
7 Appendix506

This Appendix contains the following sections:507

• Section 8: Limitations and Future Work508

• Section 9: Broader Impact509

• Section 10: Experimental Details and Pseudocode510

• Section 11: Formal Description of Metrics511

• Section 12: Membership Inference Attacks: Description and Additional Findings512

• Section 13: Ablations and Sensitivity Analysis513

• Section 14: Additional Results for Removing Biases (RB)514

• Section 15: Additional Results for Resolving Confusion (RC)515

• Section 16: Additional Results for User Privacy (UP)516

8 Limitations and Future Work517

SCRUB has shown impressive results in terms of being consistently a top-performer in terms of518

unlearning, with a minimal drop in performance compared to previous works. However, SCRUB has519

limitations that we hope future work will address.520

A significant step for future work is to develop theoretical guarantees for the gains provided by521

our methods. We opted to focus on an empirical approach for the following reasons: First, while522

theoretical guarantees abound for linear models, deep networks pose additional significant challenges.523

Second, methods accompanied with theoretical guarantees suffer from practical limitations with524

respect to accuracy and/or scalability. For these reasons we opted to approach the problem from525

a practical standpoint, pushing the envelope by developing unlearning algorithms which are top526

performers across many important different application scenarios, different evaluation metrics,527

different architectures and datasets. We look forward to future work that strives to strike a compromise528

between effective unlearning, good performance, scalability, and theoretical insights.529

Another limitation of SCRUB is the difficulty and instability associated with tuning the min-max530

objective, as shown in the literature e.g. for GANs. For instance, this can lead to oscillating behaviour,531

as we show in Figure 6. We remedy this to a large extent in practice by providing a practical532

algorithm that works well, showing consistently improved results over prior work, but there is room533

for improvement on this front for future work.534

SCRUB’s rewinding procedure also has limitations. We find in practice throughout all of our535

experiments that it can help to substantially increase the success of SCRUB’s defense on MIA in536

scenarios where the forget error obtained by SCRUB at the end of unlearning is ‘too high’. However,537

a different failure case which can also appear is that SCRUB’s forget error at the end of training is538

‘too low’. This can happen due to the way in which we tune hyperparameters, which is designed to539

not harm the retain performance too much, and thus can in some cases lead to ‘premature stopping’540

before the forget error reaches the same level as a reference point for how high it would be if the541

model had truly never seen those examples. We highlight that addressing all possible issues that can542

arise in all scenarios and provide an unlearning algorithm that performs strongly across the board is543

extremely challenging. The fact that we have observed failure cases for each algorithm, be it SCRUB544

or other baselines, is indicative of the extensiveness of the experimentation we conducted. Our work545

has made important strides in designing consistently strong-performing unlearning methods and we546

look forward to future contributions in this direction.547

We hope that future work also continues to push the limits of scalability. We believe that our work548

constitutes an important step in this direction. However, the datasets and models we consider aren’t549

too large, in order to allow comparisons to previous works that would not be feasible to run for larger550

scale experiments. An interesting topic of future work is investigating the interplay between SCRUB551

and other scalable algorithms like NegGrad with increasing amounts of scale.552

Another really interesting future work direction is to investigate how different unlearning algorithms553

interact with different architectures, like Transformers, and loss functions, like self-supervised554

learning.555
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9 Broader Impact556

While recent advances in deep learning represent exciting opportunities for our community, they557

also come with great responsibility. As researchers, we are responsible for understanding and558

mitigating the issues associated with the widespread use of deep learning technology. Machine559

learning models may carry harmful biases, unintended behaviours, or compromise user privacy. Our560

work is intended to take a step in addressing these issues via a post-processing ‘unlearning’ phase561

that makes progress over previous solutions in practice, as we show through an extensive empirical562

investigation. However, SCRUB does not come with theoretical guarantees: we can not prove that563

applying SCRUB completely mitigates those issues in all scenarios, so caution must be taken in564

practice and proper auditing of machine learning models is critical, as advocated by previous works.565

10 Experimental Details and Pseudocode566

Algorithm 1 SCRUB

Require: Teacher weights wo

Require: Total max steps MAX-STEPS
Require: Total steps STEPS
Require: Learning rate ε
wu ← wo

i← 0
repeat

if i < MAX-STEPS then
wu ← DO-MAX-EPOCH(wu)

end if
wu ← DO-MIN-EPOCH(wu)

until i < STEPS

Datasets. We have used CIFAR-10 and Lacuna-567

10 datasets for evaluation purposes. CIFAR-10568

consists of 10 classes with 60000 color images569

of size 32 x 32. In our experiments, the train,570

test, and validation sizes are 40000, 10000, and571

10000 respectively. Lacuna-10 is a dataset de-572

rived from VGG-Faces [Cao and Yang, 2015].573

We have followed the same procedure described574

in [Golatkar et al., 2020a] to build Lacuna. We575

randomly select 10 celebrities (classes) with at576

least 500 samples. We use 100 samples of each577

class to form the test-set, and the rest make the578

train-set. All the images are resized to 32 x 32.579

We also use CIFAR-100 and Lacuna-100 to pre-580

train the models. Lacuna-100 is built in a similar581

way as Lacuna-10, and there is no overlap be-582

tween the two datasets. We have not applied any583

data augmentation throughout the experiments.584

Small-Scale datasets. We followed the same procedure as decribed in [Golatkar et al., 2020b] to585

create the small versions of CIFAR-10 and Lacuna-10, namely CIFAR-5 and Lacuna-5. To this end,586

we take the first 5 classes of each dataset and randomly sample 100 images for each class. We make587

the train and test sets by sampling from the respective train and test sets of CIFAR-10 and Lacuna-10.588

We also make 25 samples from each class from the train set to create the validation sets.589

Algorithm 2 DO-MAX-EPOCH

Require: Student weights wu

Require: Learning rate ε
Require: Batch size B
Require: Forget set Df

Require: Procedure NEXT-BATCH
b← NEXT-BATCH(Df ,B)
repeat
wu ← wu + ε∇wu

1

|b|
∑
xf∈b

d(xf ;w
u)

b← NEXT-BATCH(Df ,B)
until b

Models. We use the same models with the same590

architectural modifications in [Golatkar et al.,591

2020a,b]. For All-CNN, the number of layers is592

reduced and batch normalization is added before593

each non-linearity. For Resnet, ResNet-18 ar-594

chitecture is used. For small scale experiments,595

the number of filters is reduced by 60% in each596

block. For the large-scale experiments, the exact597

architecture has been used.598

Pretraining. Following the previous work for599

consistency, we apply pretraining. Specifically,600

for CIFAR datasets, we have pretrained the mod-601

els on CIFAR-100. For Lacuna, we have pre-602

trained the models on Lacuna-100. We pretrain603

the models for 30 epochs using SGD with a fixed604

learning rate of 0.1, Cross-Entropy loss function,605

weight decay 0.0005, momentum 0.9, and batch606

size 128.607
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Baselines. ‘Original’ is the model trained on the entire dataset D. For ‘Retrain’, we train the same608

architecture on Dr, with the same hyperparameters used during training of the original model. For609

‘Finetune’, we fine-tune the ‘original’ model on Dr for 10 epochs, with a fixed learning rate of 0.01610

and weight-decay 0.0005. For ‘NegGrad’, we fine-tune the ‘original’ model using the following loss:611

L(w) = β × 1

|Dr|

|Dr|∑
i=1

l(f(xi;w), yi)− (1− β)× 1

|Df |

|Df |∑
j=1

l(f(xj ;w), yj) (4)

Where β ∈ [0, 1]. We have tuned β to get a high forget-error while not destroying retain-error. For612

small-scale experiments, β = 0.95 and we have trained for 10 epochs, with SGD, 0.01 lr and 0.1613

weight-decay. For large-scale experiments β = 0.9999 and we have trained for 5 epochs, with SGD,614

0.01 lr, and 0.0005 weight-deay. Please note that small β result in explosion quickly. For ‘CF-k’, we615

freeze the first k layers of the network and finetune the rest layers with Dr. We use the same setting616

as ‘Finetune’ baseline. For ‘EU-k’ we freeze the first k layers, and re-initialize the weights of the617

remaining layers and retrain them with Dr. As all the models are pretrained on larger datasets, for618

re-initializing we use the weights of the pretrained models. For ‘EU-k’ we use the same settings as619

the ‘Retrain’ baseline. In both ‘EU-k’ and ‘CF-k’ baselines, for both ResNet and All-CNN we freeze620

all the layers except for the last block of the network. For Resnet the last block is block4 and for621

All-CNN, the last block of layers is the 9th sequential block. For Bad-T, we follow the specifications622

given in Chundawat et al. [2022] with possible tuning of the parameters in different settings to get the623

highest forget-error without damaging retain-error. More specifically, for all models we perform one624

epoch of unlearning using Adam optimizer, and a temperature scalar of 4. Also, we use the whole625

retain-set compared to 30% reported in their paper as we empirically observed that using only 30%626

of retain-set for Bad-T yields high test errors.627

Algorithm 3 DO-MIN-EPOCH

Require: Student weights wu

Require: Learning rate ε
Require: Batch size B
Require: Retain set Dr

Require: Procedure NEXT-BATCH
b← NEXT-BATCH(Dr,B)
repeat
wu ← wu− ε∇wu

1

|b|
∑

(xr,yr)∈b

αd(xr;w
u)+

γl(f(xr;w
u), yr)

b← NEXT-BATCH(Dr,B)
until b

SCRUB pseudocode and parameters. We628

train SCRUB using Algorithm 1. Throughout629

the experiments, we tune the parameters to get a630

high forget-error while retaining the retain error631

of the original model. We use the same opti-632

mizer for both min and max steps. We observed633

that for small-scale settings ‘Adam’ optimizer634

works better, while in large-scale settings both635

‘Adam’ and ‘SGD’ could be used. For all exper-636

iments, we initialize the learning rate at 0.0005637

and decay it by 0.1 after a number of min and638

max steps. Decaying the learning rate is cru-639

cial to control the oscillating behaviour of our640

min and max optimization. We apply a weight641

decay of 0.1 for small-scale setting and 0.0005642

for large scale experiments, with a momentum643

of 0.9. Finally, we use different batch sizes for644

the forget-set and the retain-set to control the645

number of iteration in each direction, i.e the max and the min respectively. We report these in Table 3.646

System specification. For scale-up experiments, the code is executed in Python 3.8, on an Ubuntu647

20 machine with 40 CPU cores, a Nvidia GTX 2080 GPU and 256GB memory.648

11 Formal Description of Metrics649

In this section, we give more details and mathematical definitions of the metrics that we use throughout650

the paper. We first mathematically define the forget, retain and test errors, and then other application-651

dependent metrics, for Resolving Confusion (RC) and User Privacy (UP).652

Forget, retain and test errors Here, we define the retain error, forget error and test error. Let Dr,653

Df and Dt denote the retain and forget portions of the training dataset, and a test dataset of heldout654

examples, respectively. We define error (Err) as follows:655

Err(D) = 1− 1

|D|
∑

(xi,yi)∈D

1[argmax(f(xi;w)) == yi] (5)
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model dataset unlearning-type forget-set bs retain-set bs max steps min steps

ResNet

CIFAR-10 class 512 128 2 3
CIFAR-10 selective 16 64 5 5
Lacuna-10 class 128 128 5 5
Lacuna-10 selective 32 32 4 4
CIFAR-5 selective 32 32 10 10
Lacuna-5 selective 32 32 5 10

All-CNN

CIFAR-10 class 512 256 3 4
CIFAR-10 selective 16 64 5 5
Lacuna-10 class 32 32 4 4
Lacuna-10 selective 8 32 2 4
CIFAR-5 selective 16 32 5 10
Lacuna-5 selective 32 32 5 10

Table 3: SCRUB’s hyperparameters for each experiment

where f , parameterized by w is the neural network model (comprised of a feature extractor followed656

by a softmax classifier layer), argmax(f(xi;w)) is the label that the model thinks is most likely for657

example xi, and 1[x] is the indicator function that returns 1 if x is True and 0 otherwise.658

Based on the above, the retain error, forget error and test error are computed as Err(Dr), Err(Df )659

and Err(Dt), respectively.660

Metrics for Unlearning for Resolving Confusion (RC) We now define the class confusion metrics661

inspired by Goel et al. [2022]. Specifically, we explore a scenario where the forget set has confused662

labels (e.g. for two classes A and B, examples of A are labelled as B, and vice versa). The idea663

here is that, because mislabelled examples are only present in the forget set, successful unlearning664

(removing the influence of the forget set) would lead to a model that is not at all confused between665

classes A and B.666

In more detail, the setup we follow is: 1) We first mislabel some portion of the training dataset (we667

mislabelled examples between classes 0 and 1 of each of CIFAR-5 and Lacuna-5 in our experiments),668

2) train the ‘original model’ on the (partly mislabelled) training dataset (it has mislabelled examples669

for classes 0 and 1 but correct labels for the remaining classes), 3) perform unlearning where the670

forget set contains all and only the confused examples. Given this, the goal for the unlearning671

algorithm is to resolve the confusion of the original model.672

We consider the following metrics (using terminology consistent with Goel et al. [2022]). They are673

presented in order of decreasing generality, and increasing focus on measuring degrees of confusion674

between the two classes considered.675

• Error (e.g. test error, retain error, forget error). This counts all mistakes, so anytime that an676

example of some class is predicted to be in any other class, it will be counted. These are the677

same metrics that we use for the rest of the paper (see Equation 5). For test and retain error,678

lower is better, whereas for forget error, higher is better.679

• Interclass Confusion IC-ERR (e.g. IC test error, IC retain error). This counts only680

mistakes that involve examples from the confused classes A and B. Specifically, it counts681

instances of any example of class A being predicted to be in any other class , and similarly682

for class B. Compared to Error, this metric is more focused towards understanding the result683

of the introduced confusion, since it only considers cases that relate to the confused classes.684

A successful unlearning method would make no such errors, so lower is better for each of685

IC test error and IC retain error.686

• FGT-ERR (e.g. Fgt test error, Fgt retain error). This metric counts only misclassification687

between the confused classes A and B. Here, a mistake of an example of class A (or B) being688

predicted to be in class other than A or B will not be counted. Only mistakes of an example689

of class A being predicted to be in class B, and vice versa, are counted. This is the most690

focused metric that directly measures the amount of remaining confusion between the691

two classes in question. A successful unlearning method would make no such errors, so692

lower is better for each of Fgt test and Fgt retain.693
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More formally, Error is the same as defined in Equation 5. Let us now mathematically define IC-ERR694

and FGT-ERR. We denote by Cw,D the confusion matrix for model parameterized by w on the dataset695

D, and let DA denote the part of the dataset D that belongs to class A. So, for example DrA denotes696

the part of the retain setDr that belongs to class A, and the entry Cw,D
A,B of the confusion matrix stores697

the number of times that a sample belonging to class A was (mis)classified as belonging to class B in698

the dataset D by the model parameterized by w. Then, we have:699

IC-ERR(D, A,B;w) =

∑
k C

w,D
A,k +

∑
k′ C

w,D
B,k′

|DA|+ |DB |
(6)

where k 6= A, k′ 6= B.700

So, for example, the ‘IC test error’ column in our tables is computed via IC-ERR(Dt, 0, 1;w), where701

Dt denotes the test set, and 0 and 1 are the two classes confused in our experiments. Analogously,702

‘IC retain error’ is computed as IC-ERR(Dr, 0, 1;w)703

Finally:704

FGT-ERR(D, A,B;w) = Cw,D
A,B + Cw,D

B,A (7)

That is, FGT-ERR only measures the misclassification between the two confused classes A and B. So,705

for example, the ‘Fgt test error’ in our tables is computed as FGT-ERR(Dt, 0, 1;w) and analogously706

‘Fgt retain error’ is computed as FGT-ERR(Dr, 0, 1;w).707

User Privacy (UP) Metrics Please see the next section for full details for each of the two Membership708

Inference Attacks (MIAs) that we use and experimental results.709

12 Membership Inference Attacks: Description and Additional Findings710

As mentioned in our paper, we utilize two different MIAs: 1) a ‘Standard MIA’ that is similar to the711

ones typically used in unlearning papers (but far from the state-of-the-art of MIAs used by privacy712

and security colleagues), and 2) the first, to our knowledge, adaptation of the state-of-the-art LiRA713

attack [Carlini et al., 2022] to the framework of unlearning (‘LiRA-for-unlearning’ MIA).714

In this section, we use the term ‘target model’ to refer to the model that is being attacked and the715

term ‘target example’ to refer to an example whose membership status (‘in’ or ‘out’) the attacker716

tries to predict, based on the ‘behaviour’ (e.g loss value) of that example under the ‘target model’. In717

both attacks that we consider, the target model is the unlearned model, and target examples are either718

forget set (‘in’) or test set (‘out’) examples. The unlearning algorithm successfully defends an MIA if719

the attacker can’t tell apart examples that were unlearned (forget set examples) from examples that720

were truly never seen.721

12.1 Standard MIA722

Returning to our previous notation, let l(f(x;wu), y) denote the cross-entropy loss of the unlearned723

model (a deep network f with weights wu) on example x with label y. We abbreviate this as l(x, y)724

from now on; dropping the dependence on f and wu.725

The attacker is a binary classifier that takes as input loss values, coming from either the forget set726

Df or a held-out test set Dt, and predicts whether the example whose loss value was presented727

was in the training set of the original model. We train this attacker via supervised learning on a728

class-balanced labelled training set for this binary problem: Db
train = {(l(xi, yi), ybi )} where each xi729

is an example coming either from Df or Dt, and its binary label ybi is defined as being 0, if xi ∈ Dt730

and 1 if xi ∈ Df . Once the binary classifier attacker is trained, we use it to make predictions for a731

held-out evaluation set of the binary problem: Db
eval = {(l(xi, yi), ybi )} that is also balanced between732

examples coming from Df and Dt, but is disjoint from Db
train.733

The attacker succeeds if it achieves high accuracy on Db
eval, meaning that it can tell apart examples734

that were part of the original training set from those that weren’t, which marks a defeat for the735

unlearning model in terms of this metric, since it has ‘left traces behind’ (in this case, in terms of736

loss values) and leaks information about membership in the forget set. We consider that an optimal737
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Figure 4: ROC curves for the strong LiRA-for-unlearning attack (Area Under the Curve (AUC) is
also reported in the legend, for each unlearning method). Different subplots correspond to different
target models (we trained the target unlearned model 6 times for each unlearning method, using
different random seeds, and different forget sets). Positives are examples in the forget set, and
negatives in the test set. A true positive means that the attacker correctly identified that an example
was forgotten, whereas a false positive means that it incorrectly predicted that a test example was
forgotten. We are primarily interested in the area of small False Positive Rate [Carlini et al., 2022]
and a good unlearning method is associated with a smaller True Positive Rate, i.e. fewer successes for
the attacker, especially in the region of interest. We observe that SCRUB(+R) defends the strong
LiRA-for-unlearning attack more successfully than the other baselines.

defense against this MIA corresponds to a 50% attack accuracy; that is, no better than randomly738

guessing whether an example had been trained on. In principle, the Retrain oracle should defend739

optimally: it in fact did not train on the forget set, so the forget and test sets are simply two different740

held-out sets for this model whose loss values should generally be indistinguishable from each other741

if these sets are identically-distributed. We find in our experiments, presented in the main paper, that742

SCRUB+R is able to defend this MIA comparably to Retrain, and outperforms the other baselines in743

its ability to consistently do so.744

Experimental details In practice, if the distribution of the forget set and the test set are very745

different from each other, their loss values will be very distinguishable. This means that the binary746

classifier can tell them apart easily, but without having truly learned to infer membership in the747

training dataset. This makes the attacker’s evaluation unreliable. To circumvent this problem, we748

ought to pick the held-out test set from the same distribution. More specifically, if the forget set is749

examples from the ‘cat’ class of CIFAR10 dataset, we use the same class for our held-out test set.750

In our experiments, we clip the loss values to a range between [-400, +400] to remove anomalies.751

Also, we use the default LogisticRegression() classifier of the Python’s scikit-learn library as our752

attack model, and perform a cross-validation with 5 random splits. We report the average accuracy of753

the evaluation part of each of the 5 folds as the MIA score. Ideally (for a perfect defense), this score754

is closest to 50%, indicating that the attacker fails to tell apart the forget set from the test set.755

We present additional results for the Standard MIA attack in Section 16.756

12.2 LiRA-for-unlearning attack757

In the standard privacy setting, the LiRA attacker [Carlini et al., 2022] trains a large number of758

‘shadow models’ [Shokri et al., 2017], for which it controls which examples are in the training set759

each time (by construction). To then predict the membership status of a ‘target example’, it estimates760

two Gaussian distributions, using the shadow models: the distribution of confidences of that example761

under shadow models that trained on it, and the distribution of its confidences under shadow models762

that didn’t. Then, it computes the confidence of the target example under the target model and it763

18



predicts that the target example was ‘in’ if the likelihood of the target confidence under the former764

Gaussian is larger than that under the latter Gaussian.765

Adapting LiRA to the framework of unlearning is not trivial, and we are not aware of this done in any766

previous work. We propose the first, to our knowledge, adaptation of LiRA for unlearning. This767

is a strong attack where we allow the attacker knowledge of the unlearning algorithm. Concretely, for768

each shadow model, the attacker also produces a ‘shadow unlearned’ model by applying the given769

unlearning algorithm several times, using a large number of forget sets (similar to Chen et al. [2021]).770

Now, for each ‘target example’, this setup allows the attacker to estimate a different pair of Gaussians:771

the distribution of (confidences of) that target example under models where it was forgotten, and as772

before, under models where it was not seen. The attacker then computes the confidence of the target773

example under the target model, and predicts the example was forgotten if its likelihood under the774

former is larger than under the latter.775

Figure 5: Sensitivity of SCRUB to γ and α. To
create this plot, we ran SCRUB many times for dif-
ferent values of γ ([0.1, 0.5, 1, 2, 3]) and α ([0.1,
0.5, 1, 2, 3]). The x-axis is represents combinations
of these values. t-error, f-error and r-error refer to
test, forget and retain error, respectively. We find
that SCRUB is not very sensitive to these hyper-
parameters: the retain error remains low across
values, and there are several different settings to
these hyperparameters for which we can obtain the
desired results for test and forget errors too.

Experimental setup: overview We run our776

LiRA-for-unlearning attack on selective unlearn-777

ing on CIFAR-10, for the scenario where the778

forget set has size 200 and comes from class 5.779

Attacker: For the attacker, we first train 256780

‘shadow original’ models on random splits of781

half of the CIFAR-10 training set. Let D de-782

note the original dataset. To train each shadow783

model, we split D in half, and use one half to784

as the ‘training set’ and the other half as the785

‘test set’ of that particular shadow model. Then,786

for each of these ‘shadow original’ models, we787

run unlearning on 10K different forget sets (for788

each unlearning method). Specifically, the for-789

get set is a random subset of 200 examples of790

class 5, sampled from the training set of the cor-791

responding ‘shadow original’ model. After this792

procedure, for every example in class 5, we se-793

lect 256 associated shadow models when it was794

not included in training, and 256 shadow models795

when it was unlearned (i.e. it was in the forget796

set). After this, the LiRA attack proceeds as797

normal, where we take each in / out distribution798

and apply a likelihood ratio test on an unknown799

example to infer membership.800

Defender: We next train the target model that801

LiRA-for-unlearning will attack. For this, we802

begin by training the ‘original’ model, on (a803

random split of) half of D. Then, we apply the804

given unlearning algorithm on a randomly-sampled forget set, which is a subset of the original805

model’s training set of size 200, coming from class 5, in the same way as was done by the shadow806

models.807

Implementation note We run this attack at a much larger scale than the remaining experiments of808

the paper (we run 10K unlearning runs, on different forget sets, for each of the 256 ‘shadow original’809

models). We do this because the strength of the attacker is heavily dependent on the number of810

shadow original/unlearned models, and we wanted to benchmark our baselines against a very strong811

attacker. Therefore, to allow better scaling, instead of implementing SCRUB+R as rewinding, we812

implement it through filtering runs of SCRUB that don’t satisfy the condition of SCRUB+R that the813

forget set error should be close to the validation error (where, as explained in the main paper, this814

refers to the validation set that is constructed to have the same distribution as the forget set; containing815

examples of only the same class as the one in the forget set). We used 0.1 as our threshold.816
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(a) Only max steps (Equation 1). (b) SCRUB with insufficient max steps.

(c) SCRUB with too many max steps. (d) SCRUB.

Figure 6: Illustration of training dynamics of SCRUB variants, on CIFAR-5 with a ResNet model.
Performing the right interleaving of min-steps and max-steps is important for achieving a good
balance between high forget error and low retain and validation errors.

Computing the ‘confidence’ Consistent with [Carlini et al., 2022], the confidence of an example817

(x, y) (where y denotes the ground-truth class label) is defined as softmax(f(x))[y]. In words, the818

confidence is the softmax probability of the correct class. Following Carlini et al. [2022], we apply819

logit-scaling to each confidence, to make their distributions Gaussian.820

Conclusions and findings Figure 4 plots the ROC curve, showing the False Positive Rate and821

True Positive Rate of the attacker, in log-log scale. Different subplots correspond to different target822

unlearned models, each of which was trained with a different random seed, and different retain/forget823

set split. A successful defense is associated with a smaller Area Under the Curve (AUC); meaning824

fewer True Positives for the attacker. Carlini et al. [2022] however advocate that the AUC is not a825

good indicator of the attacker’s strength and, instead, they argue that we should primarily consider the826

region of the ROC curve associated with very small False Positive Rates. We observe that, especially827

in that region, SCRUB(+R) is the strongest method in terms of defending our LiRA-for-unlearning828

attack (and also we observe that SCRUB(+R) has the best AUC too). The improved NegGrad baseline829

that we also proposed in this paper is also a strong model in terms of defending this attack. We found830

that CF-k is not able to improve the privacy of the original model in most cases, while EU-k can831

sometimes improve but only slightly, and not reliably.832

Limitations To stay consistent with previous work on unlearning, as mentioned previously, we833

turn off data augmentations. Consequently, the ‘original model’ (before unlearning is applied) has834

overfitted more than a state-of-the-art CIFAR model would. Indeed, as can be seen from Figure 4,835

the ‘Original’ model has poor privacy (the attacker has a high True Positive Rate). We note that this836

is the first, to our knowledge, investigation of privacy of unlearning algorithms using strong MIAs,837

and we hope that future work continues to investigate increasingly more realistic scenarios with838

models closer to the state-of-the-art, and considers unlearning on original models of varying degrees839

of privacy and generalization ability.840

13 Ablations and Sensitivity Analysis841

In this section, we illustrate the training dynamics of SCRUB and the importance of different design842

choices. As a reminder, the student is initialized from the teacher and subsequently undergoes an843

alternating sequence of max-steps and min-steps; the former encouraging the student to move far844
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(a) Performing only max steps (Equation 1). (b) SCRUB with insufficient max steps.

(c) SCRUB with too many max steps. (d) SCRUB.

Figure 7: Illustration of training dynamics of SCRUB variants, on CIFAR-5 with All-CNN. Per-
forming the right interleaving of min-steps and max-steps is important for achieving a good balance
between high forget error and low retain and validation errors.

from the teacher on the forget set, and the latter encouraging it to stay close to the teacher on the845

retain set. We also found it useful to perform a sequence of additional min-steps after the alternating846

sequence. We now explore the effect of these decisions.847

First, we show that performing only max-steps, by optimizing Equation 1, is not a good solution.848

Simply pushing the student away from the teacher on the forget set achieves forgetting but unfortu-849

nately also hurts the retain and validation set performance (Figure 6a). Therefore, alternating between850

max-steps and min-steps is necessary. However, it is important to find the right balance. For instance,851

as seen in Figure 6b, performing too few max-steps leads to the unwanted consequence of the forget852

error dropping. On the other hand, removing the final sequence of only min-steps is also harmful,853

as shown in Figure 6c that trains for a larger number of epochs of an equal number of (alternating)854

max-steps and min-steps without achieving a good balance at any point throughout the trajectory.855

On the other hand, SCRUB (Figure 6d) achieves a good balance of high forget error and low retain856

and validation error simultaneously. We also ablate the cross-entropy term in Equation 3, which857

provides a small but consistent added protection against degrading performance in Figure 10. We858

show additional examples of training dynamics (Figures 7, 8, 9).859

Finally, we also investigate the sensitivity of SCRUB’s results on the γ and α hyperparameters, in860

Figure 5. We find that SCRUB is not very sensitive to these hyperparameters: the retain error remains861

low across values, and there are several different settings to these hyperparameters for which we can862

obtain the desired results for test and forget errors too.863

14 Additional Results for Removing Biases (RB)864

In this section, we provide the results for all scenarios we studied for the Removing Biases (RB)865

application for ResNet and All-CNN, on both CIFAR and Lacuna, for both small-scale and large-scale,866

for completeness, in Tables 5, 6, 7, 8, 9, 10.867
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(a) Performing only max steps (Equation 1). (b) SCRUB with insufficient max steps.

(c) SCRUB with too many max steps. (d) SCRUB.

Figure 8: Illustration of training dynamics of SCRUB variants, on Lacuna-5 with ResNet. Performing
the right interleaving of min-steps and max-steps is important for achieving a good balance between
high forget error and low retain and validation errors.

(a) Performing only max steps (Equation 1). (b) SCRUB with insufficient max steps.

(c) SCRUB with too many max steps. (d) SCRUB.

Figure 9: Illustration of training dynamics of SCRUB variants, on Lacuna-5 with All-CNN. Per-
forming the right interleaving of min-steps and max-steps is important for achieving a good balance
between high forget error and low retain and validation errors.
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(a) CIFAR-5 with ResNet. (b) CIFAR-5 with All-CNN.

(c) Lacuna-5 with ResNet. (d) Lacuna-5 with All-CNN.

Figure 10: Effect of adding the cross-entropy loss in Equation 3. Dashed lines omit cross-entropy
while solid lines use it. We find that the addition of cross-entropy offers an additional protection to
maintaining the model’s performance during the unlearning procedure. This sometimes comes at
the cost of smaller forget set error, compared to the forget set error that would have been achieved if
cross-entropy was omitted from the loss.

CIFAR-10 Lacuna-10

Model ResNet All-CNN ResNet All-CNN
class selective class selective class selective class selective

Finetune 3.8 3.09 3.33 3.03 1.7 2.03 2.16 2.00
Fisher 0.08 0.07 0.16 0.14 0.08 0.07 0.16 0.15

NegGrad 3.4 2.96 2.30 2.97 1.66 1.5 2.41 2.27
CF-k 3.55 3.17 3.37 2.91 3.42 3.20 3.27 3.11
EU-k 1.41 1.26 1.34 1.20 1.39 1.28 1.32 1.26
Bad-T 19.07 20.44 17.91 17.03 20.05 20.27. 16.32 16.02

SCRUB 7.84 7.41 6.36 5.33 2.17 1.95 2.81 2.48

Table 4: Scale-up factor: the fraction of the runtime of retrain from scratch over the runtime of each
given unlearning algorithm. That is, a scale-up value of X for an unlearning algorithm means that
that algorithm runs X times faster than retrain from scratch.
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CIFAR-5 Lacuna-5

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 24.9 2.5 0.0 0.0 28.8 5.9 5.8 0.4 0.0 0.0 4.8 3.4

Original 24.2 2.6 0.0 0.0 0.0 0.0 5.7 0.4 0.0 0.0 0.0 0.0
Finetune 24.3 2.4 0.0 0.0 0.0 0.0 5.6 0.3 0.0 0.0 0.0 0.0
Fisher 31.6 3.4 14.0 6.0 4.8 5.2 14.0 3.6 6.7 3.3 6.4 8.3
NTK 24.4 2.6 0.0 0.0 22.4 9.2 5.6 0.5 0.0 0.0 0.0 0.0

NegGrad 25.5 1.1 0.0 0.0 41.3 6.1 6.1 0.7 0.0 0.0 1.3 2.3
CF-k 22.6 1.9 0.0 0.0 0.0 0.0 5.8 0.4 0.0 0.0 0.0 0.0
EU-k 23.5 1.1 0.0 0.0 10.7 2.3 5.9 0.6 0.0 0.0 0.0 0.0
Bad-T 27.73 1.89 5.12 1.56 8.00 8.64 5.00 0.33 0.14 0.10 0.00 0.00

SCRUB 24.2 1.6 0.0 0.0 40.8 1.8 6.2 0.73 0.0 0.0 24.8 5.2

Table 5: Small-scale results with ResNet for the Removing Biases (RB) application. SCRUB is the
top-performer in terms of forgetting with minimal performance degradation.

CIFAR-5 Lacuna-5

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 24.36 1.61 0.13 0.28 28.8 9.12 4.6 0.38 0.0 0.0 4.67 6.41

Original 24.08 1.86 0.17 0.38 0.0 0.0 4.53 0.47 0.0 0.0 0.0 0.0
Finetune 23.48 1.91 0.04 0.09 0.0 0.0 9.77 10.76 6.63 13.22 19.33 40.03

Fisher 42.64 6.56 31.83 10.47 15.2 16.83 52.53 13.87 51.09 14.54 39.33 40.43
NTK 24.16 1.77 0.17 0.38 13.6 8.29 4.47 0.47 0.0 0.0 3.33 4.68

NegGrad 26.07 1.21 0.56 0.49 36.00 10.58 5.27 0.76 0.14 0.12 12.00 13.86
CF-k 22.67 1.55 0.00 0.00 0.00 0.00 4.67 0.70 0.00 0.00 0.00 0.00
EU-k 25.87 0.64 3.23 1.69 8.00 6.93 5.20 0.20 0.00 0.00 0.00 0.00
Bad-T 25.87 1.80 9.68 0.45 10.67 4.99 8.87 0.66 2.32 0.79 0.00 0.00

SCRUB 23.88 1.78 0.08 0.12 40.8 8.2 3.87 0.72 0.0 0.0 25.33 4.13

Table 6: Small-scale results with All-CNN for the Removing Biases (RB) application. SCRUB is
the top-performer in terms of forgetting with minimal performance degradation.

CIFAR-10 Lacuna-10

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 14.72 0.16 0.0 0.0 100.0 0.0 2.87 0.34 0.0 0.0 99.75 0.56

Original 16.56 0.1 0.0 0.0 0.0 0.0 3.07 0.26 0.0 0.0 0.0 0.0
Finetune 16.41 0.09 0.0 0.0 0.0 0.0 3.02 0.37 0.0 0.0 0.0 0.0
Fisher 26.42 1.41 2.45 0.84 100.0 0.0 3.33 0.54 0.0 0.0 100.0 0.0

NegGrad 17.84 1.46 1.74 2.55 91.26 7.73 3.41 0.17 0.00 0.00 14.90 1.78
CF-k 15.31 0.12 0.00 0.00 0.03 0.01 2.89 0.22 0.00 0.00 0.00 0.00
EU-k 18.73 0.42 0.00 0.00 98.79 0.18 3.19 0.17 0.01 0.02 4.06 0.83
Bad-T 19.56 1.44 11.34 1.82 94.67 6.12 3.37 0.50 1.06 0.47 67.60 24.26

SCRUB 15.73 0.17 0.51 0.02 100.0 0.0 3.69 0.36 0.28 0.23 100.0 0.0

Table 7: Large-scale, class unlearning results with ResNet for the Removing Biases (RB) applica-
tion. SCRUB and EU-k are the top-performers in this setting in terms of forgetting with minimal
performance degradation. Note, however, that EU-k doesn’t perform strongly across the board and in
particular performs very poorly in selective unlearning (notice the contrast between EU-k’s forget
error between Figures 1a and 1b Fisher is also a top-performer in terms of forget error in this setting
too, but on CIFAR causes a large degradation in test error, as is often observed for this method.
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CIFAR-10 Lacuna-10

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 13.97 0.19 0.0 0.0 100.0 0.0 1.59 0.36 0.0 0.0 100.0 0.0

Original 15.56 0.25 0.0 0.0 0.0 0.0 1.56 0.33 0.0 0.0 0.0 0.0
Finetune 15.39 0.22 0.0 0.0 0.0 0.0 1.67 0.44 0.0 0.0 0.0 0.0
Fisher 27.4 2.28 3.66 1.03 99.0 0.0 1.78 0.29 0.0 0.0 89.0 0.0

NegGrad 17.87 0.31 0.58 0.13 87.22 1.67 1.63 0.17 0.00 0.00 6.56 1.13
CF-k 14.99 0.23 0.00 0.00 0.00 0.00 1.48 0.36 0.00 0.00 0.00 0.00
EU-k 15.30 0.69 0.13 0.14 100.00 0.00 1.74 0.45 0.00 0.00 77.19 39.51
Bad-T 16.98 0.40 5.84 0.43 81.93 3.50 2.56 0.09 0.37 0.18 38.65 36.80

SCRUB 15.06 0.14 0.12 0.03 100.0 0.0 2.0 0.4 0.0 0.0 100.0 0.0

Table 8: Large-scale, class unlearning results with All-CNN for the Removing Biases (RB) appli-
cation. SCRUB is the top-performer in terms of forgetting with minimal performance degradation.

CIFAR-10 Lacuna-10

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 17.4 0.14 0.0 0.0 29.67 3.21 2.7 0.2 0.0 0.0 1.0 1.0

Original 17.36 0.14 0.0 0.0 0.0 0.0 2.73 0.15 0.0 0.0 0.0 0.0
Finetune 17.37 0.11 0.0 0.0 0.0 0.0 2.63 0.12 0.0 0.0 0.0 0.0
Fisher 21.23 0.27 2.88 0.54 3.0 2.65 3.1 0.35 0.0 0.0 0.0 0.0

NegGrad 22.7 0.6 4.1 0.5 53.7 6.8 4.7 0.2 0.9 0.1 13.0 1.0
CF-k 17.4 0.1 0.0 0.0 0.0 0.0 2.7 0.2 0.0 0.0 0.0 0.0
EU-k 21.8 0.2 0.4 0.6 23.7 3.5 2.9 0.1 0.0 0.0 0.0 0.0
Bad-T 23.47 1.57 14.53 1.65 34.67 1.70 7.30 2.20 3.26 1.83 0.33 0.47

SCRUB 18.04 0.2 0.0 0.0 70.33 4.16 3.0 0.0 0.0 0.0 4.67 3.06

Table 9: Large-scale, selective unlearning results with ResNet for the Removing Biases (RB)
application. SCRUB and NegGrad are the top-performers in terms of forgetting, though NegGrad
has worse test performance than SCRUB in both cases. Note also that NegGrad isn’t as consistent at
forgetting across settings as SCRUB.

CIFAR-10 Lacuna-10

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 16.47 0.21 0.0 0.0 25.67 2.31 1.6 0.44 0.0 0.0 0.67 0.58

Original 16.43 0.08 0.0 0.0 0.0 0.0 1.53 0.31 0.0 0.0 0.0 0.0
Finetune 16.5 0.18 0.0 0.0 0.0 0.0 1.43 0.21 0.0 0.0 0.0 0.0
Fisher 21.39 1.22 4.0 1.44 13.0 11.27 1.87 0.21 0.01 0.02 0.0 0.0

NegGrad 21.36 0.34 3.23 0.37 45.33 2.89 2.77 0.25 0.40 0.07 8.67 0.58
CF-k 16.29 0.07 0.00 0.00 0.00 0.00 1.53 0.31 0.00 0.00 0.00 0.00
EU-k 17.62 0.61 0.11 0.11 0.33 0.58 1.83 0.47 0.00 0.00 0.00 0.00
Bad-T 22.43 0.37 10.13 0.15 1.67 1.25 4.90 2.10 1.34 1.20 0.67 0.94

SCRUB 16.55 0.11 0.0 0.0 29.33 3.21 2.07 0.31 0.0 0.0 1.67 0.58

Table 10: Large-scale, selective unlearning results with All-CNN for the Removing Biases (RB)
application. SCRUB and NegGrad are the top-performers in terms of forgetting, though NegGrad
has worse test performance than SCRUB in both cases. Note also that NegGrad isn’t as consistent at
forgetting across settings as SCRUB, as can be seen in Figure 2
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model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

Retrain 26.67 2.87 0.0 0.0 90.33 1.53 24.0 1.8 0.0 0.0 18.33 4.16 0.0 0.0

Original 41.0 2.09 0.0 0.0 0.0 0.0 56.0 3.04 0.0 0.0 92.0 7.94 0.0 0.0
Finetune 38.13 1.42 0.0 0.0 0.0 0.0 52.0 3.12 0.0 0.0 79.33 10.07 0.0 0.0
NegGrad 36.27 0.42 0.0 0.0 12.67 21.94 47.5 5.27 0.0 0.0 69.0 13.53 0.0 0.0

CF-k 39.6 1.64 0.0 0.0 0.0 0.0 54.83 2.02 0.0 0.0 85.33 7.02 0.0 0.0
EU-k 37.47 1.62 7.33 1.26 43.67 2.08 47.0 4.77 8.33 4.73 63.33 9.71 3.67 2.52
Fisher 44.8 2.36 21.33 3.45 32.0 11.53 51.5 7.47 26.33 9.5 79.0 3.61 20.0 7.94
NTK 32.6 2.51 0.0 0.0 60.33 0.58 37.5 4.0 0.0 0.0 52.0 10.58 0.0 0.0

SCRUB 25.93 3.13 1.08 0.52 96.0 1.73 19.0 3.91 0.0 0.0 19.67 7.51 0.0 0.0

Table 11: Results on CIFAR-5 with ResNet for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 50-50 samples). SCRUB is the best-performer by far in terms of eliminating the
confusion via unlearning (see the IC error and Fgt error columns), while not hurting performance for
other classes (see e.g. the usual Error metrics in the first 3 groups of columns).

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

Retrain 24.4 2.75 0.0 0.0 90.67 4.04 19.0 1.32 0.0 0.0 11.33 4.62 0.0 0.0

Original 37.07 4.67 1.5 2.6 5.67 9.81 49.0 4.77 6.0 10.39 80.67 12.58 6.0 10.39
Finetune 34.33 3.35 0.0 0.0 3.0 5.2 43.67 7.29 0.0 0.0 67.33 16.04 0.0 0.0
NegGrad 33.53 4.47 0.0 0.0 13.33 21.36 42.33 11.34 0.0 0.0 62.0 22.65 0.0 0.0

CF-k 36.13 4.21 0.0 0.0 0.33 0.58 47.83 5.8 0.0 0.0 76.33 14.43 0.0 0.0
EU-k 51.6 1.0 27.67 3.5 52.67 6.03 59.5 5.22 38.33 6.66 68.67 15.57 19.67 10.41
Fisher 51.93 2.95 35.17 3.92 31.0 11.53 56.83 8.69 31.67 14.01 78.33 15.53 17.67 11.5
NTK 32.2 2.84 0.75 1.3 43.33 14.15 36.67 4.07 3.0 5.2 54.33 9.02 3.0 5.2

SCRUB 25.0 3.14 0.0 0.0 93.33 2.52 26.0 4.44 0.0 0.0 18.0 11.14 0.0 0.0

Table 12: Results on CIFAR-5 with All-CNN for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 50-50 samples). SCRUB is the best-performer by far in terms of eliminating the
confusion via unlearning (see the IC error and Fgt error columns), while not hurting performance for
other classes (see e.g. the usual Error metrics in the first 3 groups of columns).

15 Additional Results for Resolving Confusion (RC)868

We show the full results are in Tables 11, 12, 13, 14, 15, 16, 17, 18 for all settings. We observe that869

across the board, SCRUB is a top-performer on this metric too (see the captions of the individual870

tables for more details about performance profile).871

16 Additional results for User Privacy (UP)872

We present Standard MIA results for all settings in Tables 19, 20, 21, 22, 23, 24, 25, 26. We find873

that SCRUB, especially equipped with its rewinding procedure, is able to consistently have a strong874

defense against MIAs.875

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

Retrain 6.0 0.2 0.0 0.0 99.67 0.58 7.17 2.57 0.0 0.0 0.0 0.0 0.0 0.0

Original 27.07 3.33 1.67 0.88 4.33 1.53 57.5 6.26 6.67 3.51 108.0 14.18 6.67 3.51
Finetune 18.8 4.26 0.0 0.0 14.67 6.03 37.67 11.15 0.0 0.0 63.67 22.01 0.0 0.0
NegGrad 17.8 2.95 1.67 0.72 55.33 2.08 33.17 5.25 5.33 1.53 56.67 12.9 4.33 1.53

CF-k 22.27 4.31 0.08 0.14 10.67 5.03 46.33 10.97 0.33 0.58 81.67 23.01 0.33 0.58
EU-k 15.27 3.19 0.83 0.38 62.0 12.49 29.33 9.0 2.33 1.53 43.67 16.29 0.33 0.58
Fisher 35.87 3.33 17.75 3.78 27.33 3.79 60.0 5.27 31.0 7.94 109.0 14.53 30.0 7.0
NTK 14.53 5.22 0.0 0.0 51.67 23.18 27.17 11.3 0.0 0.0 43.33 25.32 0.0 0.0

SCRUB 8.47 1.17 0.33 0.14 96.0 1.0 11.33 3.82 1.33 0.58 9.33 1.53 1.33 0.58

Table 13: Results on Lacuna-5 with ResNet for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 50-50 samples). SCRUB is the best-performer by far in terms of eliminating the
confusion via unlearning (see the IC error and Fgt error columns), while not hurting performance for
other classes (see e.g. the usual Error metrics in the first 3 groups of columns). NTK in some cases is
able to resolve confusion, but not consistently, and it also suffers from higher Test Error.
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model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

Retrain 4.2 0.87 0.0 0.0 100.0 0.0 5.33 2.25 0.0 0.0 0.0 0.0 0.0 0.0

Original 25.47 2.32 5.75 5.63 20.33 25.74 56.17 4.93 23.0 22.54 105.67 8.08 23.0 22.54
Finetune 12.8 2.8 0.0 0.0 23.0 7.94 25.83 7.75 0.0 0.0 39.67 12.74 0.0 0.0
NegGrad 12.8 9.06 2.5 3.12 90.0 6.56 20.33 17.04 5.0 6.24 12.67 11.68 2.67 3.79

CF-k 21.27 1.63 0.58 0.8 9.33 0.58 47.0 4.58 2.33 3.21 82.67 10.12 2.33 3.21
EU-k 17.0 8.91 3.92 3.99 92.33 4.93 35.0 18.26 13.0 11.36 3.67 4.73 0.0 0.0
Fisher 49.6 4.73 39.25 7.45 40.0 9.54 57.67 10.79 42.33 11.59 88.67 11.68 29.67 16.86
NTK 12.87 6.63 2.83 4.91 72.33 12.06 25.5 17.88 11.33 19.63 35.67 24.03 10.0 17.32

SCRUB 3.87 0.7 0.0 0.0 100.0 0.0 4.33 1.26 0.0 0.0 0.0 0.0 0.0 0.0

Table 14: Results on Lacuna-5 with All-CNN for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 50-50 samples). SCRUB is the best-performer by far in terms of eliminating the
confusion via unlearning (see the IC error and Fgt error columns), while not hurting performance for
other classes (see e.g. the usual Error metrics in the first 3 groups of columns).

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

retrain 18.7 0.07 0.0 0.0 98.57 0.28 14.78 0.18 0.0 0.0 31.33 2.08 0.0 0.0

original 21.86 0.37 0.0 0.0 0.0 0.0 31.23 0.45 0.0 0.0 356.0 11.53 0.0 0.0
finetune 20.85 0.37 0.0 0.0 0.0 0.0 26.75 0.48 0.0 0.0 255.0 10.58 0.0 0.0
NegGrad 23.41 0.32 3.87 0.31 80.07 6.77 41.08 0.6 20.29 1.52 46.0 8.72 0.67 1.15

CF-k 20.93 0.38 0.0 0.0 0.0 0.0 27.27 0.76 0.0 0.0 267.33 16.17 0.0 0.0
EU-k 20.03 0.19 0.25 0.08 95.55 0.54 17.85 0.67 0.18 0.03 53.0 7.94 3.33 2.31

SCRUB 18.01 0.18 0.02 0.01 95.45 0.26 15.07 0.99 0.04 0.03 30.33 3.79 0.33 0.58

Table 15: Results on CIFAR-10 with ResNet for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 2000-2000 samples).

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

retrain 16.43 0.03 0.0 0.0 98.42 0.15 14.37 0.24 0.0 0.0 23.67 2.31 0.0 0.0

original 19.95 0.23 0.0 0.0 0.0 0.0 30.18 0.66 0.0 0.0 348.67 13.58 0.0 0.0
finetune 18.72 0.11 0.0 0.0 1.05 0.61 24.33 0.2 0.0 0.0 223.67 6.66 0.0 0.0
NegGrad 21.74 0.44 4.48 0.34 87.65 2.98 40.05 0.44 21.8 0.66 44.0 5.2 2.33 3.21

CF-k 19.31 0.23 0.0 0.0 0.0 0.0 27.45 0.61 0.0 0.0 294.0 4.36 0.0 0.0
EU-k 17.66 0.23 1.36 0.19 87.9 1.28 16.82 0.79 2.89 0.46 63.67 8.62 91.67 12.58

SCRUB 15.92 0.17 0.2 0.06 87.47 1.46 14.98 0.13 0.39 0.15 54.0 3.61 9.67 2.52

Table 16: Results on CIFAR-10 with All-CNN for the Resolving Confusion (RC) application.
(Confused class 0,1; 2000-2000 samples).

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

retrain 2.43 0.32 0.0 0.0 99.83 0.29 3.33 0.58 0.0 0.0 0.0 0.0 0.0 0.0

original 7.37 0.31 1.21 0.12 15.83 4.19 27.67 1.26 8.26 0.8 46.0 4.36 36.33 3.51
finetune 4.17 0.5 0.0 0.0 56.83 9.44 11.17 1.76 0.0 0.0 15.67 3.51 0.0 0.0
NegGrad 5.63 0.38 0.31 0.22 71.33 9.88 19.33 1.04 2.12 1.51 8.33 2.31 0.0 0.0

CF-k 5.4 0.4 0.07 0.06 33.83 3.33 17.33 1.76 0.45 0.39 27.67 3.51 2.0 1.73
EU-k 3.0 0.26 0.0 0.0 90.17 4.65 6.0 1.8 0.0 0.0 2.0 2.65 0.0 0.0

SCRUB 3.07 0.59 0.0 0.0 98.5 0.5 6.83 1.26 0.0 0.0 0.67 0.58 0.0 0.0

Table 17: Results on Lacuna-10 with ResNet for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 200-200 samples).

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

retrain 2.13 0.25 0.0 0.0 99.83 0.29 2.5 1.32 0.0 0.0 0.0 0.0 0.0 0.0

original 7.83 0.55 1.21 0.52 16.0 4.92 31.33 1.76 8.26 3.53 56.33 3.79 36.33 15.53
finetune 3.0 0.7 0.0 0.0 74.5 6.08 6.5 2.0 0.0 0.0 9.0 3.0 0.0 0.0
NegGrad 4.3 0.52 0.4 0.06 89.67 4.25 15.33 2.47 2.73 0.39 4.67 3.21 0.0 0.0

CF-k 5.27 0.47 0.11 0.07 33.33 1.61 18.5 2.29 0.76 0.47 31.33 3.51 3.33 2.08
EU-k 2.53 0.67 0.09 0.02 97.83 2.08 5.17 1.04 0.38 0.35 0.33 0.58 0.67 0.58

SCRUB 2.1 0.4 0.0 0.0 97.5 1.73 4.17 0.58 0.0 0.0 0.33 0.58 0.0 0.0

Table 18: Results on Lacuna-10 with All-CNN for the Resolving Confusion (RC) application.
(Confused class 0,1; 200-200 samples).
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method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 16.71 0.05 26.67 3.09 0.00 0.00 51.33 6.13

Original 16.71 0.07 0.00 0.00 0.00 0.00 68.67 3.09
Finetune 16.86 0.13 0.00 0.00 0.00 0.00 69.33 2.05
NegGrad 21.65 0.40 47.00 3.74 4.54 0.70 73.00 1.41

CF-k 16.82 0.03 0.00 0.00 0.00 0.00 69.67 1.89
EU-k 18.44 0.21 0.33 0.47 0.32 0.02 66.00 2.94
Bad-T 22.43 0.37 1.67 1.25 10.13 0.15 77.67 4.11

SCRUB 17.01 0.20 33.00 5.89 0.00 0.00 51.00 1.41
SCRUB+R 16.88 0.19 26.33 4.50 0.00 0.00 49.33 2.49

Table 19: Standard MIA for All-CNN architecture on CIFAR-10 for selective unlearning, for the
User Privacy (UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 13.98 0.07 100.00 0.00 0.00 0.00 48.73 0.24

Original 15.70 0.09 0.00 0.00 0.00 0.00 71.40 0.70
Finetune 14.53 0.13 1.31 0.54 0.00 0.00 74.97 1.27
NegGrad 17.04 0.11 59.91 1.53 0.43 0.09 70.03 1.92

CF-k 15.72 0.06 0.00 0.00 0.00 0.00 72.93 1.06
EU-k 15.76 0.28 100.00 0.00 0.24 0.02 51.60 1.22
Bad-T 16.98 0.40 81.93 3.50 5.84 0.43 58.07 1.76

SCRUB 14.93 0.17 100.00 0.00 0.09 0.02 54.30 2.24
SCRUB+R 14.93 0.17 100.00 0.00 0.09 0.02 54.30 2.24

Table 20: Standard MIA for All-CNN architecture on CIFAR-10 for class unlearning, for the User
Privacy (UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 17.38 0.15 29.33 2.49 0.00 0.00 54.00 1.63

Original 17.41 0.15 0.00 0.00 0.00 0.00 65.33 0.47
Finetune 17.48 0.16 0.00 0.00 0.00 0.00 64.00 0.82
NegGrad 21.69 0.07 45.33 2.62 3.94 0.43 66.67 1.70

CF-k 17.53 0.19 0.00 0.00 0.00 0.00 65.00 0.00
EU-k 19.77 0.04 13.67 0.47 0.06 0.01 53.00 3.27
Bad-T 23.47 1.57 34.67 1.70 14.53 1.65 59.67 4.19

SCRUB 17.01 0.03 71.67 0.94 0.01 0.01 78.00 2.45
SCRUB+R 17.54 0.28 19.33 14.64 0.01 0.01 58.67 1.89

Table 21: Standard MIA for ResNet architecture on CIFAR-10 for selective unlearning, for the User
Privacy (UP) application.
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method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 14.69 0.10 100.00 0.00 0.00 0.00 49.33 1.67

Original 16.33 0.14 0.00 0.00 0.00 0.00 71.10 0.67
Finetune 15.10 0.16 0.33 0.17 0.00 0.00 75.57 0.69
NegGrad 17.41 0.09 61.00 1.14 0.44 0.05 69.57 1.19

CF-k 15.29 0.02 0.04 0.04 0.00 0.00 75.73 0.34
EU-k 17.05 0.07 97.48 0.28 0.05 0.01 54.20 2.27
Bad-T 19.56 1.44 11.34 1.82 94.67 6.12 54.33 0.31

SCRUB 15.33 0.06 100.00 0.00 0.08 0.01 52.20 1.71
SCRUB+R 15.33 0.06 100.00 0.00 0.08 0.01 52.20 1.71

Table 22: Standard MIA for ResNet architecture on CIFAR-10 for class unlearning, for the User
Privacy (UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 1.50 0.08 0.33 0.47 0.00 0.00 52.00 2.16

Original 1.57 0.24 0.00 0.00 0.00 0.00 59.00 2.16
Finetune 1.40 0.16 0.00 0.00 0.00 0.00 57.33 3.30
NegGrad 3.60 0.14 14.33 1.25 0.87 0.07 51.00 1.63

CF-k 1.57 0.12 0.00 0.00 0.00 0.00 58.33 2.49
EU-k 3.90 1.47 0.00 0.00 0.76 0.63 52.00 3.56
Bad-T 4.90 2.10 1.34 1.20 0.67 0.94 67.67 6.94

SCRUB 1.67 0.19 0.00 0.00 0.00 0.00 57.67 0.94
SCRUB+R 1.67 0.19 0.00 0.00 0.00 0.00 57.67 0.94

Table 23: Standard MIA for All-CNN architecture on Lacuna-10 for selective unlearning, for the
User Privacy (UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 1.67 0.09 100.00 0.00 0.00 0.00 55.67 2.62

Original 1.70 0.21 0.00 0.00 0.00 0.00 58.00 1.63
Finetune 1.67 0.27 0.00 0.00 0.00 0.00 56.33 1.25
NegGrad 2.00 0.00 14.27 0.74 0.00 0.00 54.33 2.05

CF-k 2.07 0.14 0.00 0.00 0.00 0.00 52.33 2.05
EU-k 4.15 1.22 62.08 44.26 0.81 0.53 52.67 3.68
Bad-T 2.56 0.09 38.65 36.80 0.37 0.18 63.33 2.49

SCRUB 1.96 0.34 100.00 0.00 0.00 0.00 50.33 2.62
SCRUB+R 1.96 0.34 100.00 0.00 0.00 0.00 50.33 2.62

Table 24: Standard MIA for All-CNN architecture on Lacuna-10 for class unlearning, for the User
Privacy (UP) application.
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method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 2.50 0.24 1.67 0.94 0.00 0.00 49.67 3.09

Original 2.53 0.25 0.00 0.00 0.00 0.00 56.67 1.70
Finetune 2.67 0.05 0.00 0.00 0.00 0.00 53.67 0.94
NegGrad 4.30 0.43 12.67 3.30 0.95 0.08 54.00 2.16

CF-k 2.47 0.25 0.00 0.00 0.00 0.00 56.00 0.82
EU-k 2.60 0.00 0.00 0.00 0.03 0.00 56.00 2.83
Bad-T 7.30 2.20 3.26 1.83 0.33 0.47 67.33 3.40

SCRUB 2.97 0.25 6.00 3.27 0.00 0.00 50.67 4.03
SCRUB+R 2.97 0.25 6.00 3.27 0.00 0.00 50.67 4.03

Table 25: Standard MIA for ResNet architecture on Lacuna-10 for selective unlearning, for the User
Privacy (UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 2.52 0.19 100.00 0.00 0.00 0.00 55.00 2.94

Original 2.81 0.28 0.00 0.00 0.00 0.00 56.00 2.45
Finetune 3.04 0.19 0.00 0.00 0.00 0.00 54.67 1.25
NegGrad 2.74 0.26 9.48 0.64 0.00 0.00 53.67 4.03

CF-k 2.81 0.28 0.00 0.00 0.00 0.00 56.00 2.45
EU-k 2.48 0.14 7.71 2.52 0.00 0.00 54.33 3.09
Bad-T 3.37 0.50 67.60 24.26 1.06 0.47 58.00 2.94

SCRUB 3.26 0.38 99.90 0.15 0.07 0.05 54.33 2.49
SCRUB+R 3.26 0.38 99.90 0.15 0.07 0.05 54.33 2.49

Table 26: Standard MIA for ResNet architecture on Lacuna-10 for class unlearning, for the User
Privacy (UP) application.
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