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Abstract

Evaluating the performance of machine learning models on diverse and underrep-
resented subgroups is essential for ensuring fairness and reliability in real-world
applications. However, accurately assessing model performance becomes chal-
lenging due to two main issues: (1) a scarcity of test data, especially for small
subgroups, and (2) possible distributional shifts in the model’s deployment set-
ting, which may not align with the available test data. In this work, we introduce
3S Testing, a deep generative modeling framework to facilitate model evaluation
by generating synthetic test sets for small subgroups and simulating distributional
shifts. Our experiments demonstrate that 3S Testing outperforms traditional
baselines—including real test data alone—in estimating model performance on
minority subgroups and under plausible distributional shifts. In addition, 3S offers
intervals around its performance estimates, exhibiting superior coverage of the
ground truth compared to existing approaches. Overall, these results raise the
question of whether we need a paradigm shift away from limited real test data
towards synthetic test data.

1 Introduction

Motivation. Machine learning (ML) models are increasingly deployed in high-stakes and safety-
critical areas, e.g. medicine or finance—settings that demand reliable and measurable performance
[1]. Failure to rigorously test systems could result in models at best failing unpredictably and at
worst leading to silent failures. Regrettably, such failures of ML are all too common [2–9]. Many
mature industries involve standardized processes to evaluate performance under various testing and
operating conditions [10]. For instance, automobiles use wind tunnels and crash tests to assess specific
components, whilst electronic component data sheets outline conditions where reliable operation is
guaranteed. Unfortunately, current evaluation approaches of supervised ML models do not have the
same level of detail and rigor.

The prevailing testing approach in ML is to evaluate only using average prediction performance
on a held-out test set. This can hide undesirable performance differences on a more granular level,
e.g. for small subgroups [2, 4, 5, 11, 12], low-density regions [13–15], and individuals [16–18].
Standard ML testing also ignores distributional shifts. In an ever-evolving world where ML models
are employed across borders, failing to anticipate shifts between train and deployment data can lead
to overestimated real-world performance [6–8, 19, 20].
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However, real test data alone does not always suffice for more detailed model evaluation. Indeed,
testing can be done on a granular level by evaluating on individual subgroups, and in theory, shifts
could be tested using e.g. rejection or importance sampling of real test data. The main challenge is
that insufficient amounts of test data cause inaccurate performance estimates [21]. In Sec. 3 we will
further explore why this is the case, but for now let us give an example.

Example 1 Consider the real example of estimating model performance on the Adult dataset, looking
at race and age variables—see Fig. 1 and experimental details in Appendix B. There are limited
samples of the older Black subgroup, leading to significantly erroneous performance estimates
compared to an oracle. Similarly, if we tried to engineer a distribution shift towards increased
age using rejection sampling, the scarcity of data would yield equally imprecise estimates. Such
imprecise performance estimates could mislead us into drawing false conclusions about our model’s
capabilities. In Sec. 5.1, we empirically demonstrate how synthetic data can rectify this shortfall.
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Figure 1: Limitation of testing with real data
(Adult dataset): Insufficient real test sam-
ples result in imprecise performance estimates
when (i) testing underrepresented subgroups
(e.g. Black) and (ii) testing effect of a shift
(e.g increased age)

Aim. Our goal is to build a model evaluation frame-
work with synthetic data that allows engineers, audi-
tors, business stakeholders, or policy and compliance
teams to understand better when they can rely on the
predictions of their trained ML models and where
they can improve the model further. We desire the
following properties for our evaluation framework:
(P1) Granular evaluation: accurately evaluate
model performance on a granular level, even for re-
gions with few test samples.
(P2) Distributional shifts: accurately assess how
distribution shifts affect model performance.

Our primary focus is tabular data. Not only are many
high-stakes applications predominately tabular, such
as credit scoring and medical forecasting [22, 23],
but the ubiquity of tabular data in real-world applications also presents opportunities for broad impact.
To put it in perspective, nearly 79% of data scientists work with tabular data on a daily basis, dwarfing
the 14% who work with modalities such as images [24].

Moreover, tabular data presents us with interpretable feature identifiers, such as ethnicity or age,
instrumental in defining minority groups or shifts. This contrasts with other modalities, where raw
data is not interpretable and external (tabular) metadata is needed.

Contributions. 1⃝ Conceptually, we show why real test data may not suffice for model evaluation
on subgroups and distribution shifts and how synthetic data can help (Sec. 3). 2⃝ Technically, we
propose the framework 3S-Testing (s.f. Synthetic data for Subgroup and Shift Testing) (Sec. 4). 3S
uses conditional deep generative models to create synthetic test sets, addressing both (P1) and (P2).
3S also accounts for possible errors in the generative process itself, providing uncertainty estimates
for its predictions via a deep generative ensemble (DGE) [25]. 3⃝ Empirically, we show synthetic test
data provides a more accurate estimate of the true model performance on small subgroups compared
to baselines, including real test data (Sec. 5.1.1), with prediction intervals providing good coverage of
the real value (Sec. 5.1.2). We further demonstrate how 3S can generate data with shifts which better
estimate model performance on shifted data, compared to real data or baselines. 3S accommodates
both minimal user input (Sec. 5.2.1) or some prior knowledge of the target domain (Sec. 5.2.2).

2 Related Work

This paper primarily engages with the literature on model testing and benchmarking, synthetic data,
and data-centric AI—see Appendix A for an extended discussion.

Model evaluation. ML models are mostly evaluated on hold-out datasets, providing a measure of
aggregate performance [26]. Such aggregate measures do not account for under-performance on
specific subgroups [2] or assess performance under data shifts [7, 27].

The ML community has tried to remedy these issues by creating better benchmark datasets: either
manual corruptions like Imagenet-C [28] or by collecting additional real data such as the Wilds
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benchmark [8]. Benchmark datasets are labor-intensive to collect and evaluation is limited to specific
benchmark tasks, hence this approach is not flexible for any dataset or task. The second approach
is model behavioral testing of specified properties, e.g. see Checklist [29] or HateCheck [30].
Behavioral testing is also labor-intensive, requiring humans to create or validate the tests. In contrast
to both paradigms, 3S generates synthetic test sets for varying tasks and datasets.

Challenges of model evaluation. 3S aims to mitigate the challenges of model evaluation with limited
real test sets, particularly estimating performance for small subgroups or under distributional shifts.
We are not the first to address this issue. ■ Subgroups: Model-based metrics (MBM [21]) model the
conditional distribution of the predictive model score to enable subgroup performance estimates.
■ Distribution shift: Prior works aim to predict model performance in a shifted target domain using
(1) Average samples above a threshold confidence (ATC [31]), (2) difference of confidences (DOC
[32]), (3) Importance Re-weighting (IM [33]). A fundamental difference to 3S is that they assume
access to unlabeled data from the target domain, which is unavailable in many settings, e.g. when
studying potential effects of unseen or future shifts. We note that work on robustness to distributional
shifts is not directly related, as the goal is to learn a model robust to the shift, rather than reliably
estimating performance of an already-trained model under a shift.

Synthetic data. Improvements in deep generative models have spurred the development of synthetic
data for different uses [34], including privacy (i.e. to enable data sharing, 35, 36), fairness [37, 38],
and improving downstream models [39–42]. 3S provides a completely different and unexplored
use of synthetic data: improving testing and evaluation of ML models. Simulated (CGI-based) and
synthetic images have been used previously in computer vision (CV) applications for a variety of
purposes — often to train more robust models [43, 44]. These CV-based methods require additional
metadata like lighting, shape, or texture [45, 46], which may not be available in practice. Additionally,
beyond the practical differences between modalities, the CV methods differ significantly from 3S in
terms of (i) aim, (ii) approach, and (iii) amount of data—see Table 4, Appendix A.

3 Why Synthetic Test Data Can Improve Evaluation

3.1 Why Real Data Fails

Notation. Let X and Y be the feature and label space, respectively. The random variable X̃ = (X,Y )
is defined on this space, with distribution p(X,Y ). We assume access to a trained black-box prediction
model f : X → Y and test dataset Dtest,f = {xi, yi}

Ntest,f

i=1
iid∼ p(X,Y ). Importantly, we do not

assume access to the training data of the predictive models, Dtrain,f . Lastly, let M : Y × Y → R be
a performance metric.

Real data does not suffice for estimating granular performance (P1). In evaluating performance of
f on subgroups, we assume that a subgroup S ⊂ X is given. The usual approach to assess subgroup
performance is simply restricting the test set Dtest,f to the subspace S:

A(f ;Dtest,f ,S) =
1

Dtest,f ∩ S
∑

(x,y)∈Dtest,f∩S

M(f(x), y). (1)

This is an unbiased and consistent estimate of the true performance, i.e. for increasing |Dtest,f | this
converges to the true performance A∗(f ; p,S) = E[M(f(X), Y )|(X,Y ) ∈ S].
However, what happens when |Dtest,f ∩ S| is small? The variance VDtest,f∼pA(f,Dtest,f ;S) will
be large. In other words, the expected error of our performance estimates becomes large.

Example 2 To highlight how this affects Eq. 1, let us assume the very simple setting in which
p(Y |X) = p(Y ). Despite Y being independent of X , Eq. 1 is not—the smaller S, the higher
the expected error in our estimate. In particular, for |S| → 0 (w.r.t. p(X)), almost certainly
|Dtest,f ∩ S| = ∅, making Eq. 1 meaningless.

As a result, we find that the smaller our subgroup S, the harder it becomes to measure model f .
At the same time, ML models have been known to perform less consistently on small subgroups
[2–5], hence being able to measure performance on these groups would be most useful. Finally, by
definition, minorities are more likely to form these small subgroups, and they are the most vulnerable
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to historical bias and resulting ML unfairness. In other words, model evaluation is most inaccurate
on the groups that are most vulnerable and for which the model itself is most unreliable.

Real test data fails for distributional shift (P2). If we do not take into account shifts between the
test and deployment distribution, trivially the test performance will be a poor measure for real-world
performance—often leading to overestimated performance [6–8]. Nonetheless, even if we do plan to
consider shifts in our evaluation, for example by using importance weighting or rejection sampling
based on our shift knowledge, real test data will give poor estimates. The reason is the same as
before; in the regions that we oversample or overweight, there may be few data points, leading to
high variance and noisy estimates. As expected, problems are most pervasive for large shifts, because
these require higher reweighting or oversampling of individual points.

3.2 Why Generative Models Can Help

(a) Original data (b) With synthetic data

Figure 2: Illustration why synthetic data can
give more accurate estimates using the same
real samples. Assume we want to evaluate f
(decision boundary=dashed line), which aims
to discriminate between Y = 1 (green stars)
and Y = 0 (red circles). Due to the low num-
ber of samples for Y = 1, evaluating f using
the test set alone (Eq. 1) has a high variance.
On the other hand, a generative model can
learn the manifold from Dtest,f , and generate
additional data for Y = 1 by only learning
the offset (b, green triangles). This can reduce
variance of the estimated performance of f .

We have seen there are two problems with real test
data. Firstly, the more granular a metric, the higher
the noise in Eq. 1—even if the distribution is well-
behaved like in Example 2. Secondly, we desire
a way to emulate shifts, and simple reweighing or
sampling of real data again leads to noisy estimates.

Generative models can provide a solution to both
problems. As we will detail in the next section, in-
stead of using Dtest,f , we use a generative model G
trained on Dtest,f to create a large synthetic dataset
Dsyn for evaluating f . We can induce shifts in the
learnt distribution, thereby solving problem 2. It also
solves the first problem. A generative model aims
to approximate p(X,Y ), which we can regard as
effectively interpolating p(Y |X) between real data
points to generate more data within S.

It may seem counterintuitive that |A∗ −
A(f ;Dsyn,S)| would ever be lower than
|A∗ − A(f ;Dtest,f ,S)|, after all G is trained
on |Dtest,f | and there is no new information added to the system. However, even though the
generative process may be imperfect, we will see that the noise of the generative process can be
significantly lower than the noisy real estimates (Eq. 1). Secondly, a generative model can learn
implicit data representations [39], i.e. learn relationships within the data (e.g. low-dimensional
manifolds) from the entire dataset and transfer this knowledge to small S . We give a toy example in
Fig. 2. This motivates modeling the full data distribution p(X,Y ), not just p(Y |X).

Of course, synthetic data cannot always help model evaluation, and may in fact induce noise due
to an imperfect G. Through the inclusion of uncertainty estimates, we promote trustworthiness of
results (Sec 4.1), and when we combine synthetic data with real data, we observe almost consistent
benefits (see Sec. 5). In Section 6 we include limitations.

4 Synthetic Data for Subgroup and Shift Testing

4.1 Using Deep Generative Models for Synthetic Test Data

We reiterate that our goal is to generate test datasets that provide insight into model performance
on a granular level (P1) and for shifted distributions (P2). We propose using synthetic data for
testing purposes, which we refer to as 3S -testing. This has the following workflow (Fig. 3): (1)
train a (conditional) generative model on the real test set, (2) generate synthetic data conditionally
on the subgroup or shift specification, and (3) evaluate model performance on the generated data,
A(f ;Dsyn,S). This procedure is flexible w.r.t. the generative model, but a conditional generative
model is most suitable since it allows precise generation conditioned on subgroup or shift information
out-of-the-box. Throughout this paper we use CTGAN [47] as the generative model—see Appendix
C for other generative model results and more details on the generative training process.
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(iii)(ii)(i)

Synthetic data allows evaluating 
performance of f on:

Problem: limited 
real data to test 
small subgroups

(P1) Reliable granular evaluation

Problem: real data from 
original distribution

cannot test shifts 

(i) (ii) (iii)

Synthetic data allows evaluating 
performance of f on shifts with:

(P2) Sensitivity to distributional shifts

Figure 3: 3S is a framework for evaluating model performance using synthetic data generators. It
has three phases: training the generative model, generating synthetic data, and model evaluation.
Firstly, 3S enables (P1) granular evaluation when there is (i) limited real test data in small subgroups,
by (ii) generating synthetic data conditional on subgroup information Xc, thereby (iii) permitting
more reliable model evaluation even on small subgroups. Secondly, 3S enables assessment of (P2)
distributional shifts when (i) the real test data does not reflect shifts, by (ii) generating synthetic data
conditional on marginal shift information of features Xc, thereby (iii) quantifying model sensitivity
to distributional shift. Required inputs are denoted in yellow.

Estimating uncertainty. Generative models are not perfect, leading to imperfect synthetic datasets
and inaccurate 3S estimates. To provide insight into the trustworthiness of its estimates, we quantify
the uncertainty in the 3S generation process through an ensemble of generative models [25], similar
in vain to Deep Ensembles [48]. We (i) initialize and train K generative models independently, (ii)
generate synthetic datasets {Dk

syn}Kk=1, and (iii) evaluate model f on each. The final estimates are
assumed Gaussian, with statistics given by the sample mean and variance:

µ̂(A) =
1

K

K∑
k=1

A(f ;Dk
syn,S) and σ̂2(A) =

1

K − 1

K∑
k=1

(A(f ;Dk
syn,S)− µ̂(A))2, (2)

which can be directly used for constructing a prediction interval. In Sec. 5.1.2, we show this provides
high empirical coverage of the true value compared to alternatives.

Defining subgroups. The actual definition of subgroups is flexible. Examples include a specific
category of one feature (e.g. female), intersectional subgroups [49] (e.g. black, female), slices from
continuous variables (e.g. over 75 years old), particular points of interest (e.g. people similar to
patient X), and outlier groups. In Appendix E, we elaborate on some of these further.

4.2 Generating Synthetic Test Sets with Shifts

Distributional shifts between training and test sets are not unusual in practice [7, 50, 51] and have
been shown to degrade model performance [6, 8, 15, 52]. Unfortunately, often there may be no or
insufficient data available from the shifted target domain.

Defining shifts. In some cases, there is prior knowledge to define shifts. For example, covariate shift
[53, 54] focuses on a changing covariate distribution p(X), but a constant label distribution p(Y |X)
conditional on the features. Label (prior probability) shift [54, 55] is defined vice versa, with fixed
p(X|Y ) and changing p(Y ).2

Generalizing this slightly, we assume only the marginal of some variables changes, while the
distribution of the other variables conditional on these variables does not. Specifically, let c ⊂
{1, ..., |X̃|} denote the indices of the features or targets in X̃ of which the marginal distribution may
shift. Equivalent to the covariate and label shift literature, we assume the distribution p(X̃c̄|X̃c)
remains fixed (c̄ denoting the complement of c).3 Let us denote the marginal’s shifted distribution by
ps(X̃c) with s the shift parameterisation, with p0(X̃c) having generated the original data. The full
shifted distribution is p(X̃c̄|X̃c)p

s(X̃c).

Example: single marginal shift. Without further knowledge, we study the simplest such shifts
first: only a single X̃i’s marginal is shifted. Letting p0(X̃i) denote the original marginal, we

2Concept drifts are beyond the scope of this work.
3This reduces to label shift—p(X|Y ) constant but p(Y ) changed)—and covariate shift—p(Y |X) constant

but p(X) changed)—for X̃c = Y and X̃c = X , respectively.
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define a family of shifts ps(X̃i) with s ∈ R the shift magnitude. To illustrate, we choose a mean
shift for continuous variables, ps(X̃i) = p0(X̃i − s), and a logistic shift for any binary variable,
logit ps(X̃i = 1) = logit (ps(X̃i))− s.4 As before, we assume p(X̃¬i|X̃i) remains constant. This
can be repeated for all i and multiple s to characterize the sensitivity of the model performance to
distributional shifts. The actual shift can be achieved using any conditional generative model, with
the condition given by X̃i.

Incorporating prior knowledge on shift. In many scenarios, we may want to make stronger
assumptions about the types of shift to consider. Let us give two use cases. First, we may acquire
high-level statistics of some variables in the target domain—e.g. we may know that the age in
the target domain approximately follows a normal distribution N (50, 10). In other cases, we may
actually acquire data in the target domain for some basic variables (e.g. age and gender), but not
all variables. In both cases, we can explicitly use this knowledge for sampling the shifted variables
X̃c, and subsequently generating X̃c̄|X̃c—e.g. sample (case 1) age from N(50, 10) or (case 2) (age,
gender) from the target dataset. Variables X̃c̄|X̃c are generated using the original generator G, trained
on Dtest,f .

Characterizing sensitivity to shifts. This gives the following recipe for testing models under
shift. Given some conditional generative model G, we (i) train G to approximate p(Xc̄|Xc), (2)
choose a shifted distribution ps(X̃c)—e.g. a marginal mean shift of the original p0(Xc) (Section
5.2.1), or drawing xc samples from a secondary dataset (Section 5.2.2); (3) draw samples xc, and
subsequently use G to generate the rest of the variables Xc̄ conditional on these drawn samples—
together givingDs

syn; and (4) evaluate downstream models; (5) Repeat (2-4) for different shifts (e.g.
shift magnitudes s) to characterize the sensitivity of the model to distributional shifts.

More general shifts. Evidently, marginal shifts can be generalised. We can consider a family of
shifts T and test how a model would behave under different shifts in the family. Let P be the space of
distributions defined on X̃ . We test models on data from T (p)(X̃), for all T ∈ T , with T : P → P .
For example, for single marginal shifts this corresponds to T s(p)(X̃) = ps(X̃i)p(X̃¬i|Xi). The
general recipe for testing models under general shifts then becomes as follows. Let G be some
generative model, we (1) Train generator G on Dtrain,G to fit p(X); (2) Define family of possible
shifts T , either with or without background knowledge; Denote shift with magnitude s by T s; (3) Set
s and generate data Ds

syn from T s(p); (4) Evaluate model on Ds
syn; (5) Repeat steps 2-4 for different

families of shifts and magnitudes s.

5 Use Cases of 3S Testing

We now demonstrate how 3S satisfies (P1) Granular evaluation and (P2) Distributional shifts. We re-
iterate that the aim throughout is to estimate the true prediction performance of the model f as closely
as possible. We tune and select the generative model based on Maximum Mean Discrepancy [56],
see Appendix C. We describe the experimental details, baselines, and datasets for each experiment
further in Appendix B 5.

5.1 (P1) Granular Evaluation

5.1.1 Correctness of Subgroup Performance Estimates

Goal. This experiment assesses the value of synthetic data when evaluating model performance on
minority subgroups. The challenge with small subgroups is that the conventional paradigm of using a
hold-out evaluation set might result in high variance estimates due to the small sample size.

Datasets. We use the following five real-world medical and finance datasets: Adult [57], Covid-
19 cases in Brazil [58], Support [59], Bank [60], and Drug [61]. These datasets have varying
characteristics, from sample size to number of features. They also possess representational imbalance
and biases, pertinent to 3S [4, 5]: 1⃝ Minority subgroups: we evaluate the following groups which

4We consider any categorical variable with m classes using m different shifts of the individual probabilities,
scaling the other probabilities appropriately.

5Code for use cases found at: https://github.com/seedatnabeel/3S-Testing or
https://github.com/vanderschaarlab/3S-Testing
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Figure 4: Assessing the reliability of performance estimates based on mean absolute error of
the predicted performance estimate to the performance evaluated by oracle (↓ better). 3S better
approximates true estimates compared to both baselines. 3S+ enjoys the best of both worlds by
combining synthetic and real data. We evaluate an RF model, with other model classes shown in the
Appendix.

differ in proportional representation - Adult: Race; Covid: Ethnicity; Bank: Employment; Support:
Race; Drug: Ethnicity. 2⃝ Intersectional subgroups: we evaluate intersectional subgroups [49] (e.g.
black males or young females)— see Appendix F, intersectional model performance matrix.

Set-up. We evaluate the estimates of subgroup performance for trained model f using different
evaluation sets. We consider two baselines: (1) Dtest,f : a typical hold-out test dataset and (2)
Model-based metrics (MBM) [21]. MBM uses a bootstrapping approach for obtaining multiple test
sets. We compare the baselines to 3S testing datasets, which generate data to balance the subgroup
samples: (i) 3S (Dsyn): synthetic data generated by G, which is trained on Dtest,f and (ii) 3S+
(Dsyn ∪ Dtest,f ): test data augmented with the synthetic dataset.

For some subgroup S, each test set gives an estimated model performance A(f ;D·,S), which
we compare to a pseudo-oracle performance A(f ;Doracle,S): the oracle is the performance of
f evaluated on a large unseen real dataset Doracle ∼ p(X,Y ), where |Doracle| ≫ |Dtest,f |. As
outlined above the subgroups are as follows: (i) Adult: Race, (ii) Drug: Ethnicity, (iii) Covid:
Ethnicity (Region), (iv) Support: Race, (v) Bank: Employment status.

We evaluate the reliability of the different performance estimates based on their Mean Absolute
Error (MAE) relative to the Oracle predictive accuracy estimates. We desire low MAE such that our
estimates match the oracle.

Analysis. Fig. 4 illustrates across the 5 datasets that the 3S synthetic data (red, green) closely matches
estimates on the Oracle data. i.e. lower MAE vs baselines. In particular, for small subgroups (e.g.
racial minorities), 3S provides a more accurate evaluation of model performance (i.e. with estimates
closer to the oracle) compared to a conventional hold-out dataset (Dtest,f ) and MBM.

In addition, 3S estimates have reduced standard deviation. Thus, despite 3S using the same (randomly
drawn test set) Dtest,f to train its generator, its estimates are more robust to this randomness. The
results highlight an evaluation pitfall of the standard hold-out test set paradigm: the estimate’s high
variance w.r.t. the drawn Dtest,f could lead to potentially misleading conclusions about model
performance in the wild, since an end-user only has access to a single draw of Dtest,f . e.g., we might
incorrectly overestimate the true performance of minorities. The use of synthetic data solves this.

Next, we move beyond single-feature minority subgroups and show that synthetic data can also be
used to evaluate performance on intersectional groups — subgroups with even smaller sample sizes
due to the intersection. 3S performance estimates on 2-feature intersections are shown in Appendix F.
Intersectional performance matrices provide model developers more granular insight into where they
can improve their model most, as well as inform users how a model may perform on intersections
of groups (especially important to evaluate sensitive intersectional subgroups).6 Appendix F further
illustrates how these intersectional performance matrices can be used as part of model reports.

We evaluate the intersectional performance estimates of 3S and baseline Dtest,f using the MAE of
the performance matrices w.r.t. the oracle, averaged across 3 models (i.e, RF, GBDT, MLP). The
error of 3S (11.90 ± 0.19) is significantly lower than Dtest,f (20.29 ± 0.14), hence demonstrating
3S provides more reliable intersectional estimates.

6N.B. low-performance estimates by 3S only indicate poor model performance; this does not necessarily
imply that the data itself is biased for these subgroups. However, it could warrant investigating potential data
bias and how to improve the model.
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Takeaway. Synthetic data provides more accurate performance estimates on small subgroups
compared to evaluation on a standard test set. This is especially relevant from a representational bias
and fairness perspective—allowing more accurate performance estimates on minority subgroups.

5.1.2 Reliability through Confidence Intervals
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Figure 5: 3S is more reliable than
baselines with higher coverage,
lower widths — with less variabil-
ity.

Goal. In Fig. 4, we see that all methods, including 3S, have errors
in some cases, which warrants the desire to have confidence
intervals at test time. 3S uses a deep generative ensemble to
provide uncertainty estimates at test-time—see Sec. 4.1.

Set-up. We assess coverage over 20 random splits and seeds for
3S vs the baselines (B1) bootstrapping [62] confidence intervals
for Dtest,f and (B2) MBM: which itself uses bootstrapping for
the predictive distribution. For 3S, we assess a Deep Genera-
tive Ensemble with K = 1, 5, 10 randomly initialized generative
models. For each method, we take the average estimate ± 2 stan-
dard deviations. We evaluate the intervals based on the following
two metrics defined in [63–65]: (i) Coverage = E

[
1xi∈[li,ri]

]
(ii)

Width = E[|ri − li|]. Coverage measures how often the true label
is in the prediction region, while width measures how specific
that prediction region is. In the ideal case, we have high coverage with low width. See Appendix B
for more details.

Analysis. Fig. 5 shows the mean test set coverage and width averaged over the five datasets. 3S
(with K=5 and K=10) is more reliable, attaining higher coverage rates with lower width compared to
baselines. In addition, the variability with 3S is much lower for both coverage and width. We note
that this comes at a price: computational cost scales linearly with K. For fair comparison, we set
K = 1 in the rest of the paper.

Takeaway. 3S includes uncertainty estimates at test time that cover the true value much better than
baselines, allowing practitioners to decide when (not) to trust 3S performance estimates.

5.2 (P2) Sensitivity to Distributional Shifts
ML models deployed in the wild often encounter data distributions differing from the training set. We
simulate distributional shifts to evaluate model performance under different potential post-deployment
conditions. We examine two setups with varying knowledge of the potential shift.

5.2.1 No Prior Information

Goal. Assume we have no prior information for the (future) model deployment environment. In
this case, we might still wish to stress test the sensitivity for different potential operating conditions,
such that a practitioner understands model behavior under different conditions, which can guide as to
when the model can and cannot be used. We wish to simulate distribution shifts using synthetic data
and assess if it captures true performance.

Set-up. We consider shifts in the marginal of some feature Xi, keeping p(X̃¬i|X̃i) fixed (see Sec. 3).
For instance, a shift in the marginal Xi’s mean (see Sec. 4.2). To assess performance for different
degrees of shift, we compute three shift buckets around the mean of the original feature distribution:
large negative shift from the mean (-), small negative/positive shift from the mean (±), and large
positive shift from the mean (+).

We define each in terms of the feature quantiles. We generate uniformly distributed shifts (between
min(feature) and max(feature)). Any shift that shifts the mean to less than Q1 is (-) , any shift that
shifts the mean to more than Q3 is (+) and any shift in between is (±).

As before, we compare estimated accuracy w.r.t. a pseudo-oracle test set. We compare two baselines:
(i) Mean-shift (MS) and (ii) Rejection sampling (RS); both applied to the real data.

Analysis. Table 1 shows the potential utility of synthetic data to more accurately estimate performance
for unknown distribution shifts compared to real data alone. This is seen both with an average lower
mean error of estimates, but also across all three buckets. This implies that the synthetic data is able
to closely capture the true performance across the range of feature shifts.
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Table 1: Mean error in estimated accuracy across shift quantile buckets for all 5 datasets. The results
show 3S indeed provides more reliable estimates even for distribution shift. ↓ is better.

Adult Support Bank Drug SEER
Mean - ± + Mean - ± + Mean - ± + Mean - ± + Mean - ± +

3S 2.6 2.2 1.8 3.9 2.0 2.6 2.0 1.1 5.4 3.7 3.6 6.7 5.6 5.7 4.4 7.8 2.7 5.5 3.0 2.0
MS 5.9 5.2 5.6 6.9 19.3 22.9 18.5 15.2 18.6 18.6 19.9 17.9 18.5 19.6 19.0 16.3 3.3 2.6 3.9 3.2
RS 15.9 10.5 17.9 18.6 25.1 27.8 24.2 22.3 18.9 18.9 20.1 18.3 20.1 21.7 21.0 18.2 20.0 20.3 23.6 18.6

Takeaway. Synthetic data can be used to more accurately characterize model performance across a
range of possible distributional shifts.

5.2.2 Incorporating Prior Knowledge on Shift
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Figure 6: Incorporating prior knowledge of the shift. (a) Dsyn

matches the performance rank of the true target domain, which
can help to select the best model to use in the target domain, and
(b) Dsyn better estimates target domain performance compared to
baselines. Performance improves and gets closer as more prior
knowledge is incorporated via added features. Points are connected
to highlight trends.

Goal. Consider the scenario
where we have some knowledge
of the shifted distribution and
wish to estimate target domain
performance. Specifically, here
we assume we only have access
to the feature marginals in the
form of high-level info from the
target domain, e.g. age (mean,
std) or gender (proportions). We
sample from this marginal and
generate the other features con-
ditionally (Sec. 4.2). Set-up.

We use datasets SEER (US)
[66] and CUTRACT (UK) [67],
two real cancer datasets with
the same features, but with
shifted distributions due to com-
ing from different countries. We train models f and G on the source domain (USA). We then
wish to estimate likely model performance in the shifted target domain (UK). We assume access
to information from n features in the target domain (features Xc), sample Xc from this marginal,
conditionally generate Xc̄|Xc. We estimate performance with Dsyn.

We use the CUTRACT dataset (Target) as the ground truth to validate our estimate. As baselines,
we use estimates on the source test set, along with Source Rejection Sampling (RS), which achieves
a distributional shift through rejection sampling the source data using the observed target features.
We also compare to baselines which assume access to more information than 3S, i.e. access to full
unlabeled data from the target domain and hence have an advantage over 3S when predicting target
domain performance. We benchmark ATC [31], DOC [32] and IM [33]. Details on all baselines are
in Appendix B. Note, we repeat this experiment in Appendix E for Covid-19 data [58], where there
is a shift between Brazil’s north and south patients.

Table 2: 3S has lower performance estimate error in target domain for dif-
ferent downstream models. Rows yellow have access to more information
than 3S, in the form of unlabeled data from the target domain. ↓ is better

mean ada bag gbc mlp rf knn lr
3S-Testing 0.023 0.051 0.012 0.030 0.009 0.015 0.020 0.029
All (Source) 0.258 0.207 0.327 0.207 0.170 0.346 0.233 0.211
RS (Source) 0.180 0.028 0.298 0.096 0.014 0.373 0.213 0.094
ATC [31] 0.249 0.253 0.288 0.162 0.140 0.214 0.369 0.165
IM [33] 0.215 0.206 0.278 0.156 0.126 0.268 0.131 0.163
DOC[32] 0.201 0.207 0.211 0.162 0.116 0.223 0.148 0.161

Analysis. In Fig. 6a, we show
the model ranking of the dif-
ferent predictive models based
on performance estimates of the
different methods. Using the
synthetic data from 3S, we de-
termine the same model rank-
ing as the true ranking on the
target—showcasing how 3S can
be used for model selection with
distributional shifts. On the
other hand, baselines provide incorrect rankings.
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Fig. 6b shows the average estimated performance of f as a function of the number of observed
features. We see that the 3S estimates are closer to the oracle across the board compared to baselines.
Furthermore, for an increasing number of features (i.e. increasing prior knowledge), we observe
that 3S estimates converge to the oracle. This is unsurprising: the more features we acquire target
statistics of, the better we can model the true shifted distribution. Source RS does so too, but more
slowly and with major variance issues.

We also assess raw estimate errors in Table 2. 3S clearly has lower performance estimate errors for
the numerous downstream models. Beyond having reduced error compared to rejection sampling, it
is interesting that 3S generally outperforms highly specialized methods (ATC, IM, DOC), which not
only have access to more information but are also developed specifically to predict target domain
performance. A likely rationale for this is that these methods rely on probabilities and hence do not
translate well to the non-neural methods widely used in the tabular domain.

Takeaway: High-level information about potential shifts can be translated into realistic synthetic
data, to better estimate target domain model performance and select the best model to use.

6 Discussion

Synthetic data for model evaluation. Accurate model evaluation is of vital importance to ML,
but this is challenging when there is limited test data. We have shown in Sec. 3.1 that it is hard to
accurately evaluate performance for small subgroups (e.g. minority race groups) and to understand
how models would perform under distributional shifts using real data alone. We have investigated
the potential of synthetic data for model evaluation and found that 3S can accurately evaluate the
performance of a prediction model, even when the generative model is trained on the same test set. A
deep generative ensemble approach can be used to quantify the uncertainty in 3S estimates, which we
have shown provides reliable coverage of the true model performance. Furthermore, we explored
synthetic test sets with shifts, which provide practitioners with insight into how their model may
perform in other populations or future scenarios.

Model reports. We envision evaluations using synthetic data could be published alongside models to
give insight into when a model should and should not be used—e.g. to complete model evaluation
templates such as Model Cards for Model Reporting [10]. Appendix F illustrates an example model
report using 3S.

Practical considerations. We discuss and explore limitations in detail in Appendix D. Let us highlight
three practical considerations to the application of synthetic data for testing. Firstly, evaluating the
performance under distributional shifts requires assumptions on the shift. These assumptions affect
model evaluation and require careful consideration from the end-user. This is especially true for large
shifts or scenarios where we do not have enough training data to describe the shifted distribution well
enough. However, even if absolute estimates are inaccurate, we can still provide insight into trends
of different scenarios. Secondly, synthetic data might have failure modes or limitations in certain
settings, such as cases where there are only a handful of samples or with many samples. Thirdly,
training and tuning a generative model is non-trivial. 3S’ DGE mechanism mitigates this by offering
an uncertainty estimate that provides insight into the error of the generative learning process. The
computational cost of such a generative ensemble may be justified by the cost of untrustworthy model
evaluation.
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