this condition
number can be maximized.

3Up to invertibility issues which we address in the next subsection.
4Our definition is slightly different, but both notions are equivalent for positive definite P.

23

B.1 Defining optimal preconditioners without twice-differentiability or strong-convexity
Although we used twice-differentiability of f to define the optimal preconditioner, this is not necessary.
If f is not twice-differentiable but still strongly-convex, the definition in Equation (1) can be replaced
by Equation (2), as finding the P-norm under which the function is most strongly-convex.

P∗ = argmin
P≻0, diagonal

κ

such that
{

1
κ

1
2∥x− y∥2P−1 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩,

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ 1
2∥y − x∥2P−1 ,

for all x,y.

To avoid strong-convexity, we can instead use the PL inequality. A function f is µ-PL if

1

µ

1

2
∥∇f(x)∥2 ≥ f(x)− f(x∗). (12)

This property is implied by µ-strong convexity. We refer to the work of Karimi et al. (2016) for the
properties of PL functions and its relation to other assumptions. To adapt Equation (12) to our results,
we can measure the PL constant µ in the norm induced by P, and say that f is µ-PL in ∥·∥P if

1

µ

1

2
∥∇f(x)∥2P ≥ f(x)− f(x∗). (13)

We use this inequality in the convergence proof in Proposition 3.2 since it is a consequence of
strong-convexity. As this property is the only property of strong-convexity needed for our results,
we can adapt our results to be competitive with the optimal preconditioner defined using the PL
inequality, using the definition

PPL
∗ := argmin

P≻0, diagonal
κ

such that
{

1
κ∥∇f(x)∥

2
P ≥ f(x)− f(x∗) for all x,

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ 1
2∥y − x∥2P−1 , for all x,y.

(14)

If f is µ-PL and L-smooth, Equation (14) has a feasible solution at P = 1/LI number κ = L/µ.
The constraint based on the µ-PL condition in Equation (14) is weaker than the definition using
strong-convexity, as strong-convexity implies the PL inequality. The optimal preconditioner defined
using the PL inequality (14) might thus achieve a lower condition number than the one using strong-
convexity (1). For example, the quadratic f(x) = (1/2)⟨x,Ax⟩ with a positive semi-definite A is not
strongly convex if the smallest eigenvalue of A is 0. The optimal preconditioner in Equation (1) is
ill-defined (or has condition number κ∗ =∞). In contrast, the optimal preconditioner defined using
the PL inequality in Equation (14) has a finite condition number, as P = 1/LI is a feasible solution
with condition number κ = L/λ+

min(A) where λ+
min(A) is the smallest non-zero eigenvalue of A. As

our proofs only use the properties guaranteed by Equation (14), our results also apply to PL functions.

B.2 Valid and optimal preconditioners with singular matrices
In the main text, we defined valid preconditioners (Definition 4.1) only for positive definite matrices
for ease of presentation. The notion of valid preconditioners can be extended to general positive
semidefinite matrices. In the diagonal case, the convention 1/0 = +∞ is a useful mental model but
can cause inconsistencies (such as∞ · 0). To extend the notion of valid preconditioners to general
positive semidefinite matrices, we can use the definition

Definition B.1. A preconditioner P ⪰ 0 is valid if P1/2∇2f(x)P1/2 ⪯ I for all x ∈ Rd.

The above is well-defined for all positive semidefinite matrices. An alternative to arrive at a definition
closer to Definition 4.1 is to consider the projection matrix ΠP onto the image of P, given by
ΠP = P1/2(P1/2)† where P† is the Moore-Penrose pseudo-inverse of P. Using that, one can show
that P is valid (according to Definition B.1) if and only if

ΠP∇2f(x)ΠP ⪯ P† for all x ∈ Rd.

An example of a valid preconditioner that is covered by Definition B.1 but not 4.1 is the all-zeroes
matrix. Definition B.1 can seamlessly replace 4.1, and all the results follow similarly. Moreover,
notice that the optimization problem defining the optimal preconditioner (1) may not attain its minima
on positive definite matrices when f is not strongly convex. In this case, we can define an optimal

24

2 1 0 1 2
2

1

0

1

2
Function

0.00 0.25 0.50 0.75 1.00 1.25
0.00

0.25

0.50

0.75

1.00

1.25
Valid Preconditioners

1/L

Figure 13: Set of valid diagonal preconditioners (step-sizes p1 and p2) for the quadratic in Equa-
tion (15). The set of valid preconditioners (Definition 4.1) is the white region in the right figure.

preconditioner as a limit point of a sequence that attains in the limit the value in (1) by replacing
the minimum with an infimum. In this case, an optimal preconditioner may be singular, but the
results in the main body also follow seamlessly using this definition. We decided to restrict our
attention to non-singular preconditioners in the main paper for ease of exposition, since when f is
strongly-convex, an optimal preconditioner is always non-singular.

B.3 Best competitive ratio achievable by the optimal preconditioner
In Section 3, we mentioned that the optimal preconditioner P∗ could be only 1/d-competitive. In fact,
the competitive ratio of P∗ can be arbitrarily bad. The reason for this is that the competitive ratio γ
does not compare against P∗, but rather against any P in the set S of potentially valid preconditioners.
Moreover, this definition only takes into account the norm ∥∇f(x)∥P at a fixed x, while the optimal
preconditioner needs to have large norm for all x.

For example, consider the scalar step-size case. If our current interval of candidate step-sizes to try is
S = [0, 1] but the optimal step-size α∗ is small, let us say α∗ = 1/10, then α∗ is only 1/10-competitive
in S . The motivation for this definition of competitive ratio is that we cannot check whether α is large
compared to α∗ (as we do not know α∗) but we can more easily ensure that a candidate step-size α is
γ-competitive in S (for example α = 1/2 is 1/2-competitive in [0, 1]).

In the previous example, the bad competitive ratio of α∗ in S was mostly due to the fact that S was
large and that, for some x, step sizes larger than α∗ could satisfy the Armijo condition (3). Even if
α∗ is globally optimal, we could make more progress by using a larger step-size if they were to be
accepted, and we have not yet ruled out those step-sizes. However, as S shrinks, it may eventually
converge to the interval [0, 1], in which case the optimal step-size α∗ would be 1-competitive.

In high dimensions however, the optimal preconditioner can have a competitive ratio of 1/d even
when comparing only against valid preconditioners.5 This is because the competitive ratio is defined
using the P-norm of the gradient, and we need to take the direction of the gradient into account. For
example, consider the quadratic function (illustrated in Figure 13)

f(x) =
1

2
⟨x,Ax⟩ where A =

[
1 −1
−1 1

]
, (15)

with eigenvalues {2, 0} as A = [−1, 1]T[−1, 1]. The following three preconditioners are all valid:

P1 =

[
1 0
0 0

]
, P2 =

[
0 0
0 1

]
, and P∗ =

[
1/2 0
0 1/2

]
.

The preconditioner P1 takes the largest possible step-size in the first coordinate and ignores the
second, while P2 does the opposite. They are not good global preconditioners, as each ignores one
coordinate. Yet, they can make much more progress (i.e., the objective value may decrease more) than
the optimal preconditioner P∗ if the gradient is very skewed towards one coordinate. This implies that

5How small the set St can get is bounded by construction. The cutting plane procedure in Sections 4 and 5
only remove invalid preconditioners. The valid preconditioners contained in the initial set S0 will always be in
St, along with possibly more preconditioners that have not been deemed invalid over the course of optimization.

25

P∗ may be only 1/2-competitive in {P1,P2} for some x since

if∇f(x) =
[
1
0

]
, then ∥∇f(x)∥2P1

= 1, ∥∇f(x)∥2P2
= 0, ∥∇f(x)∥2P∗ = 1/2,

and if ∇f(x) =
[
0
1

]
, then ∥∇f(x)∥2P1

= 0, ∥∇f(x)∥2P2
= 1, ∥∇f(x)∥2P∗ = 1/2.

The preconditioner P∗ is still a better choice globally (i.e, for all x) since it ensures optimal worst-
case linear rate in preconditioned gradient descent. But there are better preconditioners that depend
on the current gradient. We exploit this in the ellipsoid variant of multidimensional backtracking
to improve our competitive ratio. We backtrack from the preconditioner that maximizes the local
progress guarantees to ensure a 1/

√
d competitive ratio, while ensuring volume shrinkage of the set of

candidate preconditioners when we call CUT, if the preconditioner fails the Armijo condition.

26

C Separating hyperplanes

In this section, we prove Propositions 4.2 and 4.3 on existence and strengthening of separating
hyperplanes for valid preconditioners.

General idea. Let us start with a summary of the separating hyperplanes used to search for good
preconditioners as discussed in Sections 3 and 4. The goal of the separating hyperplanes is to give
us ways to shrink the initial set of potential preconditioners S to narrow in on valid preconditioners
using the cutting-plane methods in Section 5. At each iteration we are looking for preconditioners P
that satisfy the Armijo condition at x given by

f(x−P∇f(x)) ≤ f(x)− 1

2
∥∇f(x)∥2P.

If P fails the Armijo condition, we conclude that P is invalid. To obtain more information, we look
at the condition as a function of the (diagonal of the) preconditioner, and define the gap function at x,

h(p) := f(x−Diag(p)∇f(x))− f(x) +
1

2
∥∇f(x)∥2Diag(p), ∀p ∈ Rd

≥0.

Then, h(p) ≤ 0 if P = Diag(p) satisfies the Armijo condition at x, and h(p) > 0 otherwise. Any
preconditioner Diag(q) such that h(q) > 0 is guaranteed to be invalid. We can use the gradient
of h at p and convexity to find a half-space such that one side contains only preconditioners with
h(p) > 0. In this section, we show how to construct such half-space, and strengthen them using the
partial order on matrices, which is needed to ensure volume shrinkage of our cutting plane methods.

C.1 Stronger hyperplanes
In the main body we presented the strengthening of separating hyperplanes via truncation (Proposi-
tion 4.3) after the result of existence of separating hyperplanes (Proposition 4.2). Here, we prove a
more general lemma on strengthening half-spaces of invalid preconditioners first, as it is useful in
simplifying the proof of Proposition 4.2. Proposition 4.3 follows directly from the following lemma.

Lemma C.1. LetHv,α be the intersection of the non-negative orthant Rd
≥0 and the half-space defined

by the vector v ∈ Rd and coefficient α > 0,

Hv,α := {p ∈ Rd
≥0 : ⟨v,p⟩ > α}.

Define u := max{v, 0} and letHu,α be defined similarly as above, that is,

Hu,α := {p ∈ Rd
≥0 : ⟨u,p⟩ > α}.

IfHv,α only contains diagonals of invalid preconditioners, that is, Diag(p) is invalid for any p ∈ Hv,
ThenHv,α ⊆ Hu,α andHu,α only contains diagonals of invalid preconditioners.

Proof. InclusionHv,α ⊆ Hu,α. We have that ⟨p,v⟩ > α implies ⟨p,u⟩ > α for any p ∈ Rd
≥0 since

⟨v,p⟩ =
∑

i : v[i]≥0

v[i]p[i] +
∑

i : v[i]<0

v[i]p[i] ≤
∑

i : v[i]≥0

v[i]p[i] =
∑

i : v[i]≥0

u[i]p[i] = ⟨u,p⟩.

Hu,α only contains invalid diagonals. Let pu ∈ Hu,α. We can show that Diag(pu) is invalid by
finding pv ∈ Hv,α such that Diag(pv) ⪯ Diag(pu). Since Diag(pv) is invalid by assumption, this
would imply that Diag(pu) is also invalid. To find pv, we can truncate the entries of pu as

pv[i] :=

{
pu[i] if v[i] ≥ 0

0 otherwise,
∀i ∈ {1, . . . , d}.

Then pv ∈ Hv,α since α < ⟨u,pu⟩ = ⟨u,pv⟩ = ⟨v,pv⟩. 6 and Diag(pu) ⪰ Diag(pv), as
desired.

6One may worry that our original definition of valid preconditioners has a division by 0 if any entry of
the preconditioner is 0 as a preconditioner is valid if ∇2f(x) ⪯ P−1 (Definition 4.1). It is enough to use the
convention that 1/0 = +∞, although this might lead to inconsistencies. In Appendix B.2 we discuss a more
general definition without the use of infinities.

27

C.2 Separating hyperplanes for invalid preconditioners
We are now in position to prove Proposition 4.2.

Proof of Proposition 4.2. Throughout the proof, we shall denote by P the matrix Diag(p). If f is
convex, then h also is since the map p ∈ Rd

≥0 7→ f(x − P∇f(x)) is the composition of an affine
transformation and a convex function, and ∥∇f(x)∥2P = ⟨∇f(x),Diag(p)∇f(x)⟩ is linear in p.
Convexity of h yields the inequality

h(p) ≥ h(q) + ⟨∇h(q),p− q⟩, ∀p ∈ Rd
≥0.

This implies that if p is such that h(q) + ⟨∇h(q),p− q⟩ > 0, then h(p) > 0, which implies that
Diag(p) is an invalid preconditioner. Rearranging we conclude that Diag(p) is invalid for all p in
the set in (5), i.e., in

{p ∈ Rd
≥0 : ⟨∇h(q),p⟩ > ⟨∇h(q),q⟩ − h(q)} (16)

We express the above half-space as

H>(v) = {p : ⟨p,v⟩ > 1} for v :=
∇h(q)

(⟨∇h(q),q⟩ − h(q))
.

Yet, for H>(v) to be equivalent to the set in (16) or even to be well-defined, we need to ensure
⟨∇h(q),q⟩ − h(q) > 0. To see that this holds, note first that by convexity of h and that fact that
h(0) = 0 we have

h(0) ≥ h(q) + ⟨∇h(q), 0− q⟩ =⇒ ⟨∇h(q),q− 0⟩ − h(q) ≥ −h(0) = 0

To show that the last inequality is strict, assume that ⟨∇h(q),q− 0⟩ − h(q) = 0 for the sake
of contradiction. By Lemma C.1, the half-space H := {p ∈ Rd

≥0 :
〈
[∇h(x)]+,p

〉
> 0} contains

only diagonals of invalid preconditioners, where [∇h(x)]+ := max{∇h(x), 0} entry wise. However,
(1/L)1 ∈ H as [∇h(x)]+ ≥ 0 and should be invalid, which is a contradiction since f is L-smooth
and 1/LI is valid. Therefore, ⟨∇h(q),q− 0⟩ − h(q) > 0.

Finally, we can write v in terms of f and Q. To do so, first define x+ := x − Q∇f(x), and the
gradients of f at different points by g := ∇f(x) and g+ := ∇f(x+). Then, by the chain-rule,

∇h(q) = −∇f(x−Q∇f(x))⊙∇f(x) + 1

2
∇f(x)⊙∇f(x) = −g+ ⊙ g +

1

2
g ⊙ g,

which implies

⟨∇h(q),q⟩ − h(q) = −
〈
g+,Qg

〉
+

1

2
⟨g,Qg⟩ − f(x+) + f(x) +

1

2
⟨g,Qg⟩

= f(x)−
〈
g+,Qg

〉
− f(x+).

Plugging these equations in the definition of v yields

v =
∇h(q)

⟨∇h(q),q⟩ − h(q)
=

(12g − g+)⊙ g

f(x)− ⟨g+,Qg⟩ − f(x+)
.

Remark on assumptions of Proposition 4.2. One may have noticed that we never use the assump-
tion that Q fails the Armijo condition (i.e., that h(q) > 0) in the proof of the proposition. In fact, the
proposition holds for any q ∈ Rd

≥0. However, and crucially for our application, we have that q is in
the half-spaceH>(u) of invalid diagonals from Proposition 4.2. In multidimensional backtracking,
q is the diagonal of a preconditioner Diag(q) that failed the Armijo condition h(q) > 0. Since q is
close to the origin in multidimensional backtracking, we can ensure the half-spaceH>(u) contains a
significant portion of our current set of candidate preconditioners, leading to significant shrinkage of
the set of candidate preconditioners whenever CUT is invoked.

28

D Cutting-plane methods
D.1 Boxes
Given a box B(b) for some b ∈ Rd

≥0 and a vector u ∈ Rd
≥0, our cutting plane method needs to find a

box B(b+) that contains B(b) ∩H>(u) which, hopefully, has smaller volume than B(b).
The next lemma gives a formula for the minimum volume box for any u, which is used in the main
text to define CUT in Equation (7). Moreover, we show that if the half-spaceH>(u) is close enough
to the origin (since otherwise we might have b+ = b), then we have a significant volume decrease.

Lemma D.1. Let b ∈ Rd
≥0 and q ∈ B(b). Let u ∈ Rd

≥0. Then the box B(b+) with minimum volume
that contains B(b) ∩H≤(u) is given by (using the convention that 1/u[i] = +∞ if u[i] = 0)

b+[i] := min{b[i], 1/u[i]}, ∀i ∈ {1, . . . , d}, (17)

Moreover, if (1/2d) · b is excluded by the half-space, that is, b ∈ H>(u), then Vol(B(b+)) ≤
(1/(d+1))Vol(B(b+)).

Proof. Formula for b+. Finding the minimum volume box containing B(b) ∩H≤(u),

b+ = argmin
c∈Rd

Vol(B(c)) s.t. B(b) ∩H≤(u) ⊆ B(c),

is equivalent to finding the solution to the following optimization problem:

b+ = argmin
c∈Rd

∏
i

c[i] s.t. max
p∈B(c)∩H≤(u)

p[i] ≤ c[i] for each i ∈ {1, . . . , d}.

As the constraints separate over the coordinates, the minimization can be done for each coordinate
separately. As the function is increasing in c[i], the minimum is achieved by making all the constraints
tight, which giver the formula for b+ in the statement of the lemma.

Volume decrease. Let us prove the second part of the statement. Thus, assume for the remainder
of the proof that (1/2d) · b ∈ H>(u). We first show that Vol(B(b+)) ≤ (1/(d+1))Vol(B(b+)) if we
assume that the update from B(b) to B(b+) shrinks the box in only one coordinate, i.e.,

I := { i ∈ [d] : b[i] > 1/u[i]} = { i ∈ [d] : b+[i] ̸= b[i]} has exactly one element. (18)

Assume the above holds and I = {j}. Then, as (1/2d) · b ∈ H>(u) implies ⟨u, (1/2d)b⟩ > 1,

1 < ⟨u, (1/2d)b⟩ ≤ 1

2d
(u[j]b[j] + d− 1) =⇒ (d+ 1)

1

u[j]
≤ b[j].

This together with the fact that b+[i] = b[i] for all i ̸= j and b+[j] = 1/u[j] yields

Vol(B(b+)) =

d∏
i=1

b+[i] =
1

u[j]
·
∏
i ̸=j

b[i] ≤ 1

d+ 1

d∏
i=1

b[i] =
1

d+ 1
Vol(B(b)).

To complete the proof, we only need to show we may assume (18) holds. Assume the opposite, that
is, that there are two distinct coordinates that shrink from b+ to b. We will show that the volume
shrinks more, meaning the above bound also applies. Formally, assume there are j, k ∈ I that are
distinct. For this part, it will be useful to denote by b+(u) the point defined in Equation (17) for
a given vector u. We will show we can construct u′ ∈ Rd

≥0 such that Vol(b+(u)) ≤ Vol(b+(u′))
while maintaining the property (1/2d)b ∈ H>(u

′) and such that b+(u′)[i] ̸= b[i] for all i ∈ I \ {j},
which makes (18) follow by induction. Indeed, define u′ ∈ Rd

≥0 by

u′[i] := u[i] for i ̸∈ {j, k}, u′[j] :=
1

b[j]
, and u′[k] := u[k] +

b[j]

b[k]

(
u[j]− 1

b[j]

)
. (19)

First, note that (1/2d)b ∈ H>(u
′) since

⟨u′ − u,b⟩ = b[j](u′[j]− u[j]) + (u′[k]− u[k])b[k]

= b[j]

(
1

b[j]
− u[j]

)
+

(
b[j]

b[k]

(
u[j]− 1

b[j]

))
b[k] = 0

29

and, thus, 1 < ⟨u, (1/2d)b⟩ = ⟨u′, (1/2d)b⟩. Let us now show that Vol(B(b+(u))) ≤
Vol(B(b+(u′))). Since b+(u)[i] = b+(u′)[i] for i ̸∈ {j, k}, we have

Vol(B(b+(u)))

Vol(B(b+(u′)))
=

b+(u)[j]

b+(u′)[j]
· b

+(u)[k]

b+(u′)[k]

=
min(b[j], 1/u[j])

min(b[j], 1/u′[j])
· min(b[k], 1/u[k])

min(b[k], 1/u′[k])

=
1/u[j]

b[j]
·

1/u[k]
1/u′[k]

(since j, k ∈ I and by (19))

=
1

b[j]u[j]
· 1

u[k]

(
u[k] +

b[j]

b[k]

(
u[j]− 1

b[j]

))
=

1

b[j]u[j]
· 1

u[k]b[k]
(b[k]u[k] + b[j]u[j]− 1).

To get that Vol(b+(u)) ≤ Vol(b+(u′)), we can show that last line is bounded by < 1. Using the
substitution α := b[j]u[j] and β := b[k]u[k], we want to show that

α+ β − 1

αβ
< 1 ⇐⇒ αβ − α− β + 1 > 0 ⇐⇒ (α− 1)(β − 1) > 0.

This holds if α > 1 and β > 1, is implied by j, k ∈ I since α = b[j]u[j] > 1 and β = b[k]u[k] > 1.
A simple induction shows we may assume (18) holds. To see that (α+ β− 1)/αβ < 1, note that

Equipped with the above lemma, we are in position to prove Theorem 5.1.

Proof of Theorem 5.1. Property (a), holds by induction because, for any ut used in a call to CUT, we
have P∗ ∈ H≤(ut) since P∗ is valid and since by Proposition 4.2 the half-spaceH≤(ut) contains
only diagonals of invalid preconditioners. For (b), fix t ∈ {1, . . . , T} and recall that in this case we
have St = {Diag(p) : p ∈ B(bt)} and Pt = (1/2d) ·Diag(bt). The competitive ratio of 1/2d follows
since Diag(bt) is the preconditioner that maximizes ∥∇f(xt)∥P for P ∈ B(bt). Finally, for (c) by
Lemma D.1 we have that every call to CUT makes the volume of the set decrease by 1/c := 1/(d+1).
Moreover, one can easily verify that bt[i] ≥ min{1/L,b0[i]} for all i ∈ {1, . . . , d} since B((1/L)1)
contains only diagonals of valid preconditioners. Therefore, for bmin[i] := min{1/L,b0[i]}, the
volume of B(bt) cannot be smaller than B(bmin) for all iteration t. Therefore, the number of times
CUT is invoked is no more than

logc

(
Vol(B(b0))

Vol(B(bmin))

)
= logc

(
d∏

i=1

b0[i]

bmin[i]

)
≤ logc((∥b0∥∞L)d) = d logc(∥b0∥∞L).

as desired.

D.2 Axis-aligned ellipsoids
We now analyze the cutting-plane method using axis-aligned ellipsoids. Interestingly, the results that
we prove in this sections are connected to some of the results from Goemans et al. (2009) via polarity
theory. We defer a discussion on this connection to the end of this section.

Different from the main body, it will be helpful for the analysis of the method and proofs of the
results to not restrict ellipsoids to the non-negative orthant, as was done in the main text for ease of
exposition. For any symmetric positive definite matrix A ∈ Rd×d, define the ellipsoid given by A by

E(A) := {x ∈ Rd : ⟨x,Ax⟩ ≤ 1}.
When A is diagonal, we say that E(A) is axis-aligned. Moreover, we may slightly overload our
notation by defining E(a) := E(Diag(a)).

General ellipsoids. Although we are ultimately interested in working solely with ellipsoids defined
by diagonal matrices, we will start by looking at more general ellipsoids, and then exploit symmetry
in our case to derive the result in Lemma 5.2. We start with an ellipsoid E(A) where A is a positive
definite matrix. Then, given a vector u ∈ Rd, we are interested in finding an ellipsoid the intersection

30

Figure 14: Illustration of the ellipsoids in Theorem D.2 in the left. In the right an illustration of
the symmetrized intersection of halfspaces S(u) used in the proof of Lemma 5.2 together with the
ellipsoid E(u⊙ u) used in the convex combination in the lemma.

of E(A) with the half-spaces defined by u and −u that contain the origin, that is, the set

E(A) ∩ {x ∈ Rd : ⟨x,u⟩ < 1} ∩ {x ∈ Rd : −⟨x,u⟩ < 1} = E(A) ∩ {x ∈ Rd : |⟨x,u⟩| < 1}.
The following theorem shows how to find an ellipsoid that contains the above intersection, and how
to guarantee its volume is smaller than E(A) if u is large enough. Interestingly, note that

{x ∈ Rd : |⟨x,u⟩| < 1} = {x ∈ Rd : (⟨x,u⟩)2 < 1} = E(uuT).

The set E(uuT) is a degenerate ellipsoid, in the sense that it is not a compact set, and any p orthogonal
to u is contained in E(uu⊤). Still, the next theorem shows how to find a convex combination of E(A)
and E(uuT)—which always contains E(A) ∩ E(uuT)—that is guaranteed to have volume smaller
than E(A) if u is large enough. The following result can be seen as the polar result of Goemans et al.
(2009, Lemma 2).

Theorem D.2. Let A ∈ Rd×d be positive definite and let u ∈ Rd. Let λ ∈ (0, 1) and define

L(A,u) := λA+ (1− λ)uuT.

Then E(A) ∩ E(uuT) ⊆ E(L(A,u)) and

Vol(E(L(A,u))) =

√
λ

λ+ (1− λ) · ℓ ·
1

λd
·Vol(E(A))

In particular, if ℓ := ∥u∥2A−1 > d and

λ =
ℓ

d
· d− 1

ℓ− 1
, (20)

then λ ∈ (0, 1) and Vol(E(L(A,u))) = νd(u)Vol(E(A)) where

νd(u) =

√
1

λd
· d− 1

ℓ− 1
=

(
d

ℓ

)d/2(
ℓ− 1

d− 1

)(d−1)/2

∈ (0, 1). (21)

Proof. First, note that for any p ∈ E(A) ∩ E(uuT) and any λ ∈ (0, 1) we have

⟨p, L(A,u)p⟩ = λ⟨p,Ap⟩+ (1− λ)⟨p,u⟩ ≤ λ+ (1− λ) = 1.

Thus, E(L(A,u)) ⊆ E(A) ∩ E(uuT). For the volume decrease, recall that for ellipsoids E(A)
we have Vol(E(A)) = Vd/

√
det(A) where Vd is the volume of the unit sphere in Rd. By the matrix-

determinant lemma, we have

det(L(A,u)) =

(
1 +

1− λ

λ
·
〈
u,A−1u

〉)
det(λA) =

(
1 +

1− λ

λ
· ℓ
)
λd det(A).

31

Therefore,

Vol(E(L(A,u))) =

√
1(

1 + 1−λ
λ · ℓ

) · 1

λd
·Vol(E(A)) =

√
λ

λ+ (1− λ) · ℓ ·
1

λd
·Vol(E(A)).

Finally, for λ defined as in (20) we have

1 +
1− λ

λ
· ℓ = 1 +

(
1− ℓ(d− 1)

d(ℓ− 1)

)
d(ℓ− 1)

ℓ(d− 1)
· ℓ = 1 +

(
d(ℓ− 1)

ℓ(d− 1)
− 1

)
· ℓ,

= 1 +

(
d(ℓ− 1)− ℓ(d− 1)

ℓ(d− 1)

)
· ℓ = 1 +

ℓ− d

d− 1
=

ℓ− 1

d− 1
,

which yields the desired formula for νd(u).

On the norm of u. The above theorem has a requirement on the norm of the vector u that defines
the half-spaceH≤(u). However, in our cutting plane method we obtain u from Proposition 4.2 and
Proposition 4.3, which do not have any guarantees on the norm of u explicitly. Crucially, at any given
iteration t of multidimensional backtracking with ellipsoids, we select a candidate preconditioner
Pt = Diag(pt) such that ∥pt∥A = 1/

√
2d. Then, if it fails the Armijo condition in (4) and ut is as

given by Proposition 4.2, then we have pt ∈ H>(ut), that is, the separating hyperplane excludes pt.
As we will show, this implies that ∥u∥A−1 is large.

Lemma D.3. Let A ∈ Rd×d be positive definite and p ∈ Rd
≥0 be such that ∥p∥A ≤ γ for some

γ > 0. Let u ∈ Rd
≥0 be such that p ∈ H>(u). Then ∥u∥A−1 > 1/γ.

Proof. For the sake of contradiction, assume ∥u∥A−1 ≤ 1/γ. Then ∥u∥A−1 · ∥p∥A ≤ 1. Thus, by
the Cauchy-Schwartz inequality,

⟨u,p⟩ =
〈
A−1/2u,A1/2p

〉
≤
∥∥∥A−1/2u

∥∥∥ · ∥∥∥A1/2p
∥∥∥ = ∥u∥A−1 · ∥p∥A ≤ 1.

This is a contradiction since p ∈ H>(u) and, therefore, ⟨u,p⟩ > 1.

On the volume decrease. Although the formula νd(u) in Equation (21) can be hard to interpret, we
show a simple bound when ∥u∥2A−1 ≥ 2d.

Lemma D.4. Let A ∈ Rd×d be a positive definite matrix and u ∈ Rd be such that ∥u∥2A−1 > d.
For c := d/ℓ ∈ (0, 1) we have νd(u) ≤

√
c · e1−c, where νd is defined as in (21). In particular, if

∥u∥2A−1 > d, then νd(u) ≤ 4
√
e/

√
2.

Proof. Define ℓ := ∥u∥2A−1 > d and c := d/ℓ ∈ (0, 1). Then,

νd(u)
2 =

(
d

ℓ

)d(
ℓ− 1

d− 1

)(d−1)

=
d

ℓ
·
(
d

ℓ
· ℓ− 1

d− 1

)(d−1)

= c ·
(
c ·

d/c− 1

d− 1

)(d−1)

= c ·
(
d− c

d− 1

)(d−1)

= c ·
(
1 +

1− c

d− 1

)(d−1)

≤ c · e1−c,

where the last inequality follows since 1 + x ≤ ex for all x ∈ R. In particular, note that c ∈ (0, 1) 7→
c · e1−c is increasing since the derivative of the mapping is positive on (0, 1). Thus, if ∥u∥A−1 ≥ 2d,
then c ≤ 1

2 and c · e1−c ≤ (1/2) · e1/2.

Exploiting symmetry. Let us now exploit symmetry to avoid using non-diagonal matrices in our
ellipsoids. We use the notion of axis-aligned sets in the next few results. A set X ⊆ Rd is axis-aligned
if for any point p ∈ X , the reflections of p along the axes are also contained in X . Formally, for
any s ∈ {±1}d, we have that if p ∈ X , then Diag(s)p ∈ X . Furthermore, with a slight abuse of
notation define Diag(A) := Diag(diag(A)). That is, Diag(A) is the diagonal matrix whose diagonal
entries match those of A. The idea is that the set {p ∈ Rd

≥0 : Diag(p) is valid} of diagonals of valid
preconditioners is contained in the non-negative orthant. Yet, we can extend it by reflecting it over
each of the axes. Although this may seem counter-intuitive, this translates the structure of our problem

32

into symmetry among all orthant, and this can be exploited elegantly. Formally, the set of diagonals
of valid preconditioners reflected over each axis is given by set

P := {p ∈ Rd : Diag(|p|) is valid},
where |p| is the entry-wise absolute value of p ∈ Rd. The following lemma shows that when looking
for low volume ellipsoids that contain an axis-aligned set, we can restrict out attention to axis-aligned
ellipsoids, defined by a diagonal matrix. The following lemma can be seen as the polar statement of
Goemans et al. (2009, Proposition 3.1), with the benefit of not requriring any matrix inversions.

Lemma D.5. Let X ⊂ Rd be an axis-aligned convex set and let A ∈ Rd×d be positive definite
matrix such that X ⊆ E(A). Then X ⊆ E(Diag(A)) and Vol(E(Diag(A))) ≤ Vol(E(A)).

Proof. Let us start by showing that X ⊆ E(Diag(A)). We use the notation Diag(v) · X to denote
the set Diag(v) · X := {Diag(v) · x : x ∈ X}. Since X is axis-aligned, we have

X = Diag(s) · X ⊆ Diag(s) · E(A) = E(Diag(s)ADiag(s)), ∀s ∈ {±1}d.
Therefore, X is contained in each of the 2d ellipsoids of the form E(Diag(s)ADiag(s)). Thus,

X ⊆
⋂

s∈{±1}d

E(Diag(s)ADiag(s)) ⊆ E
(

1

2d

∑
s∈{±1}d

Diag(s)ADiag(s)

)
,

where the last inclusion follows since, for any set of positive definite matricesM, one may verify
that ∩M∈ME(M) ⊆ E((1/|M|)

∑
M∈M M). Finally, note that∑

s∈{±1}d

Diag(s)ADiag(s) = Diag(A).

Indeed, let i, j ∈ {1, · · · , d}. If i = j, then (Diag(s)ADiag(s))i,j = Ai,j for any s ∈ {±1}d. If
i ̸= j, then∑

s∈{±1}d

(Diag(s)ADiag(s))i,j

=
∑

s∈{±1}d : s[i]̸=s[j]

(Diag(s)ADiag(s))i,j +
∑

s∈{±1}d : s[i]=s[j]

(Diag(s)ADiag(s))i,j

= 2d−1 · (−Ai,j) + 2d−1 ·Ai,j = 0.

Let us now show that Vol(E(Diag(A))) ≤ Vol(E(A)). Note that log(Vol(E(A))) =
log(Vol(E(I))) − 1

2 log det(A). Since log det(·) is concave over positive definite matrices, we
have

log det(Diag(A)) = log det
(1

2d

∑
s∈{±1}d

Diag(s)ADiag(s)
)

≥ 1

2d

∑
s∈{±1}d

log det
(
Diag(s)ADiag(s)

)
=

1

2d
· 2d log det(A) = log det(A).

Therefore,

log(Vol(E(Diag(A)))) = log(Vol(E(I)))− 1
2 log det(Diag(A))

≤ log(Vol(E(I)))− 1
2 log det(A)

= log(Vol(E(A))),

which implies that Vol(E(Diag(A))) ≤ Vol(E(A)).

We are now in position to prove Lemma 5.2, which follows directly from the previous two results.

Proof of Lemma 5.2. By the assumptions in Proposition 4.2 we have that P := Diag(p) fails
the Armijo condition 4 condition and, thus, p ∈ H>(u). This together with the assumption that
∥p∥A ≤ 1/

√
2d imply via Lemma D.3 that ∥u∥A−1 ≥

√
2d. This allows us to use Theorem D.2 to

find a new ellipsoid containing E(a) ∩ H≤(u) with the required volume decrease by Lemma D.4.

33

Yet, this ellipsoid may not be axis-aligned. We shall exploit the symmetry described in Lemma D.5 to
show that the axis-aligned ellipsoid E(a+(a,u)) enjoys the same guarantees.

Formally, we need E(a+(a,u)) to contain E(a) ∩H≤(u). Since u ≥ 0, we have

H≤(u) ⊆ S(u) := {p ∈ R : Diag(s) · p ∈ H≤(u) for all s ∈ {±1}d}.
Thus, it suffices for E(a+(a,u)) to contain E(a)∩S(u). From Theorem D.2 we know that E(a)∩S(u)
is contained in the ellipsoid given by the matrix λDiag(a) + (1 − λ)uuT for any λ, in particular
for λ as in (20) since ∥u∥A−1 >

√
d. Since S(u) is axis-aligned, we can exploit symmetry using

Lemma D.5, which tells that E(a) ∩ S(u) is contained in the ellipsoid given by the matrix

Diag
(
λDiag(a) + (1− λ)uuT

)
= Diag(a+(a,u)),

as desired. Finally, the bound on the volume follows by Theorem D.2 and the bound on νd(u) given
by Lemma D.4 since ∥u∥A−1 ≥

√
2d.

Finally, we are in position to prove Theorem 5.3, which follows almost directly from Lemma 5.2.

Proof of Theorem 5.3. Note that (a) holds by induction and since, by Proposition 4.2, we have
diag(P∗) ∈ H≤(ut) for any ut used in a call to CUT. For (b), fix t ∈ {1, . . . , T} and recall that in
this case we have St = {Diag(p) : p ∈ E(at)}. As described in (8), one may verify that Diag(q∗

t)
for q∗

t given by

q∗
t :=

1

∥∇f(xt)2∥A−1
t

·A−1
t ∇f(xt)

2

maximizes ∥∇f(xt)∥P for P ∈ St. Since

Pt = CANDIDATE(St, 1/√2d,xt) =
1√
2d

Diag(q∗
t),

we conclude that Pt is 1/
√
2d-competitive. For (c), first note that we may assume (1/L)1 ∈ E(α0I).

To see that, assume (1/L)1 ̸∈ E(α0I), implying α0d > L2. In this case, any candidate preconditioner
computed by CANDIDATE is always valid and, thus, we never call CUT. To see this, let A0 := α0I be
the matrix defining the initial ellipsoid. Then, by the definition of CANDIDATE for ellipsoids we have
that P0 = Diag(p0) is such that

∥p0∥2A0
= α0∥p0∥2 =

1

2d
<

1

2

α0

L2
.

Therefore, p0[i] ≤ 1/L for all i ∈ {1, . . . , d}, which implies that P0 is valid since P0 ⪯ 1
LI.

Let us look now at the case (1/L)1 ∈ E(α0I). Therefore, B(1/L1) ⊆ E(at) for all iterations t. Since
the minimum volume ellipsoid containing the box B((1/L)1) is the unit sphere of radius 1/L, that is,
E((L2

/d)1). Therefore, Vol(E(at)) ≥ Vol(E((L2
/d)1)). Moreover, every time we call cut the volume

of the ellipsoid goes down by 1/c := 4
√
e/
√
2. Therefore, the total number of calls to CUT is no more

than

logc

(
Vol(E(α01))

Vol(E((L2
/d)1))

)
= logc

(
Ld

dα
d/2
0

)
≤ d

log(c)
log

(
L

dα0

)
≤ 12d log

(
L

α0

)
since log(c) ≥ 1/12.

Refining the choice of λ. Although we have shown in Lemma 5.2 a choice a λ that guarantees
volume decrease, it may be sub-optimal. The choice of λ in Equation (20) is inherited from the
non-symmetric case in Theorem D.2. Although Lemma 5.2 and Theorem D.2 match when u has
only one non-zero entry, we should expect better choices of λ, leading to more volume shrinkage,
to be possible in Lemma 5.2. Although we have not found a choice of λ that is dependent on u
that generically improves upon (20), in practice we can solve for a better λ numerically, by directly
minimizing the volume of the resulting ellipsoid,

min
0<λ<1

Vol(E(λa+ (1− λ)Diag(uu⊤))) = min
0<λ<1

−
∑
i

log(λa[i] + (1− λ)u[i]2).

34

As the problem is one-dimensional, numerical solvers can often find near-optimal solutions. By
warm-starting a numerical solver with the λ defined in (20), we can guarantee that the resulting
ellipsoid leads to a smaller volume and we do not lose our worst-case theoretical guarantees.

Connection to the polar problem and related work. Our results have an interesting connection
to some of the results from Goemans et al. (2009), via the use of polarity theory. Here we give a
quick overview of their work and the connection to our cutting plane methods. Goemans et al. (2009)
shows techniques to approximate some polyhedron P ⊆ Rd (a polymatroid being one of the main
examples) from inside by some ellipsoid E(A). Their algorithm maintains an ellipsoid E(A) ⊆ P
and tries to iteratively enlarge it. They assume access to an oracle such that, at each iteration, either
finds a point u ∈ P that is sufficiently far from E(A), meaning ∥u∥A >

√
d+ ϵ for some ϵ > 0, or

guarantees that E(A) “approximates well” P from inside in the sense that ∥u∥A ≤ (
√
n+ ϵ)/α for

all u ∈ P , where α > 0 is some approximation factor. In their algorithm, when the oracle finds a
point u ∈ P such that ∥u∥A >

√
d+ ϵ the algorithm needs to find an ellipsoid E(A+) such that

E(A+) ⊆ conv(E(A) ∪ {u,−u}), (22)

where conv(D) is the convex hull of D. Interestingly, the polar problem is exactly what we need
for out cutting plane method. More precisely, the polar set X ∗ of a set X is given by X ∗ :=
{ z ∈ Rd : ⟨z, x⟩ ≤ 1}. Then, by taking polars and using that E(A)∗ = E(A−1), we have that
P∗ ⊆ E(A−1). Moreover, taking polar on both sides of (22) yields that an equivalent problem is
finding (A+)−1 such that

E((A+)−1) ⊇ E(A−1) ∩ {−u,u}∗ = E(A−1) ∩ { z : |⟨u, z⟩| ≤ 1}.
That is, the problem is the one of finding a smaller ellipsoid E((A+)−1) that contains E(A−1) ∩
{ z : |⟨u, z⟩| ≤ 1}, which is broadly the goal of the subroutine CUT.

35

Table 1: Datasets used in our experiments, including number of samples n and dimension d, and
order of magnitude of the condition number of the regularized system (κ(X⊤X+1/nI)) and condition
number of the system when using the optimal diagonal preconditioner, κ∗.

Dataset Repository/Source n d κ κ∗

cpusmall LIBSVM, Delve (comp-activ) 8 192 12 1013 102

california-housing Scikit/StatLib, Kelley Pace and Barry (1997) 20 640 8 1010 104

power-plant UCI, Tüfekci (2014) 9 568 4 109 104

concrete UCI, Yeh (1998) 1 030 8 109 103

mg LIBSVM, Flake and Lawrence (2002) 1 385 6 103 103

breast-cancer UCI 569 32 1013 102

australian LIBSVM, Statlog 690 14 109 102

heart LIBSVM, Statlog 270 13 107 102

diabetes UCI 768 8 106 102

ionosphere UCI 351 34 103 102

news20 LIBSVM, Keerthi and DeCoste (2005) 19 996 1 355 191 1013 NA
rcv1 LIBSVM, Lewis et al. (2004) 20 242 47 236 1013 NA

E Experiments
Objective functions

We use L2-regularized linear regression LLINEAR and L2-regularized logistic regression LLOGISTIC(w),
with a regularization coefficient of 1. Given a data matrix X ∈ Rn×d, target y ∈ Rn for regression
tasks and y ∈ {0, 1}n for classification tasks, and parameters w ∈ Rd,

LLINEAR(w) =
1

n

(
1

2
∥Xw − y∥2 + 1

2
∥w∥2

)
.

LLOGISTIC(w) =
1

n

n∑
i=1

−y[i] log(σ(⟨xi,w⟩))− (1− y[i]) log(1− σ(⟨xi,w⟩)) +
1

n

1

2
∥w∥2.

where xi is the ith row of X and σ is the sigmoid function, σ(z) = 1/1+exp(−z). For all datasets, we
add a bias term by prepending a feature column of ones to X.

Datasets

We use the datasets listed in Table 1, made available by LIBSVM (Chang and Lin, 2011), Scikit-Learn
(Pedregosa et al., 2011) and the UCI repository (Dua and Graff, 2017).

Data rescaling

We do not rescale, standardize or otherwise change any of the datasets beyond adding a bias term, as
our goal is to check whether preconditioned methods can handle badly scaled data.

Initializations

We consider two types of initializations. The first approximates a “best-case” scenario where we start
from an estimate with a reasonable loss value despite the bad scaling of the data. We set w[i] = 0
except for the bias term w[0] which is set at the MLE of the non-regularized problem,

w[0] = ȳ where ȳ = 1
n

∑n
i=1 y[i] for linear regression,

w[0] = log
(

ȳ
1−ȳ

)
where ȳ = 1

n

∑n
i=1 y[i] for logistic regression.

The results in the main text use this initialization. The second initialization takes w ∼ N (0, I), giving
a starting point with potentially large loss. We give results using both initializations in the appendix.

36

Optimizers used

• For the small linear regression problems, we use preconditioned gradient descent with the optimal
preconditioner, pre-computed using the semidefinite formulation of Qu et al. (2022), solved using
CVXPY (Diamond and Boyd, 2016) based on the Matlab implementation of Qu et al.

https://github.com/Gwzwpxz/opt_dpcond

• Gradient descent with a backtracking line-search with backtracking parameter γ = 1/2.

• RPROP (Riedmiller and Braun, 1993) following the implementation and default hyperparameters
in PyTorch (Paszke et al., 2019) (starting step-size of 10−1, increase step-size factor η+ = 1.2,
decreasing step-size factor η− = 0.5, minimum step-size of 10−6 and maximum step-size of 50).

https://github.com/pytorch/pytorch/blob/v2.0.1/torch/optim/rprop.py

• Hypergradient descent to set the step-size, using (S)GD-HD (the multiplicative variant, Baydin et
al., 2018). The hypergradient step-size is set to the default β = 0.02 (Baydin et al., 2018, footnote
3). The initial step-size is set to α0 = 10−10, as otherwise most runs diverged immediately.

• The diagonal Barzilai-Borwein method of Park et al. (2020), using their non-monotonic line-search.
We use the default parameters suggested; a starting step-size of 10−6, regularization factor on
the previous diagonal approximation µ = 10−6, a backtracking factor of 1/2 for the backtracking
line-search and a window of 15 steps for the non-monotone line-search. This line-search does not
use a forward step as the update can increase the preconditioner.

• Preconditioned gradient descent using the diagonal Hessian, with a backtracking line-search.

• AdaGrad (Duchi et al., 2011) but augmented with a backtracking line-search as suggested by
Vaswani et al. (2020) to make it competitive in the deterministic setting, following the PyTorch
(Paszke et al., 2019) implementation.

https://github.com/pytorch/pytorch/blob/v2.0.1/torch/optim/adagrad.py

Line-search and forward steps

For all methods, the backtracking line-search is augmented by a forward step. When a step-size is
accepted, it is increased by a factor of 1.1 for the next step. For multidimensional backtracking, we
increase the set uniformly, taking b′ = 1.1 · b for the box and a′ = a/

√
1.1 for the ellipsoid. The

ellipsoid uses a slightly smaller increase factor.7

Hyperparameters for the line-search and multidimensional backtracking

For the backtracking line-searches used in gradient descent, preconditioned gradient descent and used
to augment the other algorithms, we start the search at an initial step-size of 1010 and backtrack by a
factor of 1/2 when failing the Armijo condition, implemented generically as

f(x− d) ≤ f(x)− 1
2 ⟨∇f(x),d⟩

For multidimensional backtracking, we initialize the sets such that the first preconditioner is on the
order of 1010I. Using the notation of Appendix A, we use the scaling factor c0 = d · 1010 for the box
variant and c0 =

√
d · 1010 for the ellipsoid variant. The first preconditioner tried by the box variant

with backtracking factor γ = 1/2d is then 1/2 · 1010I, and the first preconditioner tried by the ellipsoid
variant (assuming the gradient is uniform,∇f(x0) ∝ 1) is 1/

√
2 · 1010I.

7To increase by a factor of 1.1 in the one-dimensional case, the update to the ellipsoid should be a′ = a/1.12.

37

https://github.com/Gwzwpxz/opt_dpcond
https://github.com/pytorch/pytorch/blob/v2.0.1/torch/optim/rprop.py
https://github.com/pytorch/pytorch/blob/v2.0.1/torch/optim/adagrad.py

Table 2: Running times for parts of a backtracking update using the Ellipsoid variant (Figure 11) on
RCV1. Average runtime over 100 calls, ± standard deviations over 10 repeats.

Operation Average runtime ± std
Compute gradient, preconditioner and next iterate 24.4 ms ±0.2 ms
Compute hypergradient 12.6 ms ±0.1 ms
Compute CUT (using Lemma 5.2) 0.9 ms ±0.1 ms
Compute CUT (solving the convex combination with scipy.optimize) 7.6 ms ±0.1 ms

E.1 Performance comparison
The algorithms we compare do not have a unified notion of an “iteration”. For example, a backtracking
line-search and multidimensional backtracking do more work than plain gradient descent in between
updates to the parameters. To make the performance comparison fair, the results in Figures 1 and 5
account for the overhead of backtracking by comparing the performance against the number of oracle
calls, counting the number function and gradient evaluations.

This metric is a good proxy for the work required by multidimensional backtracking. The majority of
the computation cost of the “backtracking” part of the algorithm comes from computing the gradient
at the next point (to compute the hypergradient). The overhead due to other operations such as the CUT
method are minimal compared to gradient computations. Indeed, beyond the gradient computation,
multidimensional backtracking only involves a few vector operations (see Figures 10 and 11). Even
solving for the best convex combination numerically to obtain tighter ellipsoids (as in the CUT method
in Figure 11) is faster than computing gradients. To illustrate this point, we provide the running times
for subsets of a backtracking update from multidimensional backtracking in Table 2.

E.2 Additional results
Figures 15–20 give additional results on small linear and logistic regression problems and large
logistic regression problems. Multidimensional backtracking has a consistent performance across
problems and does not suffer from the extremely bad conditioning of cpusmall or california-housing
(linear regression) or australian, breast-cancer, diabetes and heart (logistic regression).

38

Figure 15: Runs on small linear regression datasets with Bias initialization

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

10 7

10 2

103

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

10 7

10 2

103

cpusmall

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

10 2

100

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

10 2

100

California-housing

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

100

102

104

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

100

102

104

Power-plant

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

10 1

101

103

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

10 1

101

103

Concrete

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

10 6

10 3

100

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

10 6

10 3

100
Mg

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

39

Figure 16: Runs on small linear regression datasets with Gaussian initialization

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

102

107

1012

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

102

107

1012

cpusmall

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

100

103

106

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

100

103

106

California-housing

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

101

104

107

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

101

104

107

Power-plant

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

101

104

107

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

101

104

107

Concrete

0 500 1000 1500 2000 2500 3000 3500 4000
Oracle calls (Function + Gradient eval.)

10 4

10 1

102

O
pt

im
al

ity
 g

ap

0 200 400 600 800 1000 1200 1400
Iterations (Changes in)

10 4

10 1

102

Mg

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

40

Figure 17: Runs on small logistic regression datasets with Bias initialization

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 11

10 6

10 1

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 11

10 6

10 1

Breast-cancer

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 7

10 4

10 1

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 7

10 4

10 1

Australian

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 4

10 2

100

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 4

10 2

100

Heart

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 5

10 2

101

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 5

10 2

101
Diabetes

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 9

10 5

10 1

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 9

10 5

10 1

Ionosphere

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

41

Figure 18: Runs on small logistic regression datasets with Gaussian initialization

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 5

100

105

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 5

100

105

Breast-cancer

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 4

100

104

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 4

100

104
Australian

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 1

101

103

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 1

101

103

Heart

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 3

100

103

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 3

100

103

Diabetes

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 9

10 5

10 1

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 9

10 5

10 1

Ionosphere

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

42

Figure 19: Runs on large logistic regression datasets with Bias initialization

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 4

10 1

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 4

10 1

News20

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 5

10 2

101

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 5

10 2

101

RCV1

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

Figure 20: Runs on large logistic regression datasets with Gaussian initialization

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 3

100

103

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 3

100

103

News20

0 200 400 600 800 1000 1200 1400
Oracle calls (Function + Gradient eval.)

10 5

10 2

101

O
pt

im
al

ity
 g

ap

0 100 200 300 400 500
Iterations (Changes in)

10 5

10 2

101

RCV1

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

GD+LS
Ellipsoid MB

Diag. Hessian+LS
Diag. BB+NMLS

Diag. AdaGrad+LS
RPROP
GD-HD (mult.)

43

	Introduction
	Optimal preconditioning and sufficient progress
	Multidimensional Backtracking
	Separating hyperplanes in higher dimensions
	Cutting-plane methods
	Experiments
	Conclusion
	Appendix
	Full pseudocode of the algorithms
	Optimal preconditioners, valid preconditioners and competitive ratios
	Separating hyperplanes
	Cutting-plane methods
	Experiments

