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A Proofs missing from Section 3

The following simple proposition will also be useful in multiple proofs throughout this appendix.

Proposition 5. LetM be an ex-post IR mechanism. Then, −H ≤ uMi (ti ← t′i, t−i) ≤ 3H , for all
i ∈ [n], ti, t

′
i ∈ Ti, t−i ∈ T−i.

Proof of Proposition 5. SinceM is ex-post IR, we have that ti (M(ti, t−i)) ≥ 0, for all i ∈ [n], ti ∈
Ti, t−i ∈ T−i. Furthermore, since payments are lower bounded by −H , and since the valuations are
bounded and quasi-linear, we have that ti (M(t′i, t−i)) ≤ 2H , for all i ∈ [n], ti, t

′
i ∈ Ti, t−i ∈ T−i.

Since payments are also upper bounded by H (due to the ex-post IR constraint), and valuations are
non-negative, we also have ti (M(t′i, t−i)) ≥ −H , for all i ∈ [n], ti, t

′
i ∈ Ti, t−i ∈ T−i. Combining

these inequalities we have −H ≤ ui(ti ← t′i, t−i) ≤ 3H , for all i ∈ [n], ti, t
′
i ∈ Ti, t−i ∈ T−i.

A.1 Relaxing the assumptions in Theorem 1

We start by showing that, in sharp contrast to BIC, the DSIC property is much easier to “propagate”
from a small set of types to a larger set, using the following construction.

Definition 3 (DSIC extension of a mechanism). Let T +
i ⊆ Ti be a subset of possible types for agent

i ∈ [n], such that ⊥ ∈ T +
i , and letM = (x, p) be a mechanism defined on types ×i∈[n]T +

i . The
extension ofM to T is the mechanism M̂ = (x̂, p̂), where for reported types t = (t1, · · · , tn):

1. If ×i∈[n]T +
i , then x̂(t) = x(t) and p̂(t) = p̂(t).

2. If there exists i, such that ti /∈ T +
i and ∀j ∈ [n]/{i} : tj ∈ T +

j then x̂i(t) = xi(t
′
i, t−i) and

p̂i(t) = p̂i(t
′
i, t−i), where t′i = argmaxzi∈T +

i
ti(M(zi, t−i)). For each j ∈ [n]/{i} we have

that x̂j(t) = 0 and p̂j(t) = 0 (They receive nothing, and pay nothing).

3. If there exist i, i′ such that i ̸= i′ and ti /∈ T +
i and ti′ /∈ T +

i′ , then nobody receives and pays
nothing (i.e. x(t) = 0, p̂(t) = 0).

A similar construction appears in [DFK11], in the context of implementing the solution of a linear
program as a DSIC auction.

Lemma 6. Let T +
i ⊆ Ti be a subset of possible types for agent i ∈ [n], such that ⊥ ∈ T +

i , and
letM = (x, p) be a DSIC and ex-post IR mechanism defined on types T + = ×i∈[n]T +

i . Then, the
extension ofM to T , M̂ = (x̂, p̂), is DSIC and ex-post IR.

Proof of Lemma 6. The fact that M̂ is ex-post IR is trivial for cases 1 and 3 of Definition 3. For
case 2, it is trivial that it is ex-post IR for all j ∈ [n]/{i}. Also since ⊥ ∈ T +

i we have that
maxzi∈T +

i
ti(M(zi, t−i)) ≥ ti(M(⊥, t−i)) ≥ 0, which implies that the mechanism is ex-post IR

for agent i.

Next, we argue that M̂ is DSIC. If t ∈ T +, then any misreport t′i of agent i will also get mapped to a
type in T +

i ; sinceM is DSIC, agent i cannot increase her utility by deviating. If t falls into the second
case, an agent j ∈ [n]/{i} receives nothing and pays nothing, no matter what she reports. If agent
i misreports a type t′i, she either receives utility ti(M(t′i, t−i)), if t′i ∈ T

+
i , or ti(M((t∗)′, t−i)),

where (t∗)′ = argmaxzi∈T +
i
t′i(M(zi, t−i)), if t′i /∈ T

+
i , both of which are (weakly) worse than

maxzi∈T +
i
ti(M(zi, t−i)), her utility when reporting ti. Finally, in case 3, every agent i always

receives nothing and pays nothing, even after unilaterally changing her report.

Thus without loss of generality, we can always assume that DSIC mechanism defined on a subset of
the type space T + ⊆ T is DSIC on all bids in T .
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A.2 Proofs missing from Section 3.2

Proof of Lemma 3.

2 dTV (PX,Y , QX,Y ) =
∑
x

∑
y

|PX,Y (x, y)−QX,Y (x, y)|

≥
∑

x:QX(x)>0

∑
y

|PX,Y (x, y)−QX,Y (x, y)|

=
∑

x:QX(x)>0

QX(x)
∑
y

∣∣∣∣PY |X=x(y)
PX(x)

QX(x)
−QY |X=x(y)− PY |X=x(y) + PY |X=x(y)

∣∣∣∣
≥

∑
x:QX(x)>0

QX(x)
∑
y

(∣∣PY |X=x(y)−QY |X=x(y)
∣∣− PY |X=x(y)

∣∣∣∣1− PX(x)

QX(x)

∣∣∣∣)

=
∑

x:QX(x)>0

QX(x)

(
2 dTV

(
PY |X=x, QY |X=x

)
− |QX(x)− PX(x)|

QX(x)

)

≥

(
2
∑
x

QX(x) dTV
(
PY |X=x, QY |X=x

))
− 2 dTV (QX , PX) .

Re-arranging, we have that
Ex∼QX

[
dTV

(
PY |X=x, QY |X=x

)]
≤ dTV (PX,Y , QX,Y ) + dTV (QX , PX) .

The data processing inequality gives us that dTV (QX , PX) ≤ dTV (PX,Y , QX,Y ) [PW22, Theorem
7.4], and thus we have Ex∼QX

[
dTV

(
PY |X=x, QY |X=x

)]
≤ 2 dTV (PX,Y , QX,Y ), as desired. For

distributions supported over continuous sets, the proof follows with similar arguments.

So far, we have established that Ex∼QX

[
dTV

(
PY |X=x, QY |X=x

)]
≤ dTV (PX,Y , QX,Y ) +

dTV (QX , PX). Using Markov’s inequality completes the proof of Lemma 3.

Proof of Lemma 4. M is ex-post IR for D′, by definition. Let D−i|ti be the probability distribution
for the valuations of every agent except i, conditioned on the event that the type of agent i is ti ∈ Ti.
Proposition 5 implies that uMi (ti ← wi, t−i) ∈ [−H, 3H], for all i ∈ [n], ti, wi ∈ Ti, t−i ∈ T−i,
and therefore uMi (ti ← wi, t−i)− uMi (ti ← wi, t

′
−i) ≤ 4H 1{t−i ̸= t′−i}. Thus, for any coupling

γ of D−i|ti and D′
−i|ti , and specifically for the optimal coupling γ∗ between D−i|ti and D′

−i|ti
(see Definition 2), we have:

E(t−i,t′−i)∼γ∗
[
uMi (ti ← wi, t−i)− uMi (ti ← wi, t

′
−i)
]
≤ 4H E(t−i,t′−i)∼γ∗

[
1{t−i ̸= t′−i}

]
≤ 4H dTV

(
D−i|ti ,D

′
−i|ti

)
.

Using linearity of expectation and re-arranging we have:

−Et′−i∼D′
−i|ti

[
uMi (ti ← wi, t

′
−i)
]
≤ 4H dTV

(
D−i|ti ,D

′
−i|ti

)
−Et−i∼D−i|ti

[
uMi (ti ← wi, t−i)

]
.

By setting QX = D′
i, PY |X=x = D−i|ti , and QY |X=x = D′

−i|ti in Lemma 3 we have that, with

probability at least 1− q, dTV
(
D−i|ti ,D′

−i|ti

)
≤ 2

q dTV (D,D′) ≤ 2 δq . Therefore, with probability
at least 1− q:

−Et′−i∼D′
−i|ti

[
uMi (ti ← wi, t

′
−i)
]
≤ 4H dTV

(
D−i|ti ,D

′
−i|ti

)
− Et−i∼D−i|ti

[
uMi (ti ← wi, t−i)

]
≤ 8H

δ

q
− Et−i∼D−i|ti

[
uMi (ti ← wi, t−i)

]
≤ 8Hδ

q
,

where the last inequality uses the fact thatM is BIC. Replacing with the definition of uMi (ti ←
wi, t

′
−i) we get −Et−i∼D′

−i|ti [ti (M(ti, t−i))] +Et−i∼D′
−i|ti [ti (M(wi, t−i))] ≤ 8Hδ

q , with proba-
bility at least 1− q. Re-arranging we get the desired (ε, q) BIC constraint.
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B Proofs missing from Section 4.1

In order to prove Lemma 5, it will be convenient to define the following notion of an extension of a
BIC mechanism.

Definition 4 (BIC extension of a mechanism). Let T +
i ⊆ Ti be a subset of types for agent i ∈ [n] such

that⊥ ∈ T +
i , and letM = (x, p) be a mechanism defined on types in×i∈[n]T +

i . Let T −
i = Ti−T +

i ,
and consider the mapping

τi(ti) =

{
ti, if ti ∈ T +

i

argmaxz∈T +
i
Et−i∼D−i

[ti(M(z, t−i))] , if ti ∈ T −
i

The extension ofM to T is the mechanism M̂ = (x̂, p̂), where x̂(t) = x(τ(t)), and for all i ∈ [n],

p̂i(ti, t−i) =

{
pi(ti, t−i), if ti ∈ T +

i

vi(x̂(ti, t−i))
Et−i∼D−i

[pi(τi(ti),t−i]

Et−i∼D−i
[vi(x(τi(ti),t−i))]

, if ti ∈ T −
i

We prove the following technical lemma.

Lemma 7. Let T +
i ⊆ Ti be a subset of types for agent i ∈ [n] such that ⊥ ∈ T +

i , and let
D = ×i∈[n]Di be a product distribution, where each Di is supported on Ti. LetM = (x, p) be an
ex-post IR mechanism which satisfies Et−i∼D−i

[
uMi (ti ← wi, t−i)

]
≥ −ε, for all ti ∈ T +

i , wi ∈ Ti.

Then, for any product distribution D̂ = ×i∈[n]D̂i such that dTV
(
D, D̂

)
≤ δ, the extension ofM to

T (as defined in Definition 4) is ex-post IR and O (ε+ (βn+ δ)H)-BIC with respect to D̂, where
β = 1− Prti∼D̂i

[
ti ∈ T +

i

]
. Furthermore, Rev(M̂, D̂) ≥ Rev(M,D)− V (βn+ δ).

Proof of Lemma 7. Let M̂ = (x̂, p̂) be the extension of M to T . First, we argue that M̂
is ex-post IR. Since M is ex-post IR, the ex-post IR condition for M̂ is satisfied for all
ti ∈ T +

i , by construction. For a type ti ∈ T −
i , since ⊥ ∈ T +

i and τi(ti) ∈ T +
i ,

we have that Et−i∼D−i
[ti(M(τi(ti), t−i))] ≥ Et−i∼D−i

[ti(M(⊥, t−i))] = 0. Therefore,
Et−i∼D−i

[pi(τi(ti), t−i)] ≤ Et−i∼D−i
[vi(x(τi(ti), t−i))], which implies that vi(x̂(t)) − p̂i(t) =

vi(x̂(t))− vi(x̂(t))
Et−i∼D−i

[pi(τi(ti),t−i]

Et−i∼D−i
[vi(x(τi(ti),t−i))]

≥ 0.

Next, we prove the BIC guarantee of M̂. Towards this, first define τ(D̂) as the distribution induced
by first sampling from D̂, and then apply mapping τ(.), as defined in Definition 4. The tensorization
property of TV distance [LPW09, Chapter 4] implies that dTV

(
D̂, τ(D̂)

)
≤ βn, and thus from the

triangle inequality, dTV
(
D, τ(D̂)

)
≤ δ + βn. Our goal is to prove the following lower bound:

Et−i∼D̂−i

[
uM̂i (ti ← wi, t−i)

]
≥ −

(
4

(
3

2
δ + βn

)
H + 4δH + ε

)
.

We first prove the following intermediate bound:

Et−i∼D̂−i

[
uM̂i (ti ← wi, t−i)

]
≥ Et−i∼D̂−i

[
uMi (τ(ti)← τ(wi), t−i)

]
− 4

(
3

2
δ + βn

)
H

Generally, our bounds will be trivial when ti ∈ T +
i due to the nature of M̂. So the main focus of the

analysis is to prove those bounds for ti ∈ T −
i .

First, we prove two inequalities that will be useful in our analysis.

Et−i∼D−i [vi(xi(τ(ti), t−i))] ≤ Et−i∼D−i [x̂i(ti, t−i)] +H βn. (2)

E
t−i∼D−i

[pi(τ(ti), t−i)] ≥ Et−i∼D−i [p̂i(ti, t−i)]−H βn. (3)
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For inequality (2), using Lemma 2 we can get:

Et−i∼D−i [vi(xi(τ(ti), t−i))] ≤ Et−i∼τ(D−i) [vi(xi(τ(ti), t−i))] +H dTV (D−i, τ (D−i))

≤ Et−i∼τ(D−i) [vi(xi(τ(ti), t−i))] +H dTV (D, τ (D))
≤ Et−i∼τ(D−i) [vi(xi(τ(ti), t−i))] +H βn

≤ Et−i∼D−i
[xi(τ(ti), τ(t−i))] +H βn

≤ Et−i∼D−i
[x̂i(ti, t−i)] +H βn.

Similarly, for inequality (3):

E
t−i∼D−i

[pi(τ(ti), t−i)] = E
t−i∼D−i

[pi(τ(ti), t−i)]

E
t′−i∼D−i

[
vi(xi(τ(ti), t

′
−i))

]
E

t−i∼D−i

[vi(xi(τ(ti), t−i))]

= E
t′−i∼D−i

vi(xi(τ(ti), t′−i)) E
t−i∼D−i

[pi(τ(ti), t−i)]

E
t−i∼D−i

[vi(xi(τ(ti), t−i))]

 .
We’ve already shown, when arguing the ex-post IR property, that

Et−i∼D−i
[pi(τ(ti),t−i)]

Et−i∼D−i
[vi(xi(τ(ti),t−i))]

≤ 1 and

thus vi(xi(τ(ti), t′−i))
E

t−i∼D−i
[pi(τ(ti),t−i)]

E
t−i∼D−i

[vi(xi(τ(ti),t−i))]
∈ [0, H]. Therefore, we can use Lemma 2 for D−i

and τ(D−i) on this function (as the objective) to get:

E
t−i∼D−i

[pi(τ(ti), t−i)] = Et′−i∼D−i

[
vi(xi(τ(ti), t

′
−i))

Et−i∼D−i
[pi(τ(ti), t−i)]

Et−i∼D−i
[vi(xi(τ(ti), t−i))]

]
≥ Et′−i∼τ(D−i)

[
vi(xi(τ(ti), t

′
−i))

Et−i∼D−i
[pi(τ(ti), t−i)]

Et−i∼D−i
[vi(xi(τ(ti), t−i))]

]
−H dTV (D−i, τ (D−i))

≥ Et′−i∼τ(D−i)

[
vi(xi(τ(ti), t

′
−i))

Et−i∼D−i
[pi(τ(ti), t−i)]

Et−i∼D−i
[vi(xi(τ(ti), t−i))]

]
−H dTV (D, τ (D))

≥ Et′−i∼τ(D−i)

[
vi(xi(τ(ti), t

′
−i))

Et−i∼D−i
[pi(τ(ti), t−i)]

Et−i∼D−i
[vi(xi(τ(ti), t−i))]

]
−H βn

= Et′−i∼D−i

[
vi(xi(τ(ti), τ(t

′
−i)))

Et−i∼D−i
[pi(τ(ti), t−i)]

Et−i∼D−i
[vi(xi(τ(ti), t−i))]

]
−H βn

= Et′−i∼D−i

[
p̂i(ti, t

′
−i)
]
−H βn.

With inequalities (2) and (3) at hand, we are ready to show the following, for all ti ∈ T −
i :

E
t−i∼D̂−i

[ti (M(τ(ti), t−i))] ≤(Lemma 2) E
t−i∼D−i

[ti (M(τ(ti), t−i))] + 2δH

= E
t−i∼D−i

[(vi(xi(τ(ti), t−i))− pi(τ(ti), t−i))] + 2δH

≤(Ineq. (2)and (3)) Et−i∼D−i [x̂i(ti, t−i)]− Et−i∼D−i [p̂i(ti, t−i)] + 2(δ + βn)H

= Et−i∼D−i

[
ti

(
M̂(ti, t−i)

)]
+ 2(δ + βn)H

≤(Lemma 2) Et−i∼D̂−i

[
ti

(
M̂(ti, t−i)

)]
+ 2

(
3

2
δ + βn

)
H.

Whenever ti ∈ T +
i we can directly argue that:

Ey−i∼D̂−i
[ti (M(τ(ti), t−i))] ≤ Et−i∼τ(D̂)−i

[ti (M(τ(ti), t−i))] + βnH

= Et−i∼D̂−i
[ti (M(τ(ti), τ(t−i)))] + βnH

= Et−i∼D̂−i

[
ti

(
M̂(ti, t−i)

)]
+ βnH.
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Similarly, we get that Et−i∼D̂−i
[ti (M(τ(wi), t−i))] ≥ Et−i∼D̂−i

[
ti

(
M̂(wi, t−i)

)]
− 2( 32δ +

βn)H for all wi ∈ Ti. Combining we get that for ti ∈ T −
i , wi ∈ Ti:

Et−i∼D̂−i

[
ti(M̂(ti, t−i)

]
− Et−i∼D̂−i

[
ti(M̂(wi, t−i)

]
≥

Et−i∼D̂−i
[ti(M(τ(ti), t−i)]− Et−i∼D̂−i

[ti(M(τ(wi), t−i)]− 4

(
3

2
δ + βn

)
H,

and for ti ∈ T +
i , wi ∈ Ti we can get that Et−i∼D̂−i

[ti (M(τ(ti), t−i))] ≥

Et−i∼D̂−i

[
ti

(
M̂(ti, t−i)

)]
− βnH .

This concludes the proof of the intermediate bound. To conclude the proof for the BIC guarantee we
need to show that:

Et−i∼D̂−i

[
uMi (τ(ti)← τ(wi), t−i)

]
≥ −4Hδ − ε.

By Proposition 5, uMi (τ(ti)← τ(wi), t−i) ∈ [−H, 3H], for all i ∈ [n], ti, wi ∈ Ti, t−i ∈ T−i, and
hence uMi (τ(ti) ← τ(wi), t−i) − uMi (τ(ti) ← τ(wi), t

′
−i) ≤ 4H 1{t−i ̸= t′−i}. Thus, for any

coupling γ of D−i and D̂−i, and thus for the optimal coupling γ∗ between D−i and D̂−i, we get

E(t−i,t′−i)∼γ∗
[
uMi (τ(ti)← τ(wi), t−i)− uMi (τ(ti)← τ(wi), t

′
−i)
]
≤ 4H dTV

(
D−i, D̂−i

)
≤ 4H dTV

(
D, D̂

)
≤ 3H δ.

Using linearity of expectation and the fact that the chosen coupling maintains the marginals, by
re-arranging we have:

−Et′−i∼D̂−i

[
uMi (τ(ti)← τ(wi), t

′
−i)
]
≤ 4H δ − Et−i∼D−i

[
uMi (τ(ti)← τ(wi), t−i)

]
≤ 4H δ + ε,

where in the last inequality we used the fact that, since τ(ti) ∈ T +
i , from the definition ofM, for all

wi, ti ∈ Ti, we have Et−i∼D−i

[
uMi (τ(ti)← τ(wi), t−i)

]
≥ −ε.

We will now prove the revenue guarantee of the lemma. The tensorization property of TV dis-
tance [LPW09, Chapter 4] implies that dTV

(
D̂, τ(D̂)

)
≤ βn, and thus from the triangle in-

equality, dTV
(
D, τ(D̂)

)
≤ δ + βn. Now notice from triangle inequality that dTV

(
D, τ(D̂)

)
≤

dTV

(
D, D̂

)
+ dTV

(
D̂, τ(D̂)

)
. Let t ∼ D and t̂ ∼ τ(D̂). Since dTV

(
D, τ(D̂)

)
≤ βn + δ there

exists a coupling where t ̸= t̂ with probability less than βn+ δ. Whenever t = t̂ the two mechanisms
make exactly the same revenue. Whenever they are not, their difference is bounded by V . The desired
inequality follows.

Lemma 5 is then a simple corollary of Lemma 7.

Proof of Lemma 5. For an (ε, q)-BIC mechanismM, one can split the type space Ti of each agent
i into two disjoint sets, T Gi and T Bi , such that when ti ∈ T Gi agent i ε-maximizes her utility by
reporting ti, and Prti∼D

[
ti ∈ T Bi

]
≤ q. Noting that ⊥ ∈ T Gi , the corollary is an immediate

implication of Lemma 7.

Proof of Theorem 3. The (ε, q)-BIC property is an immediate consequence of Lemma 4.

Applying Lemma 2, with O as the revenue objective (which is lower bounded by −V/2 and upper
bounded by V/2), and setting P = Dp, Q = D, andM =Ma

Dp , we have that Rev(Ma
Dp ,D) ≥

Rev(Ma
Dp ,Dp)− 2V δ ≥ αOPT (Dp)− 2V δ. Our main goal will be to lower bound OPT (Dp).
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Let M∗
D be the revenue optimal mechanism for D. By Lemma 4, M∗

D is an ex-post IR and
( 8Hδq , q)-BIC mechanism for Dp (for all q ∈ [0, 1]). Therefore, Lemma 5 implies that there ex-

ists a mechanism M̂ that is ex-post IR and O(Hδq + nqH)-BIC with respect to Dp, such that

Rev(M̂,Dp) ≥ Rev(M∗
D,Dp)− nqV .

Next, we apply the ε-BIC to BIC reduction of [COVZ21], on the mechanismM∗
D. Specifically, we

use the following lemma.

Lemma 8 ([DW12], [RW18], [COVZ21]). In any n agent setting where the valuations of agents
are bounded by H , for any mechanism M with payments in [−H,H], that is ex-post IR and ε-
BIC with respect to some product distribution D, there exists a mechanismM′ with payments in
[−H,H], 1 that is ex-post IR and BIC with respect to D, such that, assuming truthful bidding
Rev(M′,D) ≥ Rev(M,D)−O(n

√
Hε).

So, Lemma 8 implies that there exists a mechanismM′ that is ex-post IR and BIC with respect to Dp

such that Rev(M′,Dp) ≥ Rev(M̂,Dp)−O(n
√
H(Hδq + nqH)). Combining all the ingredients

so far, we have

Rev(Ma
Dp ,D) ≥ Rev(Ma

Dp ,Dp)− V δ
≥ αOPT (Dp)− V δ
≥ αRev(M′,Dp)− V δ

≥ αRev(M̂,Dp)−O

(
αn

√
H(

Hδ

q
+ nqH) + V δ

)

≥ αRev(M∗
D,Dp)−O

(
αn

√
H(

Hδ

q
+ nqH) + V (δ + αnq)

)

= αRev(M∗
D,Dp)−O

(
αnH

√
δ

q
+ nq + V (δ + αnq)

)

Applying Lemma 2 again, with P = D, Q = Dp, and M = M∗
D we have Rev(M∗

D,Dp) ≥
OPT (D)− V δ. Combining with the previous inequality, we have Rev(Ma

Dp ,D) ≥ αOPT (D)−
O
(
αnH

√
δ
q + nq + αnqV + (1 + α)V δ

)
. Picking q =

√
δ/n, and noting that V ≤ 2nH , we

have: Rev(Ma
Dp ,D) ≥ αOPT (D)−O

(
αV (nδ)1/4 + αV (nδ)1/2 + (1 + α)V δ

)
≥ αOPT (D)−

O
(
(1 + α)V

√
n
√
δ
)

.

Proof of Proposition 1. The marginal distributions for Dp and D are close in total variation distance,
and specifically, dTV

(
D̂i,Dpi

)
≤ dTV

(
D̂,Dp

)
≤ ε. Therefore, dTV (Di,Dpi ) ≤ ε, which implies

that dTV (D,Dp) ≤ nε. Applying the triangle inequality completes the proof.

C Proofs missing from Section 4.2

Proof of Theorem 4. In order to prove this theorem we will first need to prove
two intermediate lemmas. Recall that Π(D1, · · · ,Dn) = {D′|Prti∼Di [ti = vi] =∑
v−i∈T−i

Prt∼D′ [t = (vi, v−i)] ,∀i ∈ [n],∀ti ∈ Ti}.

Lemma 9. For any distributionD ∈ Π(D1, · · · ,Dn) there exists a distributionD′ ∈ Π(D′
1, · · · ,D′

n)
such that dTV (D,D′) ≤ nε, where for all i, dTV (Di,D′

i) ≤ ε.
1In the reduction payments are only scaled by a value less than 1. Thus if M had payments in [−H,H], then

M′ also has payments in that range.
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Proof. We will prove an intermediate step that will then immediately yield the desired outcomes.
More precisely we will first show that for any distribution D(i−1) ∈ Π(D′

1, · · · ,D′
i−1,Di, · · · Dn)

there exists a distribution D(i) ∈ Π(D′
1, · · · ,D′

i−1,D′
i, · · · Dn) such that dTV

(
D(i−1),D(i)

)
≤ ε,

where dTV (Di,D′
i) ≤ ε. To prove this we will leverage the L1-distance characterization of TV

distance.

Our proof will be constructive through a simple “moving mass” argument. For simplicity let’s
assume that there exist vi, v′i ∈ Ti such that Prti∼Di [ti = vi] = Prt′i∼D′

i
[t′i = vi] + ε and

Prti∼Di
[ti = v′i] = Prt′i∼D′

i
[t′i = v′i] − ε. Extending the following procedure for arbitrary Di,

D′
i such that dTV (Di,D′

i) ≤ ε will be immediate. Given D(i−1), construct D(i) as follows:

1. Set εcur = ε and D(i−1) = D(i).

2. As long as εcur > 0 do the following process:

(a) Find v−i ∈ T−i such that Prt′∼D(i) [t′ = (vi, v−i)] > 0 and let γ be the minimum of
Prt′∼D(i) [t′ = (vi, v−i)] and εcur.

(b) Change D(i) such that Prt′∼D(i) [t′ = (vi, v−i)]− γ and Prt′∼D(i) [t′ = (v′i, v−i)] + γ.
(c) Set εcur = εcur − γ

3. Output D(i)

From our construction of D(i) it is immediate that D(i) ∈ Π(D′
1, · · · ,D′

i−1,D′
i, · · · Dn) and

dTV
(
D(i−1),D(i)

)
≤ ε. Chaining up the resulting inequalities and using triangle inequality con-

cludes the proof.

Leveraging the above we can prove the following:

Lemma 10. For any mechanismM and sets of marginals (D1, · · · ,Dn) and (D′
1, · · · ,D′

n) such
that for all i ∈ [n], dTV (Di,D′

i) ≤ ε we have that:

min
D∈Π(D1,··· ,Dn)

Et∼D [O(t,M(t))] ≥ min
D′∈Π(D′

1,··· ,D′
n)
Et′∼D′ [O(t′,M(t′))]− nεV

Proof. We will prove this using a contradiction. Assume that

min
D∈Π(D1,··· ,Dn)

Et∼D [O(t,M(t))] < min
D′∈Π(D′

1,··· ,D′
n)
Et′∼D′ [O(t′,M(t′))]− nεV.

Lets call D∗ = argminD∈Π(D1,··· ,Dn) Et∼D [O(t,M(t))]. Now using Lemma 9 we have that

there exists D̂∗ ∈ Π(D′
1, · · · ,D′

n) such that dTV
(
D∗, D̂∗

)
≤ nε. Using Lemma 2 we have that

Et∼D∗ [O(t,M(t))] ≥ Et∼D̂∗ [O(t,M(t))]− nεV . Chaining the above inequalities we get that:

Et∼D̂∗ [O(t,M(t))]−nεV ≤ Et∼D∗ [O(t,M(t))] < min
D′∈Π(D′

1,··· ,D′
n)
Et′∼D′ [O(t′,M(t′))]−nεV

However, minD′∈Π(D′
1,··· ,D′

n)
Et′∼D′ [O(t′,M(t′))] − nεV ≤ Et∼D̂∗ [O(t,M(t))] − nεV which

concludes the contradiction.

Now we have all the components to prove the main theorem.

First by using Lemma 10 on Mα we have that minD′∈Π(D′
1,··· ,D′

n)
Et∼D′ [O(t,Mα(t))] ≥

minD∈Π(D1,··· ,Dn) Et∼D [O(t,Mα(t))]− nεV .

Now lets call M∗ = argmaxM′ minD′∈Π(D′
1,··· ,D′

n)
Et∼D′ [O(t,M′(t))]. By ap-

plying Lemma 10 on M∗ we have that minD∈Π(D1,··· ,Dn) Et∼D [O(t,M∗(t))] ≥
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minD′∈Π(D′
1,··· ,D′

n)
Et∼D′ [O(t,M∗(t))]. Chaining all of the above we have that:

min
D′∈Π(D′

1,··· ,D′
n)
Et∼D′ [O(t,Mα(t))] ≥ min

D∈Π(D1,··· ,Dn)
Et∼D [O(t,Mα(t))]− nεV

≥ αmax
M′

min
D∈Π(D1,··· ,Dn)

Et∼D [O(t,M′(t))]− nεV

≥ α min
D∈Π(D1,··· ,Dn)

Et∼D [O(t,M∗(t))]− nεV

≥ α min
D′∈Π(D′

1,··· ,D′
n)
Et∼D′ [O(t,M∗(t))]− (1 + α)nεV

= αmax
M′

min
D′∈Π(D′

1,··· ,D′
n)
Et∼D′ [O(t,M′(t))]− (1 + α)nεV.

D Proofs missing from Section 4.4

Proof of Proposition 2. Let SD be the mechanism that implements the better of bundling and
selling separately, as computed on a prior D. SDp is a DISC and ex-post IR mechanism,
and Rev(SDp ,Dp) ≥ 1

6Rev(D
p). Thus, applying Theorem 1 we have that Rev(SDp ,D) ≥

1
6 Rev(D) − 7

6Hδ. The mechanism SDp is either selling each item separately, or it is setting
a posted price for the grand bundle. If the former case occurs, then running SDp onD makes (weakly)
less revenue than SRev(D); if the latter case occurs, running SDp on D makes (weakly) less revenue
than BRev(D). Therefore, we overall have that Rev(SD,D) ≥ Rev(SDp ,D). Combining with the
previous inequality we get Rev(SD,D) ≥ 1

6 Rev(D)−
7
6Hδ.

MRFs. We state some basic definitions for Markov Random Fields.
Definition 5 (Markov Random Field [SK75],[KS80],[CO21]). A Markov Random Field (MRF) is
defined by a hypergraph G = (V,E). Associated with every vertex v ∈ V is a random variable Xv

taking values in some alphabet Σv, as well as a potential function ψv : Σv → R. Associated with
every hyperedge e ⊆ E is a potential function ψe : Σe → R. In terms of these potentials, we define
a probability distribution D associating to each vector c ∈ ×v∈V Σv probability D(c) satisfying:
D(c) ∝

∏
v∈V e

ψv(cv)
∏
e∈E e

ψe(ce), where Σe denotes ×v∈eΣv and ce denotes {cv}v∈e.
Definition 6 ([CO21]). Given a random variable/type t genarated by an MRF over a hypergraph
G = ([m], E), we define weighted degree of item i as: di := maxx∈T |

∑
e∈E:i∈e ψe(xe)| and the

maximum weighted degree as ∆ := maxi∈[m] di.
Lemma 11 (Lemma 2[CO21]). Let random variable t be generated by an MRF. For any i and any
set E ⊆ Ti and set E ′ ⊆ T−i:

exp(−4∆) ≤ Prt∼D [ti ∈ E ∧ t−i ∈ E ′]
Prti∼Di [ti ∈ E ] Prt−i∼D−i [t−i ∈ E ′]

) ≤ exp(4∆)

Proof of Proposition 3. Consider the case where m = 2. Assume that for each item there
exist two possible valuations A,B. Consider the following distribution D of possible val-
uations. Pr(t1,t2)∼D [(t1, t2) = (A,A)] = 1 − 2k + k3, Pr(t1,t2)∼D [(t1, t2) = (A,B)] =

Pr(t1,t2)∼D [(t1, t2) = (B,A)] = k − k3, Pr(t1,t2)∼D [(t1, t2) = (B,B)] = k3. Notice that for
any 0 < k < 1/2 this is a valid distribution. Its TV distance from the product of its marginals is
2(k2−k3) ≤ 2k2. From Lemma 11 we have exp(−4∆) ≤ Pr(t1,t2)∼D[t1=B∧t2=B]

Prt1∼D1
[t1=B]·Prt2∼D2

[t2=B] =
k3

k·k = k,

which implies that ∆ ≥ 1
4 log(

1
k ).

We can prove the statement of Proposition 3 in a different way by constructing a distribution D that is
close to a product distribution but the parameter ∆ is arbitrarily large.

Proof. Let Dp be a product distribution such that Dp(t) = 1
Z

∏
v∈V e

ψv(tv) where Z (known as the
partition function) normalizes the values to ensure that Dp is a probability distribution. Consider the
profile t∗ that happens with the smallest probability. Let that probability be 0 < δ ≤ 1

2 . We have that

Dp(t∗) = 1

Z

∏
v∈V

eψv(t
∗
v) = δ (4)
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We can construct a joint distribution D that is produced by an MRF in a way that the TV distance
between Dp and D is bounded by δ while the parameter ∆ of the MRF grows to infinity.

Let D(t) ∝
∏
v∈V e

ψ̂v(tv)
∏
e∈E e

ψe(te) for some potential functions ψ̂v(·) and ψe(·). We can
construct D by selecting ψ̂v(tv) = ψv(tv) for all v ∈ V . Consider hyperedge e∗ = V (i.e.
e∗ is the hyperedge that connects all nodes in V ). For that hyperedge e∗ and the profile t∗ we
choose ψe∗(t∗) ̸= 0, and for all other combinations of hyperedges e and profiles te we have that
ψe(te) = 0. We choose ψe∗(t∗) value such that D(t∗) = ϵ, for some 0 ≤ ϵ < δ. For ease
of notation let eψe∗ (t

∗) = c(ϵ). Let Z ′(ϵ) be the partition function of D, which depends on the
choice of ϵ. From the above, it is not difficult to see that ∀t ̸= t∗ : D(t) = 1

Z′(ϵ)

∏
v∈V e

ψv(tv),

and D(t∗) = 1
Z′(ϵ)

∏
v∈V e

ψv(tv)eψe∗ (t
∗) = 1

Z′(ϵ)

∏
v∈V e

ψv(tv) · c(ϵ). Using Equation (4), we can
rewrite D(t∗) as

D(t∗) = 1

Z ′(ϵ)

∏
v∈V

eψv(t
∗
v)eψe∗ (t

∗) =
Z

Z ′(ϵ)
· δ · c(ϵ) = ϵ. (5)

By the definition of the partition function we have that Z =
∑
t∈T

∏
v∈V e

ψv(tv), and Z ′(ϵ) =∑
t∈T

∏
v∈V e

ψv(tv)
∏
e∈E e

ψe(te) =
∑
t∈T :t̸=t∗

∏
v∈V e

ψv(tv) +
∏
v∈V e

ψv(t
∗
v) · c(ϵ). Since

Dp(t∗) = δ the remaining probability for all profiles is (1 − δ), so for the first part of the sum
we have

∑
t∈T :t ̸=t∗

∏
v∈V e

ψv(tv) = Z(1−δ). We can use again Equation (4) to simplify the second
part of Z ′(ϵ). Therefore, we have

Z ′(ϵ) = Z(1− δ) + Z · δ · c(ϵ) (6)

Rearranging Equation (5) we have Z · δ · c(ϵ) = ϵ · Z ′(ϵ). Substituting that into Equation (6) we
get that Z ′(ϵ) = Z 1−δ

1−ϵ . Using the last formula back into Equation (5) we get that c(ϵ) = (1−δ)ϵ
(1−ϵ)δ .

As we take the probability D(t∗) to zero we have limϵ→0 c(ϵ) =
(1−δ)ϵ
(1−ϵ)δ = 0, and limϵ→0 Z

′(ϵ) =
Z(1−δ)
1−ϵ = Z(1− δ). Therefore, the distribution D behaves nicely as we take the probability of t∗ to

zero. By Definition 6, ∆(ϵ) = |ψe∗(t∗)| since it is the only non-zero value of the potential function
ψe(·). By definition eψe∗ (t

∗) = c(ϵ) =⇒ ψe∗(t
∗) = ln(c(ϵ)). Taking again ϵ to zero we can show

that ∆(ϵ) goes to infinity, limϵ→0 ∆(ϵ) = limϵ→0 ln(c(ϵ)) = −∞.

We can calculate the TV distance:

2 dTV (D,Dp) =
∑
t∈T
|D(t)−Dp(t)|

=
∑

t∈T :t ̸=t∗
|D(t)−Dp(t)|+ |D(t∗)−Dp(t∗)|

=
∑

t∈T :t ̸=t∗

∣∣∣∣∣ 1Z ∏
v∈V

eψv(tv) − 1

Z ′(ϵ)

∏
v∈V

eψv(tv)

∣∣∣∣∣+ δ − ϵ

=

∣∣∣∣1− Z

Z ′(ϵ)

∣∣∣∣ ∑
t∈T :t ̸=t∗

∣∣∣∣∣ 1Z ∏
v∈V

eψv(tv)

∣∣∣∣∣+ δ − ϵ

=

∣∣∣∣1− 1− ϵ
1− δ

∣∣∣∣ (1− δ) + δ − ϵ

= 2(δ − ϵ)

To go from line 5 to line 6 we use the fact that Z ′(ϵ) = Z 1−δ
1−ϵ and that the sum of the probabilities

acording to Dp of all the profiles except t∗ is 1− δ.

That concludes the proof that there exists a distribution D that is at most δ away in TV from a product
distribution for which the parameter ∆ is unbounded.
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Proof of Proposition 4. As a first step, we are going to bound the Kullback-Leibler (KL) divergence
between the distribution D and a product distribution Dp. Then we are going to use Pinsker’s
inequality [Tsy08] and the Bretagnolle-Huber inequality [Tsy08, BH78] to bound the TV distance
using KL divergence.

Let D(t) = 1
Z1

∏
v∈V e

ψv(tv)
∏
e∈E e

ψe(te), where Z1 is the partition function. Let Dp be product
distribution such that Dp(t) = 1

Z2

∏
v∈V e

ψv(tv), where Z2 is the partition function.

The KL divergence is between D and Dp is:

DKL(D||Dp) =
∑
t∈T
D(t) log D(t)

Dp(t)

=
∑
t∈T
D(t) log

Z2

∏
v∈V e

ψv(tv)
∏
e∈E e

ψe(te)

Z1

∏
v∈V e

ψv(tv)

=
∑
t∈T
D(t) log Z2

Z1

∏
e∈E

eψe(te)

=
∑
t∈T
D(t)

(
log

Z2

Z1
+
∑
e∈E

ψe(te)

)

≤
∑
t∈T
D(t)

(
log

Z2

Z1
+
m

2
∆

)
=
m

2
∆ + log

Z2

Z1

Since KL divergence is not symmetric, we can also compute: DKL(Dp||D):

DKL(Dp||D) =
∑
t∈T
Dp(t) log D

p(t)

D(t)

=
∑
t∈T
D(t) log

Z1

∏
v∈V e

ψv(tv)

Z2

∏
v∈V e

ψv(tv)
∏
e∈E e

ψe(te)

=
∑
t∈T
D(t) log Z1

Z2

∏
e∈E

e−ψe(te)

=
∑
t∈T
D(t)

(
log

Z1

Z2
−
∑
e∈E

ψe(te)

)

≤
∑
t∈T
D(t)

(
log

Z1

Z2
+
m

2
∆

)
=
m

2
∆− log

Z2

Z1

We can get that
∑
e∈E ψe(te) ∈

[
−m2 ∆,

m
2 ∆
]

as follows.
∑
e ψe(te) =

1
2

∑
i∈[m]

∑
e∈E:i∈e ψe(te) ≤ 1

2

∑
i∈[m] di ≤ m∆

2 . Similarly, we can lower bound∑
e∈E ψe(te) ≥ −

m∆
2 since the definition of di is di := maxx∈T |

∑
e∈E:i∈e ψe(xe)|.

From the above inequalities we have that min{DKL(Dp||D), DKL(D||Dp)} ≤ m
2 ∆. From Pinsker’s

inequality we get dTV (D,Dp) ≤
√

m∆
4 , and from the Bretagnolle-Huber inequality we get

dTV (D,Dp) ≤
√
1− exp(−m∆/2). Combining these inequalities we have the desired bound

on the TV distance.
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