A  Proofs

A.1 Proof of Lemma 1

Lemma 1 (Joint Policy Evaluation). Consider the modified Bellman backup operator Iy, (5) and
a mapping QJt S x U — Rwith |U| < oo, and define Qk'H Tr Jkt Then, the sequence th
will converge to the joint Q-function of wj; as k — oc.

Proof. First, define the augmented reward” as:

T (8,u) = =1(s,u) — aEy

Er;, [Zlog W]] .

- 7 (Ui
Then, rewrite the update rule as:
Qje(s,u) « rr, (s,u) + Y Egr aror, [Qje (s, )]
Last, apply the standard convergence results for policy evaluation (Sutton and Barto, 2018). O
A.2  Proof of Lemma 2

Lemma 2 (Individual Policy Improvement). Let 7}'°" be the optimizer of the maximization problem
old

in (7). Then, we have Qﬂjntcw(s u) > Q;jt (s,u) forall (s,u) € |S| x |U| with |U| < oo, where
5 (uls) =TI, 7T"ld(uz| ) and wii™ (ufs) = [T; w7 (uils).

Proof. As m;'°V optimizes (7), we can have:

o new o old
Epnew [Q?"ld (s,u;) — alog LuAs)} >E, ou [Q?"ld (s,u;) — alog w} (19)
miug|sF) : mi(uils)
Since we assume that:
QR o.1) = Y wilo) » @1 o)+ 46)
we can have:
rold TV (u;]8)
Euwﬂ“cw Q " (S,U) —a log -
[ It ZZ: mi(uils)
e (uals)
uwﬂ'“e“’ [sz Q;" (8,ui) +b(s) —a Zlog W]
0 new (,, .
S R A wils) | | o)
mi(uils;)
° old
>Y E, poa |wi(s)* Q?"ld (s,u;) — alog T (ul‘f) +b(s)
; mi(uils;")
old 7-(-Old(u |3)
=E, .o b (s, u) — log +—-~
e [Qt (o.0) = o8 o)
old
= V" (), (20)

where the inequality is from plugging in (19).

*We assume 7r; (u;|s) and 7; (u;|s;") to be e-soft policy (Sutton and Barto, 2018) to avoid the log term being
undefined.
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Last, considering the modified Bellman equation, the following holds:

7T-Otld 7_{_»otld
Qi (s,u) =r(s,u) + 7By [V ()]

old TRV (ul|s
<r(s,u)+vEg EUINWT@W [Q;Jt (s',u) — aZlog W”

%

<Qy" (su),
ﬂ_pld
where we have repeatedly expanded th“ on the RHS by applying the modified Bellman equation
and the inequality in (20). O

A.3 Proof of Theorem 1

Theorem 1 (Multi-Agent Policy Iteration with a Fixed Marginal Distribution). For any joint
policy s, if we repeatedly apply joint policy evaluation and individual policy improvement. Then
the joint policy iy (u|s) = [[;_, mi(ui|s) will eventually converge to T3;, such that ijtjt (s,u) >
QW”(S w) for all mjy, assuming |U| < oc.

k+1
Proof. First, by Lemma 2, the sequence {7r } monotonically improves with Q > Q i . Since

the augmented reward is bounded, then Q 5 is bounded. Thus, this sequence must converge to some
;- Then, at convergence, we have the followmg inequality:

7 (u;|s) ot

271_;'_] Z Eﬂ'i |:Qi1 (Sa ui) - Othg

mi(uils;)

wi(ui\s)
mi(uils +)

Using the same iterative argument as in the proof of Lemma 2, we get Q;; it (s,u) > QW“ (s, u) for

all (s,u) € |S| x |U|. That i is, the state-action value of any other policy ;s is lower than or equal to
that of the converged policy 7j;. Therefore, 77} is the optimal joint policy. O

Eﬂ';‘ [Q?; (S7ui) - OélOg 7V7Ti 7é 7'('7*

A.4 Proof of Theorem 2

Theorem 2 (Convergence of Constrained Individual Policy Improvement). The optimization
problem in (10) can be solved by iterating in an alternate fashion through the following two equations:

7 (uil s) Zp silsH)m (uil s, 57)

+osT) = T (Ui‘si ) exp(Qi(s, ui) /)

s T (wils7) exp(Qi(s,ui) /@)

where m refers to the iteration index. Denoting the total number of iterations as M, the presented
scheme converges at a rate of O(1/M) to an optimal policy 7} for any given bounded utility function

Q; and any initial policy 9.

Proof. First, we notice that for a fixed 7; (u;|s;", s}), we can have its optimal marginal as constrained
in (11):

U»L|$ Zp 771 uz|51 ) :)

Then, for a fixed marginal 7;(u;|s;"), we can have the optimal 7;(u;|s;, s¥) by solving (10) via
standard variational calculus:

m(uils]) exp(Qi(s, ui)/)
>, m(uils) exp(Qi(s, ui) /)
Lastly, with the above two equations, we can apply Theorem 1 in Leibfried and Grau-Moya (2020) to
finish our proof. O

ul|sz’ ;):
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B Experiment Settings and Implementation Details

B.1 Matrix Game

In the matrix game, we use a learning rate of 3 x 10~ for all algorithms. For the algorithm that uses
mutual information as the augmented reward, we set the number of Blahut—Arimoto iterations to 1.
For algorithms that use mutual information and entropy as the augmented reward, we fix « as 0.5.
The batch size used in the experiment is 64. Critics and polices used in the experiments consist of
one hidden layer of 64 units with ELU non-linearity. For the mixer network, we use a hypernetwork
similar to QMIX (Rashid et al., 2018), except no non-linearity is used. The environment and model
are implemented in Python. All models are built by PyTorch and are trained via 1 Nvidia RTX 1060
GPU to conduct all the experiments. Each experiment takes roughly 1 hour.

B.2 SMAC

In StarCraft II, we use a learning rate of 5 x 10~ for all algorithms. The structure of the critic network
and the mixer network of MIPI are the same as REFIL (Igbal et al., 2021) except no non-linearity
is used in the mixer of MIPI. The number of Blahut—Arimoto iterations is set to 4 for MIPI in this
experiment. The policy network of MIPI shares all layers with the critic network except the last layer
of the policy network being a different fully-connected layer. The target networks will be updated
once every 200 training episodes for all algorithms. The temperature parameters « and «; are fixed as
0.03 in SZ and CSZ and fixed as 0.1 in MMM for MIPI and Entropy. For REFIL, AQMIX, and CollaQ,
we use their default settings. For CollaQ, as the original implementation is based on a different
SMAC environment where the entity-level observation is not available, we re-implement CollaQ with
minimum changes to adapt the entity-level observation based on the framework provided in REFIL to
ensure fairness of comparison. For MAPPO, as there is no published version of MAPPO for dynamic
team compositions, we choose to implement MAPPO following Papoudakis et al. (2021), with
additional attention modules used in the policy and the critic to handle dynamic team compositions.
The environment and model are implemented in Python. All models are built by PyTorch and are
trained via a mixture of 4 Nvidia A100, 4 RTX 3090, and 1 RTX 2080 TI GPUs to conduct all
the experiments. Each experiment takes 6 to 32 hours depending on the algorithms and scenarios.
Our implementation of MIPI is based on REFIL (Igbal et al., 2021) with MIT license. It is worth
noting that, although we assume full observability for the rigorousness of proof, the trajectory of each
agent is used to replace state s for each agent as input to settle the partial observability in all SMAC
experiments.

B.3 Resource Collection

In Resource Collection, we use a learning rate of 5 x 10~* for all algorithms. The structure of the
critic network and the mixer network of MIPI are the same as REFIL (Igbal et al., 2021) except no
non-linearity is used in the mixer of MIPL. The number of Blahut—Arimoto iterations is set to 1 for
MIPI in this experiment. The policy network of MIPI shares all layers with the critic network except
the last layer of the policy network being a different fully-connected layer. The target networks
will be updated once every 200 training episodes for all algorithms. The temperature parameters
« and «; are fixed as 0.05 in Resource Collection for MIPI. For REFIL, AQMIX, and CollaQ,
we use their default settings. For CollaQ, as the original implementation is based on a different
SMAC environment where the entity-level observation is not available, we re-implement CollaQ with
minimum changes to adapt the entity-level observation based on the framework provided in REFIL to
ensure fairness of comparison. For MAPPO, as there is no published version of MAPPO for dynamic
team compositions, we choose to implement MAPPO following Papoudakis et al. (2021), with
additional attention modules used in the policy and the critic to handle dynamic team compositions.
The environment and model are implemented in Python. All models are built by PyTorch and are
trained via 4 Nvidia RTX 3090 GPUs to conduct all the experiments. Each experiment takes roughly
20 hours. Our implementation of MIPI is based on REFIL (Igbal et al., 2021) with MIT license. It is
worth noting that, although we assume full observability for the rigorousness of proof, the trajectory
of each agent is used to replace state s for each agent as input to settle the partial observability in all
SMAC experiments. As suggested by previous research (Liu et al., 2021; Shao et al., 2022), random
sub-group partitioning does not work well in Resource Collection, therefore we choose not to use it
for MIPI in this experiment.
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C Training performance on SMAC

In this section, we additionally provide the learning curves of all algorithms used in Section 5.2. As

we can see from Figure 3, these algorithms achieve similar training performance, except Entropy.
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Figure 3: Learning curves of all the methods in SMAC, where the unit of x-axis is 1M timesteps and
y-axis represents the win rate of each map.

D More Experiments

D.1 Resource Collection

In this section, We further evaluate MIPI on Resource Collection, which is a more challenging
scenario in terms of the level of collaboration used by COPA (Liu et al., 2021). During training, the
map randomly initializes 3-5 agents, and during the evaluation, we will have 6-8 agents. We plot
the curve of training and evaluation performance in Figure 4. As we can see, MIPI outperforms the
baselines by a large margin, which indicates that MIPI can also perform well in scenarios requiring
strong collaboration.
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Figure 4: Learning curves of all the methods in Resource Collection, where the unit of x-axis is 1M
timesteps and y-axis represents the return.

D.2 Ablation on Alpha

In this section, We further include the ablation study on the impact of alpha. We train MIPI with
different alpha on 3-5 agents scenarios and evaluate their performance on 6-8 agents scenarios. We
use alpha=co to represent the case where team-related information is completely removed (it is worth
noting how this is different from actually set alpha=cc in MIPI). Results are summarized in Table 3.
As we can see, unless alpha is set unreasonably, MIPI can always achieve better generalization ability
without sacrificing the training performance. It’s worth noting that alpha=co outperforms Value
here, which further indicates that reducing the dependency on team-related information promotes
generalization, even when the team-related information is completely removed. However, this strategy
is not widely effective and sacrifices the training performance too much in some cases (see MMM),
which further leads to a decay in both training and evaluation. In contrast, our method uses alpha to
control the degree of dependency on team-related information, which provides more flexibility.
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Table 3: Final performance on all SMAC maps. MIPI is compared with the ablation baseline. We
bold the best mean performance for each map.

#Agent Training Evaluation
Tasks Alpha 35 6 \ 7 [ 8
0 (Value) 0.621£0.042 | 0.33640.075 | 0.275+0.114 | 0.154+0.052
0.01 0.672+0.02 | 0.39440.065 | 0.365+0.068 | 0.26140.092
0.03 (MIPI) | 0.65940.02 0.453+0.08 | 0.404+0.062 | 0.276+0.076
SZ 0.05 0.643+£0.02 | 0.4474+0.062 | 0.408+0.054 | 0.313+0.069
0.1 0.475+0.073 | 0.27740.125 | 0.26+0.093 | 0.146+0.075
0.5 0.175£0.053 | 0.05640.015 | 0.12940.026 | 0.043+0.021
00 0.546+£0.069 | 0.42940.036 | 0.3894+0.038 | 0.221+0.004
0 (Value) 0.542+0.059 | 0.3684+0.083 | 0.2074+0.076 | 0.172+0.112
0.01 0.592+0.02 | 0.378+0.033 | 0.364+0.073 | 0.304+0.056
sz 0.03 (MIPI) | 0.5484+0.032 | 0.42+0.102 | 0.297£0.112 | 0.261£0.09
0.05 0.506+0.046 | 0.41740.092 | 0.22340.094 | 0.192+0.091
0.1 0.344+0.05 0.2184+0.16 | 0.113£0.079 | 0.098+0.086
00 0.506+0.076 | 0.368+0.064 | 0.30940.056 0.2740.07
0 (Value) 0.545+0.048 | 0.50540.058 | 0.39140.083 | 0.319+0.105
0.05 0.594+0.008 0.594+0.053 0.526+0.055 | 0.42640.152
MMM 0.1 MIPI) | 0.54840.023 | 0.495+0.054 | 0.44740.041 | 0.467+0.067
0.5 0.277+0.042 | 0.15840.094 | 0.18+0.105 | 0.139+0.056
00 0.396+0.07 | 0.43240.018 | 0.383+0.041 | 0.315£0.061
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Figure 5: Learning curves of all the methods in SMAC, where the unit of x-axis is 1M timesteps and
y-axis represents the win rate of each map.

D.3 Performance on Higher Level Driver

When working on the follow-up project of this paper, we noticed that REFIL can achieve better
generalization results in MMM with a higher-level NVIDIA driver without any code-level change.
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The results are shown in Figure 5, where all algorithms are trained in a single platform that REFIL
achieves better results. As we can see, although REFIL achieves better generalization results in some
cases, MIPI can still outperform these baselines in terms of both speed and final performance by
properly setting « and «; (0.01 for sz, 0.015 for csz and 0.05 for MMM).
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