
A Proofs471

A.1 Proof of Theorem 4.1472

Proof. By the definition of ⟨νDE, f
(1)
DE, f

(2)
DE⟩, we have:473

EνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y) = (2π)−

d
2D2

∫
Rd

exp

(
−1

2
∥ω∥2 + 2ω⊤Aω

+ ω⊤(B(1)x+B(2)y) + x⊤C(1)x+ y⊤C(2)y

)
dω

= (2π)−
d
2D2 exp

(
x⊤C(1)x+ y⊤C(2)y

)
×
∫
Rd

exp

(
−1

2
ω⊤(Id − 4A)ω + ω⊤(B(1)x+B(2)y)

)
dω.

Since 8A ≺ Id, we have 4A ≺ 0.5Id ≺ Id, meaning that Id − 4A is positive definite and invertible.474

The following identity is straightforward to check:475

−1

2
ω⊤(Id − 4A)ω + ω⊤(B(1)x+B(2)y) = −1

2
(ω − µ)

⊤
Σ−1(ω − µ) +

1

2
µ⊤Σ−1µ,

Σ = (Id − 4A)−1, µ = Σ(B(1)x+B(2)y).

Therefore, we have:476

EνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y) = (2π)−d/2D2 exp

(
x⊤C(1)x+ y⊤C(2)y +

1

2
µ⊤Σ−1µ

)
×
∫
Rd

exp

(
−1

2
(ω − µ)

⊤
Σ−1(ω − µ)

)
dω.

Next, we use the fact that the integral of the multivariate Gaussian distribution with mean µ and477

variance Σ is 1:478

(2π)−d/2 det(Σ)−1/2

∫
Rd

exp

(
−1

2
(ω − µ)

⊤
Σ−1(ω − µ)

)
dω = 1.

From that we conclude:479

EνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y) = D2 det(Σ)1/2 exp

(
x⊤C(1)x+ y⊤C(2)y +

1

2
µ⊤Σ−1µ

)
= D2 det(Id − 4A)−1/2 exp

(
x⊤C(1)x+ y⊤C(2)y

+
1

2
(B(1)x+B(2)y)⊤(Id − 4A)−1(B(1)x+B(2)y)

)
= D2 det(Id − 4A)−1/2 exp

(
x⊤
(
C(1) +

1

2
(B(1))⊤(Id − 4A)−1B(1)

)
x

+y⊤
(
C(2) +

1

2
(B(2))⊤(Id − 4A)−1B(2)

)
y + x⊤(B(1))⊤(Id − 4A)−1B(2)y

)
.

Based on this expression, we conclude that, indeed, EνDEf
(1)
DE(ω,x)f

(2)
DE(ω,y) = K(0)(x,y) for all480

x,y ∈ Rd if the conditions from theorem’s statement are satisfied.481

Next, we calculate expression for the variance. For any random variable Z, VarZ = EZ2 − (EZ)2.482

In particular, if Z = f
(1)
DE(ω,x)f

(2)
DE(ω,y), ω ∼ νDE, we get:483

VarνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y) = EνDE

f
(1)
DE(ω,x)2f

(2)
DE(ω,y)2 −

(
EνDE

f
(1)
DE(ω,x)f

(2)
DE(ω,y)

)2
= EνDE

f
(1)
DE(ω,x)2f

(2)
DE(ω,y)2 −K(0)(x,y)2.
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We have:484

EνDE
f
(1)
DE(ω,x)2f

(2)
DE(ω,y)2 = (2π)

d
2D4

∫
Rd

exp

(
−1

2
∥ω∥2 + 4ω⊤Aω + 2ω⊤(B(1)x+B(2)y)

+ 2x⊤C(1)x+ 2y⊤C(2)y

)
dω = (2π)

d
2D4 exp

(
2x⊤C(1)x+ 2y⊤C(2)y

)
×
∫
Rd

exp

(
−1

2
ω⊤(Id − 8A)ω + 2ω⊤(B(1)x+B(2)y)

)
dω.

Evaluation of the integral above can be done in the same way as calculation of485

EνDE
f
(1)
DE(ω,x)f

(2)
DE(ω,y), noticing that Id − 8A is positive definite and invertible. The result486

is as follows:487

EνDE
f
(1)
DE(ω,x)2f

(2)
DE(ω,y)2 = D4 det(Id − 8A)−1/2

× exp

(
2x⊤

(
C(1) + (B(1))⊤(Id − 8A)−1B(1)

)
x

+2y⊤
(
C(2) + (B(2))⊤(Id − 8A)−1B(2)

)
y + 4x⊤(B(1))⊤(Id − 8A)−1B(2)y

)
.

We conclude that the variance expression given in the theorem’s statement is correct.488

A.2 Important lemma489

Below, we prove an important lemma which is used in the subsequent proofs:490

Lemma A.1. Consider a function f : (−∞, 1
8 ) defined as491

f(A) = log(1− 4A)− 1

2
log(1− 8A) +

ϕ

1− 8A
(14)

where ϕ ≥ 0. Then, the minimum of f on (−∞, 1
8 ) is achieved at492

A∗ =
1

16

(
1− 2ϕ−

√
(2ϕ+ 1)

2
+ 8ϕ

)
. (15)

Proof. Set γ = (1 − 8A)−1 ∈ (0,+∞). Note that there is a one-to-one correspondence between493

γ ∈ (0,+∞) and A ∈ (−∞, 1
8 ). Hence, we can substitute γ−1 = 1 − 8A and 1 − 4A =494

((1− 8A)+ 1)/2 = (γ−1 +1)/2 = 1+γ
2γ in (14) and equivalently perform minimization with respect495

to γ:496

min
γ∈(0,+∞)

h(γ) = log

(
γ + 1

2γ

)
+

1

2
log γ + ϕγ = log(γ + 1)− 1

2
log γ − log 2 + ϕγ.

For h(·)’s derivative, we have:497

h′(γ) = ϕ+
1

γ + 1
− 1

2γ
= ϕ+

γ − 1

2γ(γ + 1)
(16)

=
2ϕγ(γ + 1) + γ − 1

2γ(γ + 1)
=

2ϕγ2 + (2ϕ+ 1)γ − 1

2γ(γ + 1)
. (17)

Based on (16), we see that h′(γ) → −∞ as γ → 0 and h′(γ) > ϕ ≥ 0 for all γ > 1. Hence,498

we conclude that h(·) is bounded from below on (0,+∞) and the global minimum γ∗ on (0,+∞)499

exists and it is one of the points satisfying h′(γ∗) = 0. Hence, it’s one of the positive roots of the500

polynomial in numerator of (17).501

If ϕ = 0, there is a single root γ∗ = 1 of the polynomial in the numerator of (17), hence it is a global502

minimum of h(·). If ϕ > 0, then there are two roots of the polynomial in the numerator of (17):503

γ∗
− =

−(2ϕ+ 1)−
√
(2ϕ+ 1)2 + 8ϕ

4ϕ
,
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γ∗
+ =

−(2ϕ+ 1) +
√
(2ϕ+ 1)2 + 8ϕ

4ϕ
. (18)

Note that, if ϕ > 0, then 2ϕ + 1 > 0 and (2ϕ + 1)2 + 8ϕ ≥ (2ϕ + 1)2. Hence, γ∗
− < 0 and504

γ∗
+ > 0. We conclude that γ∗ = γ∗

+ is the minimum of h(·) on (0,+∞). We multiply numerator and505

denominator of (18)’s right hand side by (2ϕ+ 1) +
√

(2ϕ+ 1)2 + 8ϕ > 0:506

γ∗ = γ∗
+ =

((2ϕ+ 1)2 + 8ϕ)− (2ϕ+ 1)2

4ϕ
(
(2ϕ+ 1) +

√
(2ϕ+ 1)2 + 8ϕ

) =
2

2ϕ+ 1 +
√
(2ϕ+ 1)2 + 8ϕ

. (19)

Note that the right hand side of (19) is equivalent to (18) when ϕ > 0 but also holds for the case507

when ϕ = 0 (i.e. when γ∗ = 1). We conclude that f(·) is minimized at A∗ = 1
8 (1− (γ∗)−1) since508

γ∗ = (1− 8A∗)−1. It’s easy to see that (15) follows from (19) directly.509

A.3 Proof of Theorem 4.2510

Proof. With A = AId, the conditions from Theorem 4.1 read as511

8A < 1,
1

1− 4A
(B(1))⊤B(2) = Id, C(k) = − 1

2(1− 4A)
(B(k))⊤B(k), D = (1− 4A)d/4

(20)
for k ∈ {1, 2}. And the variance expression (9) for all x,y ∈ Rd transforms into512

VarνADEf
(1)
ADE(ω,x)f

(2)
ADE(ω,y) = D4(1− 8A)−d/2 exp

(
2x⊤

(
C(1) +

1

1− 8A
(B(1))⊤B(1)

)
x

+2y⊤
(
C(2) +

1

1− 8A
(B(2))⊤B(2)

)
y +

4

1− 8A
x⊤(B(1))⊤B(2)y

)
−K(0)(x,y)2.

We express C(k) through A,B(k) and D through A using (20) in the equation above:513

VarνADEf
(1)
ADE(ω,x)f

(2)
ADE(ω,y) =

(
1− 4A√
1− 8A

)d

exp

((
2

1− 8A
− 1

1− 4A

)
x⊤(B(1))⊤B(1)x

+

(
2

1− 8A
− 1

1− 4A

)
y⊤(B(2))⊤B(2)y +

4

1− 8A
x⊤(B(1))⊤B(2)y

)
−K(0)(x,y)2.

Since 1
1−4A (B(1))⊤B(2) is a full-rank matrix Id (20), both B(1) and B(2) are full-rank. Hence, we514

can express B(2) = (1− 4A)(B(1))−⊤. Also, note that515

2

1− 8A
− 1

1− 4A
=

2− 8A− 1 + 8A

(1− 8A)(1− 4A)
= (1− 8A)−1(1− 4A)−1.

We rewrite the expression for the variance using the identity above and the formula for B(2):516

VarνADE
f
(1)
ADE(ω,x)f

(2)
ADE(ω,y) =

(
1− 4A√
1− 8A

)d

exp

(
(1− 8A)−1(1− 4A)−1x⊤(B(1))⊤B(1)x

+(1− 8A)−1(1− 4A)y⊤((B(1))⊤B(1))−1y + 4(1− 8A)−1(1− 4A)x⊤y

)
−K(0)(x,y)2.

We use the expression above to rewrite (8) for ⟨ν, f (1), f (2)⟩ = ⟨νADE, f
(1)
ADE, f

(2)
ADE⟩ as follows:517

L(θADE;X ,Y, TADE) = L−2
∑

1≤i,j≤L

log(VarνADEf
(1)
ADE(ω,x(i))f

(2)
ADE(ω,y(j)) +K(0)(x(i),y(j)))

= d log(1− 4A)− d

2
log(1− 8A) + (1− 8A)−1(1− 4A)−1L−1

L∑
i=1

(x(i))⊤(B(1))⊤B(1)x(i)

+(1− 8A)−1(1− 4A)L−1
L∑

j=1

(y(j))⊤(B(1))−1(B(1))−⊤y(j)
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+4(1− 8A)−1(1− 4A)L−2
∑

1≤i,j≤L

(x(i))⊤y(j). (21)

Denote E = (B(1))⊤B(1). Then (21) becomes:518

L(θADE;X ,Y, TADE) = d log(1− 4A)− d

2
log(1− 8A)

+(1− 8A)−1(1− 4A)−1L−1
L∑

i=1

(x(i))⊤Ex(i)

+(1− 8A)−1(1− 4A)L−1
L∑

j=1

(y(j))⊤E−1y(j) + 4(1− 8A)−1(1− 4A)L−2
∑

1≤i,j≤L

(x(i))⊤y(j).

(22)

We next prove the following lemma:519

Lemma A.2. Let B(1)∗ =
√
1− 4AΣ1/2U⊤(Λ(1))−1/2(Q(1))⊤. When A (8A < 1) is fixed,520

E = E∗ = (B(1)∗)⊤B(1)∗ minimizes the right hand side of (22) with respect to E.521

Proof. We have:522

L−1
L∑

i=1

(x(i))⊤Ex(i) = L−1
L∑

i=1

Trace((x(i))⊤Ex(i)) = L−1
L∑

i=1

Trace(Ex(i)(x(i))⊤)

= Trace

(
E

(
L−1

L∑
i=1

x(i)(x(i))⊤

))
= Trace(EM(1))

where we use the cyclic property of trace Trace(·) and linearity of trace. Analogously, we obtain523

L−1
∑L

j=1(y
(j))⊤E−1y(j) = Trace(E−1M(2)). Assuming that A is fixed, optimization of (22)524

with respect to E reduces to the following minimization problem:525

min
E∈Sd,E≻0

F(E) = β1Trace(EM(1)) + β2Trace(E
−1M(2)) (23)

where β1 = (1− 8A)−1(1− 4A)−1, β2 = (1− 8A)−1(1− 4A) and the constraint E ∈ Sd,E ≻ 0526

follows from the fact that E = (B(1))⊤B(1) and E is invertible. We have 1 − 8A > 0 and527

1− 4A = (1− 8A)/2+1/2 > 0. Hence, β1, β2 > 0. For any E ≻ 0 and any ∆ ∈ Sd there is t ∈ R528

small enough such that E+ tB is invertible and the following Neumann series is convergent:529

(E+ t∆)−1 = E−1(Id + t∆E−1)−1 =

∞∑
l=0

(−t)lE−1(∆E−1)l

We further deduce:530

Trace((E+ t∆)−1M(2)) = Trace

(( ∞∑
l=0

(−t)lE−1(∆E−1)l

)
M(2)

)
=

=

∞∑
l=0

(−t)lTrace
(
E−1(∆E−1)lM(2)

)
and, therefore,531

F(E+ t∆) = β1Trace((E+ t∆)M(1)) + β2

∞∑
l=0

(−t)lTrace
(
E−1(∆E−1)lM(2)

)
= β1Trace(EM(1)) + tβ1Trace(∆M(1)) + β2

∞∑
l=0

(−t)lTrace
(
E−1(∆E−1)lM(2)

)
. (24)
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Further, we have:532

∂

∂t
F(E+ t∆) = β1Trace(∆M(1)) + β2

∞∑
l=1

(−1)lltl−1Trace
(
E−1(∆E−1)lM(2)

)
,

∂2

(∂t)2
F(E+ t∆) = β2

∞∑
l=2

(−1)ll(l − 1)tl−2Trace
(
E−1(∆E−1)lM(2)

)
,

∂2

(∂t)2
F(E+ t∆)

∣∣∣∣
t=0

= 2β2Trace
(
E−1∆E−1∆E−1M(2)

)
. (25)

We replace M(2) = Q(2)(Λ(2))1/2(Λ(2))1/2(Q(2))⊤ and apply the cyclic property of trace in (25):533

∂2

(∂t)2
F(E+ t∆)

∣∣∣∣
t=0

= 2β2Trace
(
(Λ(2))1/2(Q(2))⊤E−1∆E−1∆E−1Q(2)(Λ(2))1/2

)
= 2β2Trace

(
TE−1T⊤)

where T = (Λ(2))1/2(Q(2))⊤E−1∆. Since E is positive definite, E−1 is also positive definite and534

TE−1T⊤ is at least positive semidefinite. Hence, Trace
(
TE−1T⊤) ≥ 0 and also ∂2

(∂t)2F(E +535

t∆)|t=0 ≥ 0. We conclude that F(E) is a convex function on {E ∈ Sd |E ≻ 0}. Since {E ∈536

Sd |E ≻ 0} is an open set, (every) global minimum E of (23) satisfies two conditions537

1) E ≻ 0, and 2) ∇F(E) = 0d×d (26)

Set t = 1 and assume that ∆ ∈ Sd is small enough by norm so that E + ∆ is invertible and the538

Neumann series for (Id +∆E−1)−1 is convergent. Then, (24) holds for t = 1:539

F(E+∆) = β1Trace(EM(1)) + β1Trace(∆M(1)) + β2

∞∑
l=0

(−1)lTrace
(
E−1(∆E−1)lM(2)

)
= F(E) + β1Trace(∆M(1)) + β2

∞∑
l=1

(−1)lTrace
(
E−1(∆E−1)lM(2)

)
= F(E) + β1Trace(∆M(1))− β2Trace

(
E−1∆E−1M(2)

)
+β2

∞∑
l=2

(−1)lTrace
(
E−1(∆E−1)lM(2)

)
.

Clearly, β2

∑∞
l=2(−1)lTrace

(
E−1(∆E−1)lM(2)

)
= o(∥∆∥) where ∥ · ∥ is an L2-norm. Also,540

using the cyclic property of trace, we get:541

Trace
(
E−1∆E−1M(2)

)
= Trace

(
∆E−1M(2)E−1

)
.

Therefore, we have:542

F(E+∆) = Trace
(
∆
(
β1M

(1) − β2E
−1M(2)E−1

))
+ o(∥∆∥). (27)

Since ∆,E−1,M(1),M(2) ∈ Sd, from (27) it follows that543

∇F(E) = β1M
(1) − β2E

−1M(2)E−1. (28)

Let E∗ = (B(1)∗)⊤B(1)∗ ⪰ 0. Note that544

4

√
β2

β1
= 4

√
(1− 8A)−1(1− 4A)

(1− 8A)−1(1− 4A)−1
=

√
1− 4A.

Since
√
β2/β1 ̸= 0, Σ, U, Λ−1/2, Q(1) are full-rank, E∗ is also full-rank, therefore E∗ ≻ 0 and it545

satisfies condition 1 from (26). Observe that546

E∗Q(1)(Λ(1))1/2 =
√
β2/β1Q

(1)(Λ(1))−1/2UΣU⊤(Λ(1))−1/2(Q(1))⊤Q(1)(Λ(1))1/2
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=
√
β2/β1Q

(1)(Λ(1))−1/2UΣU⊤

=
√
β2/β1Q

(1)(Λ(1))−1/2(UΣV⊤)VU⊤

=
√
β2/β1Q

(1)(Λ(1))−1/2((Λ(1))
1
2 (Q(1))⊤Q(2)(Λ(2))

1
2 )VU⊤

=
√
β2/β1Q

(2)(Λ(2))1/2VU⊤

where we use definitions of E∗, U, Σ, V and orthogonality of Q(1),Q(2),U,V. Hence, we deduce547

that548

β1E
∗M(1)E∗ = β1E

∗Q(1)(Λ(1))1/2
(
(Λ(1))1/2(Q(1))⊤E∗

)
(29)

= β1
β2

β1
Q(2)(Λ(2))1/2

(
(Λ(2))1/2(Q(2))⊤

)
= β2M

(2) (30)

by the definition of Q(1), Λ(1), Q(2), Λ(2) and due to orthogonality of V, U. By left- and right-549

multiplication of (30) by (E∗)−1 we deduce that550

β1M
(1) = β2(E

∗)−1M(2)(E∗)−1

or, in other words, ∇F(E∗) = 0d×d and the condition 2 from (26) is also satisfied. We conclude that551

the global minimum of (23) is achieved at E∗.552

According to Lemma A.2, B(1) = B(1)∗ is a global minimum of (21)’s right hand side when A is553

fixed. Indeed, if there is B(1) which leads to a smaller value of (21), E = (B(1))⊤B(1) would lead554

to a smaller value of (22)’s right hand side. Also, this E is positive definite by definition (note that555

B(1) is nonsingular), leading to contradiction with Lemma A.2.556

Substituting E∗ instead of E in (22) corresponds to the minimum value of L(θAGE;α,X ,Y, TAGE)557

for a fixed A. Our next step is to minimize this expression with respect to A. Denote F =558

Q(1)(Λ(1))−1/2UΣU⊤(Λ(1))−1/2(Q(1))⊤. Then E∗ = (1− 4A)F where F doesn’t depend on A.559

We substitute E∗ into (22) and get:560

d log(1− 4A)− d

2
log(1− 8A) + (1− 8A)−1(1− 4A)−1Trace((1− 4A)FM(1))

+(1− 8A)−1(1− 4A)Trace((1− 4A)−1F−1M(2))

+4(1− 8A)−1(1− 4A)L−2
∑

1≤i,j≤L

(x(i))⊤y(j)

= d log(1− 4A)− d

2
log(1− 8A) + (1− 8A)−1Trace(FM(1)) + (1− 8A)−1Trace(F−1M(2))

+2
(
1 + (1− 8A)−1

)
dµ(3) (31)

where we also replace561

L−2
∑

1≤i,j≤L

(x(i))⊤y(j) = L−2

(
L∑

i=1

x(i)

)⊤ L∑
j=1

y(j)

 = dµ(3)

and562

(1− 8A)−1(1− 4A) =
(1− 8A) + 1

2(1− 8A)
=

1

2

(
1 + (1− 8A)−1

)
Based on (30) and since F =

√
β1/β2E

∗, we conclude that FM(1)F = M(2), or M(1)F =563

F−1M(2). Using the cyclic property of trace, we get:564

Trace(FM(1)) = Trace(M(1)F) = Trace(F−1M(2)).

By the definition of F, Λ(1),Q(1) and using the cyclic property and orthogonality of Q(1),U, we565

have:566

Trace(FM(1)) = Trace
(
Q(1)(Λ(1))−1/2UΣU⊤(Λ(1))−1/2Q(1))⊤

(
Q(1)Λ(1)(Q(1))⊤

))
19



= Trace
(
Q(1)(Λ(1))−1/2UΣU⊤(Λ(1))1/2(Q(1))⊤

)
= Trace

(
ΣU⊤(Λ(1))1/2(Q(1))⊤Q(1)(Λ(1))−1/2U

)
= Trace(Σ) =

d∑
l=1

Σl,l.

Hence, (31) finally becomes:567

d log(1− 4A)− d

2
log(1− 8A) + 2(1− 8A)−1

d∑
l=1

Σl,l + 2
(
1 + (1− 8A)−1

)
dµ(3)

= d

(
log(1− 4A)− 1

2
log(1− 8A) + 2(1− 8A)−1

(
d−1

d∑
l=1

Σl,l + µ(3)

)
+ 2µ(3)

)
. (32)

Next, we use Lemma A.1 (ϕ = d−1
∑d

l=1 Σl,l + µ(3) ≥ 0) for deriving expression for A which568

minimizes (32). This expression coincides with the one in Theorem’s statement. The expressions569

for B(2),C(1),C(2) follow directly from (20), optimal B(1) = B(1)∗ and A. (10) follows from (32).570

The proof is concluded.571

A.4 Proof of Theorem 4.3572

Proof. With B(1) = B(2) = B and C(1) = C(2) = C, the conditions from Theorem 4.1 read as573

8A ≺ Id, B⊤(Id−4A)−1B = Id, C = −1

2
B⊤(Id−4A)−1B = −1

2
Id, D = det(Id−4A)1/4.

(33)
Denote Q = (Id − 4A)−1/2B ∈ Rd×d. Then, according to (33), Q⊤Q = Id, that is Q ∈ Od. We574

rewrite (9) using (33) and then substitute B = (Id − 4A)1/2Q:575

VarνSDE
f
(1)
SDE(ω,x)f

(2)
SDE(ω,y) = det(Id − 4A) det(Id − 8A)−1/2 exp

(
−∥x∥2

+2x⊤B⊤(Id − 8A)−1Bx− ∥y∥2 + 2y⊤B⊤(Id − 8A)−1By + 4x⊤B⊤(Id − 8A)−1By

)
−K(0)(x,y)2 = det(Id − 4A)1/4 det(Id − 8A)−1/2 exp

(
−∥x∥2 − 2x⊤Q⊤EQx− ∥y∥2

−2y⊤Q⊤EQy − 4x⊤Q⊤EQy

)
−K(0)(x,y)2 (34)

where we denote:576

E = −(Id − 4A)1/2(Id − 8A)−1(Id − 4A)1/2 = −(Id − 4A)(Id − 8A)−1

= −1

2
((Id − 8A) + Id) (Id − 8A)−1 = −1

2
Id −

1

2
(Id − 8A)−1 (35)

which is in Dd since A ∈ Dd. Next, we observe:577

2x⊤Q⊤EQx+ 2y⊤Q⊤EQy + 4x⊤Q⊤EQy = 2(x+ y)⊤Q⊤EQ(x+ y)

We plug this into (34) and use the resulting expression to rewrite (8) for ⟨ν, f (1), f (2)⟩ =578

⟨νSDE, f
(1)
SDE, f

(2)
SDE⟩ as follows:579

L(θSDE;X ,Y, TSDE) = L−2
∑

1≤i,j≤L

log(VarνSDE
f
(1)
SDE(ω,x(i))f

(2)
SDE(ω,y(j)) +K(0)(x(i),y(j)))

= log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

−2L−2
∑

1≤i,j≤L

(x(i) + y(j))⊤Q⊤EQ(x(i) + y(j)). (36)
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Using linearity and cyclic property of trace, we deduce that580

L−2
∑

1≤i,j≤L

(x(i) + y(j))⊤Q⊤EQ(x(i) + y(j)) =

= L−2
∑

1≤i,j≤L

Trace
(
(x(i) + y(j))⊤Q⊤EQ(x(i) + y(j))

)
= L−2

∑
1≤i,j≤L

Trace
(
Q⊤EQ(x(i) + y(j))(x(i) + y(j))⊤

)

= Trace

Q⊤EQ

L−2
∑

1≤i,j≤L

(x(i) + y(j))(x(i) + y(j))⊤


Observe that581

L−2
∑

1≤i,j≤L

(x(i) + y(j))(x(i) + y(j))⊤ =

= L−2
∑

1≤i,j≤L

(
x(i)(x(i))⊤ + x(i)(y(j))⊤ + y(j)(x(i))⊤ + y(j)(x(j))⊤

)

= L−1
L∑

i=1

x(i)(x(i))⊤ +

(
L−1

L∑
i=1

x(i)

)L−1
L∑

j=1

y(j)

⊤

+

L−1
L∑

j=1

y(j)

(L−1
L∑

i=1

x(i)

)⊤

+L−1
L∑

j=1

y(j)(y(j))⊤ = M(1) + µ(4)(µ(5))⊤ + µ(5)(µ(4))⊤ +M(2).

Denote N = M(1) + µ(4)(µ(5))⊤ + µ(5)(µ(4))⊤ +M(2). We conclude that582

L(θSDE;X ,Y, TSDE) = log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2

−L−1
L∑

j=1

∥y(j)∥2 − 2Trace
(
Q⊤EQN

)
. (37)

With A fixed, we minimize the right hand side of (37) with respect to Q which is equivalent583

to minimizing L(θSDE;X ,Y, TSDE) with respect to B with fixed A, since there is a one-to-one584

correspondence between B and Q. This is equivalent to maximizing, again using the cyclic property585

of trace,586

Trace
(
Q⊤EQN

)
= Trace

(
EQNQ⊤) (38)

with respect to Q. We prove the following lemma first:587

Lemma A.3. Suppose that diagonal entries of E are all distinct, and the same holds for Λ(3). Let588

Π ∈ {0, 1}d×d be a permutation matrix sorting diagonal entries of E (i.e. by applying ΠEΠ⊤) in a589

descending order corresponding to a permutation π ∈ Nd. Set Q∗ = Π⊤(Q(3))⊤ ∈ Od. Then we590

have:591

Trace
(
EQ∗N(Q∗)⊤

)
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l (39)

= sup
Q∈Od

Trace
(
EQNQ⊤) (40)

Proof. First of all, we have:592

Trace
(
EQ∗N(Q∗)⊤

)
= Trace

(
EΠ⊤(Q(3))⊤NQ(3)Π

)
= Trace

(
EΠ⊤Λ(3)Π

)
(41)
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= Trace
(
ΠEΠ⊤Λ(3)

)
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l , (42)

i.e. (39) is satisfied.593

Optimization for finding supQ∈Od
Trace

(
EQNQ⊤) is a well-studied problem [8]. By the definition,594

Λ(3) has eigenvalues of N on the main diagonal and E ∈ Dd hence it contains its eigenvalues on its595

main diagonal. Then, as proven in [8], Q∗ is indeed a global maximum of this problem in the case of596

distinct eigenvalues for E and N. That is, (40) is proven.597

Next, we prove a generalization of Lemma A.3 when diagonal entries of E and Λ(3) are not necessarily598

distinct:599

Lemma A.4. Let Π ∈ {0, 1}d×d be a permutation matrix sorting diagonal entries of E (i.e. by600

applying ΠEΠ⊤) in any non-ascending order corresponding to a permutation π ∈ Nd. Set601

Q∗ = Π⊤(Q(3))⊤ ∈ Od. Then we have:602

Trace
(
EQ∗N(Q∗)⊤

)
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l (43)

= sup
Q∈Od

Trace
(
EQNQ⊤) (44)

Proof. In the same way as (41-42), we show that Trace
(
EQ∗N(Q∗)⊤

)
=
∑d

l=1 Eπl,πl
Λ

(3)
l,l , i.e.603

(43) is satisfied. Next we prove that for any Q ∈ Od,604

Trace
(
EQNQ⊤) ≤ d∑

l=1

Eπl,πl
Λ

(3)
l,l . (45)

which would imply (44).605

Our proof is by contradiction. First of all, we can assume that E,Λ(3) are nonzero matrices since606

otherwise we have (44) trivially. Since Trace
(
EQNQ⊤) is a continuous function of Q and Od is607

compact, supQ∈Od
Trace

(
EQNQ⊤) is finite. Suppose that there is δ > 0 such that608

δ = sup
Q∈Od

Trace
(
EQNQ⊤)− d∑

l=1

Eπl,πl
Λ

(3)
l,l . (46)

Let Ẽ, Λ̃
(3)

∈ Dd be matrices with all distinct values on the diagonal such that609

∥Ẽ−E∥F ≤ min

(
∥E∥F,

δ

12∥Λ(3)∥F

)
, ∥Λ̃

(3)
−Λ(3)∥F ≤ δ

12∥E∥F
(47)

where ∥ · ∥F denotes Frobenius norm and ∥E∥F, ∥Λ(3)∥F ̸= 0 since these are nonzero matrices.610

Further, we assume that diagonal entries of Λ̃
(3)

are sorted in a descending order and, in addition611

to Λ(3), π also sorts entries of Ẽ in a non-ascending (descending) order. Clearly, such Ẽ, Λ̃
(3)

can612

be obtained by small perturbations of E, Λ(3). Also, denote Ñ = Q(3)Λ̃
(3)

(Q(3))⊤. Since Od is613

a compact closed set and Trace
(
EQNQ⊤) is a continuous function of Q, there exists Q∗∗ ∈ Od614

such that615

Trace
(
EQ∗∗N(Q∗∗)⊤

)
= sup

Q∈Od

Trace
(
EQNQ⊤) . (48)

By the definition of Ẽ, Λ̃
(3)

, Ñ, we have:616

Trace
(
EQ∗∗N(Q∗∗)⊤

)
− Trace

(
ẼQ∗∗Ñ(Q∗∗)⊤

)
=
(
Trace

(
EQ∗∗N(Q∗∗)⊤

)
− Trace

(
EQ∗∗Ñ(Q∗∗)⊤

))
+
(
Trace

(
EQ∗∗Ñ(Q∗∗)⊤

)
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−Trace
(
ẼQ∗∗Ñ(Q∗∗)⊤

)
= Trace

(
EQ∗∗

(
N− Ñ

)
(Q∗∗)⊤

)
+Trace

((
E− Ẽ

)
Q∗∗Ñ(Q∗∗)⊤

)
.

Next, we apply Cauchy-Schwarz inequality to both terms:617

Trace
(
EQ∗∗

(
N− Ñ

)
(Q∗∗)⊤

)
≤ ∥(Q∗∗)⊤E∥F∥(N− Ñ)(Q∗∗)⊤∥F = ∥E∥F∥N− Ñ∥F,

Trace
((

E− Ẽ
)
Q∗∗Ñ(Q∗∗)⊤

)
≤ ∥(Q∗∗)⊤(E− Ẽ)∥F∥Ñ(Q∗∗)⊤∥F = ∥E− Ẽ∥F∥Ñ∥F

where we use invariance of the Frobenius norm under multiplications by orthogonal matrices. Using618

this invariance again, we deduce that619

∥N− Ñ∥F = ∥Q(3)(Λ(3) − Λ̃
(3)

)(Q(3))⊤∥F = ∥Λ(3) − Λ̃
(3)

∥F,

∥Ñ∥F = ∥Q(3)Λ̃
(3)

(Q(3))⊤∥F = ∥Λ̃
(3)

∥F.
We conclude that620

Trace
(
EQ∗∗N(Q∗∗)⊤

)
≤ Trace

(
ẼQ∗∗Ñ(Q∗∗)⊤

)
+∥E∥F∥Λ(3)−Λ̃

(3)
∥F+∥E−Ẽ∥F∥Λ̃

(3)
∥F.

(49)

Next, we apply Lemma A.3 to E = Ê, Λ(3) = Λ̂
(3)

and deduce that621

Trace
(
ẼQ∗∗Ñ(Q∗∗)⊤

)
≤

d∑
l=1

Ẽπl,πl
Λ̃

(3)

l,l =

d∑
l=1

(
Eπl,πl

Λ
(3)
l,l +

(
Ẽπl,πl

−Eπl,πl

)
Λ

(3)
l,l

+Ẽπl,πl

(
Λ̃

(3)

l,l −Λ
(3)
l,l

))
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l +

d∑
l=1

(
Ẽπl,πl

−Eπl,πl

)
Λ

(3)
l,l +

d∑
l=1

Ẽπl,πl

(
Λ̃

(3)

l,l −Λ
(3)
l,l

)

=

d∑
l=1

Eπl,πl
Λ

(3)
l,l +Trace

(
Π(Ẽ−E)Π⊤Λ̃

(3)
)
+Trace

(
ΠẼΠ⊤(Λ̃

(3)
−Λ(3))

)
.

We apply Cauchy-Schwarz inequality again to the second and the third term:622

Trace

(
Π(Ẽ−E)Π⊤Λ̃

(3)
)

≤ ∥(Ẽ−E)Π⊤∥F∥Π⊤Λ̃
(3)

∥F = ∥Ẽ−E∥F∥Λ̃
(3)

∥F,

Trace

(
ΠẼΠ⊤(Λ̃

(3)
−Λ(3))

)
≤ ∥ẼΠ⊤∥F∥Π⊤(Λ̃

(3)
−Λ(3))∥F = ∥Ẽ∥F∥Λ̃

(3)
−Λ(3)∥F

where we use invariance of the Frobenius norm under column and row permutations. We conclude623

that624

Trace
(
ẼQ∗∗Ñ(Q∗∗)⊤

)
≤

d∑
l=1

Eπl,πl
Λ

(3)
l,l + ∥Ẽ−E∥F∥Λ̃

(3)
∥F + ∥Ẽ∥F∥Λ̃

(3)
−Λ(3)∥F.

We combine this inequality with (49) and obtain:625

Trace
(
EQ∗∗N(Q∗∗)⊤

)
≤

d∑
l=1

Eπl,πl
Λ

(3)
l,l +2∥E∥F∥Λ(3)−Λ̃

(3)
∥F+2∥E− Ẽ∥F∥Λ̃

(3)
∥F. (50)

Next, we use triangle inequality and deduce that626

∥Λ̃
(3)

∥F ≤ ∥Λ(3)∥F + ∥Λ̃
(3)

−Λ(3)∥F.
Hence, we continue (50):627

Trace
(
EQ∗∗N(Q∗∗)⊤

)
≤

d∑
l=1

Eπl,πl
Λ

(3)
l,l + 2∥E∥F∥Λ(3)
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−Λ̃
(3)

∥F + 2∥E− Ẽ∥F
(
∥Λ(3)∥F + ∥Λ̃

(3)
−Λ(3)∥F

)
=

d∑
l=1

Eπl,πl
Λ

(3)
l,l + 2∥E∥F∥Λ(3) − Λ̃

(3)
∥F + 2∥Λ(3)∥F∥E− Ẽ∥F + 2∥E− Ẽ∥F∥Λ̃

(3)
−Λ(3)∥F

≤
d∑

l=1

Eπl,πl
Λ

(3)
l,l + 2∥E∥F∥Λ(3) − Λ̃

(3)
∥F + 2∥Λ(3)∥F∥E− Ẽ∥F + 2∥E∥F∥Λ̃

(3)
−Λ(3)∥F

where in the last transition we use ∥E− Ẽ∥F ≤ ∥E∥F which is according to (47). We continue this628

chain of inequalities using (47) again:629

Trace
(
EQ∗∗N(Q∗∗)⊤

)
≤

d∑
l=1

Eπl,πl
Λ

(3)
l,l +

2

12
δ +

2

12
δ +

2

12
δ =

d∑
l=1

Eπl,πl
Λ

(3)
l,l +

δ

2

<

d∑
l=1

Eπl,πl
Λ

(3)
l,l + δ.

This is a contradiction with (46) taking into account Q∗∗’s definition (48). Hence, (44) is proven.630

Let Q∗ be defined as in Lemma A.4’s statement. Further, we denote π(A) = π, Π(A) = Π where631

π,Π are defined as in Lemma A.4’s statement. That is, π(A) denotes some permutation which sorts632

diagonal entries of E in a non-ascending order. It’s a function of A since E is a function of A defined633

in (35). In fact, based on (35), we see that π(A) is some permutation which sorts diagonal entries of634

A in a non-descending order. Π(A) denotes a permutation matrix corresponding to π(A). That is,635

diagonal entries of Π(A)AΠ(A)⊤ are sorted in a non-descending order.636

Let G(A) denote the right hand side of (37) where we substitute Q = Q∗. That is, G(A) is an637

optimal value of L(θSDE;X ,Y, TSDE) with A fixed:638

G(A) = log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

− 2

d∑
l=1

Eπ(A)l,π(A)lΛ
(3)
l,l

= log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8Aπ(A)l,π(A)l)

−1
)
Λ

(3)
l,l (51)

where we use E’s definition (35). Let π−1(A) ∈ Nd denote a permutation inverse to π(A). By639

rearranging terms in the sum, we have:640

d∑
l=1

(
1 + (1− 8Aπ(A)l,π(A)l)

−1
)
Λ

(3)
l,l =

d∑
l=1

(
1 + (1− 8Al,l)

−1
)
Λ

(3)
π−1(A)l,π−1(A)l

.

Therefore, we have:641

G(A) = log det(Id − 4A)− 1

2
log det(Id − 8A)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8Al,l)

−1
)
Λ

(3)
π−1(A)l,π−1(A)l

. (52)
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Define a new function G(Â,A), where Â ∈ Dd satisfies 8Â ≺ Id, as follows:642

G(Â,A) = log det(Id − 4Â)− 1

2
log det(Id − 8Â) +

d∑
l=1

(1− 8Âl,l)
−1Λ

(3)
π−1(A)l,π−1(A)l

.

By the definition of G(Â,A), we have:643

G(A) = G(A,A)− L−1
L∑

i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2 +
d∑

l=1

Λ
(3)
π−1(A)l,π−1(A)l

.

Hence, it holds:644

G(A) ≥ inf
Â∈Dd, 8Â≺Id

G(Â,A)−L−1
L∑

i=1

∥x(i)∥2−L−1
L∑

j=1

∥y(j)∥2+
d∑

l=1

Λ
(3)
π−1(A)l,π−1(A)l

. (53)

Next, we show that there is a closed-form expression for the solution of infÂ∈Dd, 8Â≺Id
G(Â,A).645

Since Â ∈ Dd, we have: log det(Id − 4Â) =
∑d

l=1 log(1 − 4Âl,l), log det(Id − 8Â) =646 ∑d
l=1 log(1− 8Âl,l). We further have:647

G(Â,A) =

d∑
l=1

(
log(1− 4Âl,l)−

1

2
log(1− 8Âl,l) + (1− 8Âl,l)

−1Λ
(3)
π−1(A)l,π−1(A)l

)
. (54)

From (54), we see that minimization infÂ∈Dd, 8Â≺Id
G(Â,A) reduces to d independent minimization648

problems with respect to Âl,l such that 8Âl,l < 1. l’th problem, 1 ≤ l ≤ d, is solved using Lemma649

A.1 where we set ϕ = Λ
(3)
π−1(A)l,π−1(A)l

. Let A∗∗ ∈ Dd denote the corresponding solution. Then,650

for all 1 ≤ l ≤ d, we have:651

A∗∗
l,l =

1

16

(
1− 2Λ

(3)
π−1(A)l,π−1(A)l

−
√(

2Λ
(3)
π−1(A)l,π−1(A)l

+ 1
)2

+ 8Λ
(3)
π−1(A)l,π−1(A)l

)
.

(55)

From (53) it follows that652

G(A) ≥ G(A∗∗,A)− L−1
L∑

i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2 +
d∑

l=1

Λ
(3)
π−1(A)l,π−1(A)l

= log det(Id − 4A∗∗)− 1

2
log det(Id − 8A∗∗)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8A∗∗

l,l )
−1
)
Λ

(3)
π−1(A)l,π−1(A)l

. (56)

Denote E∗∗ = − 1
2Id −

1
2 (Id − 8A∗∗)−1. Then we have:653

d∑
l=1

(
1 + (1− 8A∗∗

l,l )
−1
)
Λ

(3)
π−1(A)l,π−1(A)l

= −2Trace
(
E∗∗Π(A)−1Λ(3)

(
Π(A)−1

)⊤)
≤ −2

d∑
l=1

E∗∗
π(A∗∗)l,π(A∗∗)l

Λ
(3)
l,l (57)

where the second transition follows from Lemma A.4 and the fact that π(A∗∗) sorts diagonal654

entries of A∗∗ in a non-descending order, hence its sorts diagonal entries of E∗∗ in a non-ascending655

order (recall the definition of π(A∗∗) and E∗∗). Denote E∗ = Π(A∗∗)E∗∗Π(A∗∗)⊤. Then656

E∗∗
π(A∗∗)l,π(A∗∗)l

= E∗
l,l for all 1 ≤ l ≤ d and657

d∑
l=1

E∗∗
π(A∗∗)l,π(A∗∗)l

Λ
(3)
l,l =

d∑
l=1

E∗
l,lΛ

(3)
l,l . (58)
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Further, we have:658

E∗ = Π(A∗∗)

(
−1

2
Id −

1

2
(Id − 8A∗∗)−1

)
Π(A∗∗)⊤

= −1

2
Id −

1

2
(Id − 8Π(A∗∗)A∗∗Π(A∗∗)⊤)−1

= −1

2
Id −

1

2
(Id − 8A∗)−1

where we denote A∗ = Π(A∗∗)A∗∗Π(A∗∗)⊤, i.e. A∗
l,l = A∗∗

π(A∗∗)l,π(A∗∗)l
for all 1 ≤ l ≤ d.659

Given the definition of A∗∗ (55), for all 1 ≤ l ≤ d we have:660

A∗
l,l =

1

16

(
1− 2Λ

(3)
l,l −

√(
2Λ

(3)
l,l + 1

)2
+ 8Λ

(3)
l,l

)
. (59)

That is, A∗ is independent of A. Based on (59), we see that smaller values of Λ
(3)
l,l result in661

bigger values of A∗
l,l. Since Λ

(3)
1,1, . . . ,Λ

(3)
d,d are ordered in a non-ascending order, we deduce that662

A∗
1,1, . . . ,A

∗
d,d are ordered in a non-descending order. By the definition of π(A∗), we then have663

A∗
l,l = A∗

π(A∗)l,π(A∗)l
for all 1 ≤ l ≤ d. Therefore,664

d∑
l=1

E∗
l,lΛ

(3)
l,l = −1

2

d∑
l=1

(1 + (1− 8A∗
l,l)

−1)Λ
(3)
l,l = −1

2

d∑
l=1

(1 + (1− 8A∗
π(A∗)l,π(A∗)l

)−1)Λ
(3)
l,l .

Combining this with (58), (57), we can continue the chain of inequalities (56):665

G(A) ≥ log det(Id − 4A∗∗)− 1

2
log det(Id − 8A∗∗)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8A∗

π(A∗)l,π(A∗)l
)−1
)
Λ

(3)
l,l

= log det(Id − 4A∗)− 1

2
log det(Id − 8A∗)− L−1

L∑
i=1

∥x(i)∥2 − L−1
L∑

j=1

∥y(j)∥2

+

d∑
l=1

(
1 + (1− 8A∗

π(A∗)l,π(A∗)l
)−1
)
Λ

(3)
l,l = G(A∗) (60)

where in the second transition we use the fact that666

det(Id − 4A∗) = det
(
Π(A∗∗)(Id − 4A∗∗)Π(A∗∗)⊤

)
= det (Id − 4A∗∗)

and, similarly, det(Id − 8A∗) = det (Id − 8A∗∗). In the third transition, we use definition of667

G(·) (51). Note that (60) holds for all A ∈ Dd such that 8A ≺ Id and also 8A∗ ≺ Id since668

8A∗∗ ≺ Id. We conclude that, when B,C, D are chosen optimally with a given A, the minimum669

of L(θSDE;X ,Y, TSDE) is reached when A = A∗. As we have already deduced, diagonal entries670

of A = A∗ are sorted in the non-descending order. Hence, using Lemma A.4’s notation, diagonal671

entries of E are already sorted in a non-ascending sorting order and π = (1, . . . , d), Π = Id satisfy672

requirements of the Lemma. Hence, with A = A∗, the optimal B has a form (Id− 4A)1/2Q∗ where673

Q∗ = Id(Q
(3))⊤ = (Q(3))⊤. Optimal C and D are further determined by (33). (11) follows from674

(60) and the fact that, as discussed above, we can replace π(A∗)l with l in (60), 1 ≤ l ≤ d.675

B Additional experimental details676

B.1 Compute resources and implementation677

We use NumPy [24] in Google Colaboratory the variance comparison and kernel classification678

experiment. For the Transformer setups, we use TPU cluster and JAX [7] library. All tested679

Transformer variants were trained and tested on a TPU pods containing 4 TPU v3 chips with JAX680

and on GPUs (V100).681
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https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#:~:text=TPU%20v3%20configurations%20provide%20significant,bound%20on%20TPU%20v3%20configurations.
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html


B.2 Variance comparison682

We repeat the setup of [30] closely: we draw 5 pairs of sets {x(i)}1≤i≤L, {y(j)}1≤j≤L, L = 1024.683

On each pair, we compute the relative variance for all pairs of points and for all indicated RF methods.684

Further, the shifted log-variance is optimized separately on each pair of sets for GERF, ADERF and685

SDERF.686

We take M = 1 since M ’s value is not important in this experiment: bigger M would just shift the687

curves below. The reported curves are means over all pairs of points and over all 5 sets.688

B.3 Kernel classification689

As in [30], we obtain training, validation and test splits by shuffling the raw dataset and taking 90%,690

5%, 5% objects respectively. The splits are fixed for all RF methods. We tune σ on a logarithmic grid691

of 10 values on [10−2, 102]. For each σ and each RF type, we try 50 seeds for drawing RFs during692

validation and testing. Testing is performed for the best σ only. Figure 3 reports averages over 50693

seeds. We use orthogonal ω’s for all types of RFs as described in [30], since orthogonal random694

features work better in practice [15, 30].695

B.4 DERFs for long-sequence Transformers696

B.4.1 Speech modelling697

Our Conformer-Transducer variant was characterized by: 20 conformer layers, model_dim = 512,698

relative position embedding dimensionality rped = 512 and h = 8 heads. We used batch size699

bs = 2048 and trained with the adam optimizer on TPUs. For the regular Conformer-Transducer700

training, we run ablation studies over different number of random features: m = 8,32,128. In the701

NST setting, we run experiments with m = 8. We reported commonly used metric: normalized word702

error rate (NWER).703

B.4.2 Natural language processing704

We pretrained BERT model on two publicly available datasets (see: Table 3). Following the original705

BERT training, we mask 15% of tokens in these two datasets, and train to predict the mask. All706

methods were warm started from exactly the same pre-trained checkpoint after 1M iteration of BERT707

pretraining. We used the exact same hyperparameter-setup for all the baselines (FAVOR++[30],708

FAVOR+ [15], ELU [25], ReLU [15]) and FAVOR++. The hyperparameters for pretraining are shown709

in Table 2. We finetuned on GLUE task, warm-starting with the weights of the pretrained model. The710

setup is analogous to the one from the original BERT paper.711

Table 2: Hyperparameters for the base models for pre-training for all methods

Parameter Value

# of heads 12
# of hidden layers 12
Hidden layer size 768
# of tokens 512
Batch size 256
M 256
Pretrain Steps 1M
Loss MLM
Activation layer gelu
Dropout prob 0.1
Attention dropout prob 0.1
Optimizer Adam
Learning rate 10−4

Compute resources 8× 8 TPUv3
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Table 3: Dataset used for pre training.

Dataset # tokens Avg. doc len.

Books [52] 1.0B 37K
Wikipedia 3.1B 592
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