
A Experimental Details409

A.1 MLPs410

In Figure 8 we used a 3-layer MLP learning a Gegenbauer polynomial Q2(� ·x) in D = 5 dimensions.411

Here � was a randomly chosen unit vector in RD. We implemented µP parameterization by hand.412

The output layer of the network was rescaled by ↵0/
p
N , consistent with µP. We chose ↵0 = 1000413

to put us in the lazy regime. We set the the learning rate to be 5N/(1 + ↵
2
0). General arguments414

based on kernel scale indicate that the learning rate should be scaled as ↵�2
0 at large ↵.415

In Figure 13 we used a 3-layer MLP learning a Gegenbauer polynomial Q2(� · x) in D = 25416

dimensions. We set the learning rate to be nearly as high as possible before a loss explosion.417

A.2 Vision418

A.2.1 CIFAR-5m419

All plots except Figure 5a and 5b: We trained with standard CIFAR data augmentation of random crop420

(RandomCrop(32, padding=4) in pytorch) and horizontal flip (RandomHorizontalFlip() in pytorch).421

As base network (for µP ) we used ResNet18 where BatchNorm was replaced with LayerNorm (to422

maintain the consistency of the neural network between train and test). We used the SGD optimizer423

with learning rate of .05 with cosine decay over 20000 steps, .9 momentum and batch size of 250.424

For Figure 5a, we used the above setup, but with a learning rate of 0.01 and a much higher batch size425

of 2000, so as to replicate the edge of stability phenomenon [45] which only occurs at high batch426

sizes. For Figure 5b, we used a learning rate of 0.3 and batch size of 32, so as to show the behavior of427

high learning rate and small batch size on train loss.428

A.2.2 CIFAR-10 Multiple Passes429

In Figure 10, we show the dynamics and representational consistency of ResNets trained on CIFAR-430

10 for several epochs. The architecture is a ResNet-18 with base-shape width set at N = 64 channels.431

The model is trained with SGD with learning rate 0.1 and cosine annealing schedule. The batch-size432

used is 128.433

A.2.3 ImageNet434

In all ImageNet experiments, we used a training subset of the ImageNet-1k dataset consisting of435

220 = 1048576 labeled images and a test subset consisting of 1024 labeled images. Both subsets436

were randomly sampled from the full ImageNet-1k training and validation datasets, respectively. To437

extend the duration in training in which the network remains in the online regime beyond one epoch,438

we heavily augmented the images in the training dataset using PyTorch’s AutoAugment transform439

with the default policy, AutoAugmentPolicy.IMAGENET.440

We again used the ResNet-18 architecture with µP parameterization relative to the ResNet-18441

network with base-shape width N = 64 channel [14]. All architectures and training procedures were442

implemented in Jax and used the auxiliary Flax and Optax packages, respectively.443

Figures 2(b) and 6(b) were trained using the Adam optimizer with the following learning rate schedule:444

linear warm-up for 0.5 epochs from learning rate 8⇥ 10�5 to 8⇥ 10�3, followed by cosine decay445

over 49.5 epochs to 8⇥ 10�5.446

A.3 Language447

A.3.1 Wikitext-103 Language Modeling448

For all Wikitext-103 tasks, we adopted the µP transformer as defined in the µP package [14]. In449

the plots shown in the main text, we used a depth-4 transformer, with dmodel, dk, dv = N and450

dffn = 4N . We performed a single pass through the train set in order to stay in the realistic online451

regime. We used a masked language modeling with sequence length S at varying input sequence452

lengths S. For Figure 1 d) we used the S ⇥ S attention matrix of an S = 128 transformer. In Figure453

4 e) we used the attention matrix of an S = 35 transformer. We chose this different length simply to454

13



illustrate the consistent message across sequence lengths. We used a batch size of B = 32 for all455

experiments. The residual stream was thus a tensor of shape (S,B, dmodel).456

We used the Adam optimizer with a learning rate of 0.0001. We also ran the same configuration with457

SGD and a learning rate of 0.5 and observed the same behavior. See section B for further plots and458

details.459

For figure 3, we used the Wikitext-103 validation set in order to measure the evolution of the460

predictions on masked logits. In 3 f), we averaged the mean squared error from the widest transformer461

by using 100 test points.462

A.3.2 C4 Language Modelling463

Figure 1 (b) we trained with base network being a 125m parameter transformer model on464

2.5 billion tokens using the Mosaic ML’s LLM codebase (https://web.archive.org/web/465

20230519184343/https://github.com/mosaicml/examples/tree/main/examples/llm).466

See https://web.archive.org/web/20230519183813/https://github.com/mosaicml/467

examples/blob/main/examples/llm/yamls/mosaic_gpt/125m.yaml for the full hyperpa-468

rameter details. We were limited by time and computational resources in our ability to explore further469

details of the C4 transformer model.470

B Further Plots of Convergence471

In this section, we show additional figures illustrating convergence of network quantities across472

widths that we did not have space for in the main text.473

(a) CIFAR-5m (b) Imagenet (c) Wikitext-103

Figure 9: Analog of Figure 3 but comparing networks of successive widths rather than comparing
all networks to the widest. Again, we see that as the network width grows, the difference between
successive networks shrinks.

B.1 Vision474

In Figure 9 a), b) we plot the analogue of the first two columns of Figure 3, but now instead of475

computing logit RMSE to the widest network, we compute it between networks of successive widths476

for vision tasks.477

A simple setting in which convergence properties are particularly clear and simple to study is for a478

ResNet learning CIFAR-10 and going over multiple passes of the dataset. In Figure 10 we plot a479

20-epoch pass over CIFAR 10, and study the generalization error, initial and final preactivations in480

the last layer, and final layer kernels across widths. The training error begins to exhibit pathologies481

after sufficiently many epochs, related to the discussion in section 3.2.482

Next in figure 11, we show a higher-resolution plot of the kernel Gram matrices across widths and483

across layers for the CIFAR-5M ResNet after a pass through the data. The larger resolution allows484

one to see that even the fine-grained details in the structure of the Gram matrix are consistent across485

widths.486

14

https://web.archive.org/web/20230519184343/https://github.com/mosaicml/examples/tree/main/examples/llm
https://web.archive.org/web/20230519184343/https://github.com/mosaicml/examples/tree/main/examples/llm
https://web.archive.org/web/20230519184343/https://github.com/mosaicml/examples/tree/main/examples/llm
https://web.archive.org/web/20230519183813/https://github.com/mosaicml/examples/blob/main/examples/llm/yamls/mosaic_gpt/125m.yaml
https://web.archive.org/web/20230519183813/https://github.com/mosaicml/examples/blob/main/examples/llm/yamls/mosaic_gpt/125m.yaml
https://web.archive.org/web/20230519183813/https://github.com/mosaicml/examples/blob/main/examples/llm/yamls/mosaic_gpt/125m.yaml


(a) Error Consistency (b) Last Layer Preactivation Consistency

(c) Last Layer Kernel Consistency (d) Kernel Alignment vs N

Figure 10: Training on CIFAR-10 in a ResNet-18 for multiple epochs generates dynamic preactivation
densities and feature kernels which converge at realistic widths. (a) The test classification error curves
for single models (solid) and ensembled (dashed) converge for realistic widths. (b) At initialization
preactivation distributions in the last hidden layer of the CNN for a randomly chosen data point are
Gaussian (as expected) and are very consistent across model widths N . To obtain histograms we
train an ensemble of E = 8 independently initialized networks concatenate activation patterns across
members of the ensemble. After 20 epochs of training (models are around ⇠ 95% accuracy), the
preactivation distributions for the same data point have become non-Gaussian (consistent with infinite
width theory) but are still remarkably consistent for large widths. (c) The final layer’s feature kernel
at initialization shows very little structure, but (d) after training networks of all widths converge to
similar kernels. The plot in (d) compares ensemble averaged kernels with the N = 512 ensembled
kernel.

B.2 Language487

In Figure 9 c) We plot the RMSE difference between the values placed on the correct logit by networks488

of successive width (rather than comparing to the widest as in Figure 3). We again see that as the489

widths grow the differences shrink.490

Next, in Figure 12, we create an analog of the language column of Figure 3, this time for µP491

transformers of the same architecture and dataset but now optimized with vanilla SGD. The fact that492

wider transformers perform better still holds, and one can clearly see narrower networks approaching493

wider ones in their output logit values.494

15



Figure 11: Convergence of layerwise representations in each layer (block) ` of the ResNet-18 at large
width N after training on CIFAR-5M.

(a) Training Loss (b) Correct logit value (c) RMSE from widest

Figure 12: An analog of Figure 3 for µP transformers trained with SGD. a) Training loss. It is
interesting that in µ parameterization the SGD optimized network is competitive with the Adam-
optimized network. b) Value placed on the correct logit for a specific masked token. c) RMSE of
correct logit value from the widest network.

C Defining µP and SP495

There are several detailed discussions about µP vs SP scaling [10, 12, 7, 8, 11]. The aim of this496

section is to simply give an accessible and conceptual overview of their distinction, as well as a497

motivation for µP from the perspective of keeping features moving in time even at infinite width. .498

There are several equivalent ways of parameterizing neural networks that give rise to the same dy-499

namical effects, whether in µ-parameterization or standard parameterization. We give the definitions500

16



in the case of a single-output feed-forward network and demonstrate that SP and µP give rise to501

ON (N�1/2), ON (1) feature movement at initialization, respectively.502

Generalizations to other architectures (ResNets, Transformers) are straightforward. For a detailed503

discussion see [10] and also [11].504

C.1 SP505

We assume all hidden layers have equal width N . Let the input space have dimension D. Let µ be506

the index of the training point in the dataset. At each layer `, the pre-activation h`+1
µ in layer `+ 1 is507

given by508

h`+1
µ =

1
p
N

W `
· �(h`

µ), (2)

where � is an element-wise non-linearity, often taken to be the ReLU function. Here the N
�1/2 out509

front allows h`+1
µ to be ON (1) at initialization as N ! 1 by the law of large numbers. The output510

of the network fµ is then given by:511

fµ =
↵

p
N

wL
· �(h`

µ). (3)

Here again the N�1/2 scaling again yields that fµ will be ON (1) as N ! 1. In SP, ↵ is taken to be512

1, but we will keep it explicit as it plays an important role in distinguishing the parameterizations. It513

is the laziness parameter identified in [28]. The change in the function is given by514

dfµ

dt
= �⌘

X

⌫

Kµ⌫`
0(f⌫ , y⌫). (4)

Here Kµ⌫ = r✓fµ ·r✓f⌫ is the NTK gram matrix. y⌫ is the true label. ` is the loss function (e.g.515

MSE or crossentropy) and `
0 is its derivative with respect to the first argument. The NTK is easily516

seen to be order ↵2 and `
0 is order 1 at small ↵. In order to have the change in the function be O(1)517

we set ⌘ = ⌘0/↵
2.518

Using the chain rule, one can directly see that the pre-activations evolve as [8, 3, 29]519

dh`

dt
⇠ ⌘

↵
p
N

=
⌘0

↵
p
N

. (5)

Thus, at large N and ↵ = 1 the pre-activations of this network evolve as O(N�1/2). Consequently,520

at infinite width the feature do not evolve and infinitely wide networks in standard parameterization521

become kernel machines with the static and initialization-independent infinite-width NTK.522

In many machine learning libraries, the factors of 1/
p
N are not explicitly placed in front of each523

multiplication with the weight matrices. Rather, the weight matrices themselves are drawn from a524

distribution W `
⇠ N (0, 1

N 1). Although this gives identical forward pass, this changes the N scaling525

of the gradients in the backward pass. As long as the learning rate is appropriately rescaled to account526

for this, the dynamics are equivalent to the SP parameterization discussed above.527

C.2 µP528

One of the simplest ways to define the µ-parameterization is to take ↵ = 1/
p
N . This implies that529

we simply replace the final layer of the network by:530

fµ =
1

N
wL

�(h`
µ). (6)

As the prior analysis shows, in order to have dfµ/dt be O(1) at initialization, we take ⌘ = N⌘0, so531

the learning rate in this definition scales extensively with N . In this setting, we now have that532

dh`

dt
⇠ ON (1). (7)

In [10, 12], gives an equivalent definition of µP that gives rise to the same dynamics but keeps the533

learning rate to be ON (1). We use this version of µP in the experiments that we run, simply because534

that is what is used in the package [14]. Consequently, our learning rate does not need to be changed535

as width grows.536

17



D µP versus Standard Parameterization537

D.1 MLPs538

In figure 13, we show a 3-layer MLP learning a quadratic polynomial. In subfigure a) use a batch539

size of 10 and a learning rate going as ⌘ = 5N/(1 + ↵
2
0) with ↵0 = 1. The output layer is scaled540

as ↵0/
p
N , putting us in the rich regime. The learning rate has been picked to be nearly as large541

as possible at this batch size in order to maximize the large loss curve fluctuations yielded by large542

learning rate effects. In subfigure c) we do not rescale the output layer, and have a width-indepdent543

learning rate going as ⌘ = 50/(1 + ↵
2
0) with ↵0 = 1. This puts is in the large-learning rate regime544

for a standard parameterized network. See Appendix A for more details.545

We plot the learning curves across widths and find striking agreement, even at the fine-grained level546

of fluctuations due to small batch size and large learning rate effects. Although this is not exactly the547

full-batch edge-of-stability effect reported in [45], the large oscillations may be similar to a small548

batch size analog. We plot the absolute difference from the widest network in subfigure b) to highlight549

the strong agreement across widths.550

In subfigure c), we have the same network but in standard parameterization. The narrower networks551

now learn features more quickly, leading to inconsistent dynamics across widths.552

Figure 13: 3-Layer MLP learning a quadratic polynomial y = Q2(� · x) on the sphere. Data is
provided in an online setting in the same order across widths, as in the realistic experiments in the
main text. Large learning rate small batch size effects in MLPs are consistent across large widths. a)
For µP networks, the loss curves match across widths, even accounting for fluctuations due to batch
size or large learning rate edge-of-stability-like effects. b) Plot of the difference in training error from
the widest network. c) The same network but in standard parameterization. Dynamics are no longer
consistent across widths, and wider networks approach a lazy limit.

D.2 Vision553

Next, we focus on a vision task and compare the large learning rate small batch size effects in SP to554

the µP parameterized network in Figure 5a. By contrast to that figure, we see significantly different555

dynamics and batch variation across widths. In Figure 14 a) we plot the early time behavior of a556

CIFAR-5m task at large learning rate. The large learning rate effects cause the loss to substantially557

oscillate, but the oscillations across widths are inconsistent by contrast to 5a b) . Further, at late558

times in Figure 14, the sharp spikes in the loss function due to large learning rate effects become559

substantially different across widths. Indeed, in SP some widths converge for a given learning rate560

while others do not. This trend has already been well-studied in [12]. We again stress that our561

observation is that not only are the final losses similar across widths in µP (as observed in [12]), but562

that the individual batch and large learning rate fluctuations agree across widths at early times in µP563

as well.564

D.3 Language565

Finally, we present a complementary set of figures to those in the right columns of Figures 3 and 12566

for transformers of the same architecture on Wikitext-103 but in standard parameterization.567

18



Figure 14: Different widths have different loss curves. a) Early time dynamics of the loss across
widths is not consistent. b) Dynamics of the loss across widths at later times also does not appear
consistent. There are explosions that happen at different times and scales across widths.

(a) Training Loss (b) Correct logit value (c) RMSE from widest

Figure 15: An analog of Figure 3: SP transformers trained with Adam. a) Training loss. At large
widths, the learning rate chosen is too big for the network to properly learn, and the loss is flat. This
is consistent with what is observed in [12] — the optimal learning rate in SP changes with width. b)
Value placed on the correct logit for a specific masked token. c) RMSE of correct logit value from
the widest network. In both of these plots, the monotonic behavior across width evident under the µP
parameterization is violated. Even after discarding the networks that do not converge under SP, the
behavior remains non-monotonic across width.

E Overview of Finite Width Corrections to Feature Learning Networks568

In this section we review some basic ideas from the mean field theory of feature learning neural569

networks. We first describe the predictions that mean field theory makes about infinite width networks570

before describing finite size corrections to the dynamics of learning. To eliminate unnecessary571

complexity, we will focus on MLP layers, but these arguments can be easily extended to CNN and572

self-attention layers as well. We start by defining a MLP in a parameterization equivalent to µP573

fµ =
1

N
wL

· �(h`
µ) , h

`+1
µ =

1
p
N

W `
�(h`

µ) , h
1
µ =

1
p
D
W 0xµ. (8)

We will consider these networks trained from a random Gaussian initialization of the weights so574

that ✓ = Vec{wL
, ...,W 0

} follows ✓ ⇠ N (0, I) at initialization. This network is then trained with575

some gradient based optimizer, leading to dynamical predictions fµ(t) and dynamical preactivations576

h`
µ(t). Because of the random initialization of weights, the outputs of the network and the precise577

preactivations are random variables. However, at infinite width N ! 1, a dramatic simplification of578

the dynamics occurs.579

E.1 The Infinite Width/Mean Field Limit580

The predictions fµ(t) and internal representations of infinite width limit of neural networks admit a581

description in terms of non-random initialization-independent dynamical feature kernels �`
µ⌫(t, s)582

and gradient kernels G`
µ⌫(t, s) defined as583

�`
µ⌫(t, s) =

1

N
�(h`

µ(t)) · �(h
`
⌫(s)) , G

`
µ⌫(t, s) =

1

N
g`
µ(t) · g

`
⌫(s), (9)

19



where µ, ⌫ index data points and t, s index training time and g`
µ(t) = N

@fµ
@h` are back-propagated584

gradient signals [10, 11]. Further, all preactivation vectors h`
µ(t) 2 RN have entries that become iid585

draws from a (potentially non-Gaussian) single site density p(h), which converges as586

1

N

NX

i=1

�(h� hi) ! p(h), (10)

which should be understood in terms of integration of these densities against test functions. At infinite587

width, the sums over neurons in a layer can be replaced by deterministic integrals over this single site588

density �`
µ⌫(t, s) =

R
p(h`

µ(t), h
`
⌫(s))�(h

`
µ(t))�(h

`
⌫(s))dh

`
µ(t)dh

`
⌫(s).589

E.2 Finite Width Effects590

At finite width, the internal kernels {�`
µ⌫(t, s), G

`
µ⌫(t, s)} and predictions fµ(t) of the model become591

initialization and width-dependent and deviate from their mean field dynamics. For Gaussian random592

initialization of the weights of the network, the predictions and kernels fluctuate (from init to init)593

with variance that scales asymptotically like O(1/N) for width N (or 1/dmodel for transformer)594

[36]. Further, the ensemble averaged values for the predictions hfµ(t)i and kernels
⌦
�`

µ⌫(t, s)
↵

differ595

asymptotically from their infinite width values by O(N�1). Both of these two leading order effects596

can influence the expected (train or test) loss of the model. At fixed width and late training time,597

finite size effects beyond leading order can accumulate and become relevant, however theory predicts598

that any observable average at width N admits an asymptotic series in powers of N�1 [36].599

E.2.1 Trainability at Finite Size600

The O(N�1) correction to feature and gradient kernels can lead to non-trivial corrections to the601

loss dynamics. Working in continuous time, we can define the neural tangent kernel (NTK) as602

Kµ⌫(t) =
P

` G
`+1
µ⌫ (t, t)�`

µ⌫(t, t), where base cases are �0
µ⌫(t, s) =

1
Dxµ ·x⌫ and G

L+1
µ⌫ (t, s) = 1.603

Following the approximation to online dynamics with MSE loss in Section 4, we consider a gradient604

flow on the average dynamical NTK605

d

dt
�(t) = �hK(t)i�(t) =) �(t) = T exp

✓
�

Z t

0
ds hK(s)i

◆
y, (11)

where T is the time-ordering operator. We now consider the leading correction to the average NTK606

around infinite width hK(t)i = K1(t) + 1
NK1(t) + O(N�2). With this correction, we see that607

the dynamics of errors �608

�(t) = T exp

✓
�

Z t

0
dsK1(s)�

1

N

Z t

0
dsK1(s) +O(N�2)

◆
y. (12)

The fact that the 1
NK1 correction is integrated over time and placed in the matrix exponential609

indicates that small corrections to NTK dynamics can lead to large dynamical amplification of logit610

corrections. This fact was pointed out in another work [36] which tried to motivate a study of611

perturbation theory in logarithms of the transition matrix logT (t) defined as612

d

dt
T (t) = �hK(t)iT (t) , T (0) = I , R(t) = logT (t). (13)

The solution to this can be used to construct the errors at a later time �(t) = exp (R(t))y.613

F Offline Training614

Figure 16 depicts the loss curve for a ConvNeXt-T (tiny) model trained on ImageNet in the typical,615

offline setting — where data is encountered repeatedly across many epochs. As the networks overfit616

the training data — in Figure 16, beyond 40,000 training steps or five epochs — the loss curves617

diverge dramatically for different-width networks. Width consistency subsequently erodes.618

20



Figure 16: Consistency of loss curves across widths in the beginning and separation as loss becomes
sufficiently small in offline learning.

G Use of Compute619

For most experiments, we used Nvidia A100 SXM4 40GB and 80 GB GPUs on an academic cluster.620

For the Wikitext-103 tasks, each width included 4 ensembles loaded onto an A100 GPU that ran for621

a range between 1 to 3 days. For each sweep over widths this corresponds to about 8 A100-days.622

Accounting for sweeps over different sequence lengths, optimizers, and parameterizations, this623

corresponds to about 50 A100-days.624

All MLP tasks, including the calculation of empirical NTKs and their spectral properties were done625

in 15-30 minute Colab sessions using the basic GPUs provided.626

The CIFAR-10 ResNet experiments in Figure 10 were done using a total of less than 1 A100-day of627

compute across all widths and ensembles.628

The ImageNet ResNet experiments vectorize training over between one to four same-width neural629

networks on one A100 GPU. Each experiment training a collection of networks for 30 epochs takes630

between one to three A100-days. Overall, these experiments expended roughly 30 A100-days.631

For the CIFAR-5m experiments in Figure 2 and 3, across all widths, it required a few hours of A100632

GPU. For Figure 6 and 7, as these were ensembled across multiple runs, these required close to 1-2633

days of A100-GPUs. Figure 5a was just run for a few 100 steps of the training, so didn’t use much634

compute power.635

21


	Introduction
	Related Works

	Consistency of large-width behavior in online learning
	Deviations from large-width behavior
	Online training
	Offline Training

	Spectral perspective on the width-dependent bias
	Conclusion
	Experimental Details
	MLPs
	Vision
	CIFAR-5m
	CIFAR-10 Multiple Passes
	ImageNet

	Language
	Wikitext-103 Language Modeling
	C4 Language Modelling


	Further Plots of Convergence
	Vision
	Language

	Defining P and SP
	SP
	P

	P versus Standard Parameterization
	MLPs
	Vision
	Language

	Overview of Finite Width Corrections to Feature Learning Networks
	The Infinite Width/Mean Field Limit
	Finite Width Effects
	Trainability at Finite Size 


	Offline Training
	Use of Compute

