
A Architecture and Pseudo Code of BPQL380

Figure 4: BPQL architecture: The agent selects an action using an augmented state, which is obtained
from the temporary buffer, as an input of the policy. At every time t > 2d, a transition tuple
s̄t−d, st−d, at−d, rt−d, s̄t+1−d, st+1−d is stored in the replay memory, and the policy and beta critic
are trained by minimizing Jπ̄ and JQβ

, respectively.

Algorithm 1 Belief-Projection-Based Q-Learning (BPQL)
1: initialize a policy π̄ϕ(a|s̄), beta critics Qθ,β(s, a), target beta critics Qtar

θ,β(s, a), an empty replay
memory D, a temporary buffer B, delayed timesteps d, learning rate for the beta critic λQβ

,
learning rate for the policy λπ̄ , and soft update ratio τ

2: for episode = 1 to E do
3: for t = 1 to H do
4: if t < d then
5: executes action at randomly or ‘No-Op’ action
6: put at to B
7: else if t = d then
8: choose action ad randomly or ‘No-Op’ action
9: s1 ←Env(ad)

10: put s1 and ad to B
11: else
12: get st−d, at−d, . . . , at−1 from B
13: s̄t ← (st−d, at−d, . . . , at−1)
14: at ← πϕ(s̄t)
15: st+1−d, rt−d ←Env(at)
16: put st+1−d and at to B
17: if t > 2d then
18: get st−2d, st−2d+1, st−d, at−2d, . . . , at−d from B
19: s̄t−d ← (st−2d, at−2d, . . . , at−d−1)
20: s̄t−d+1 ← (st−2d+1, at−2d+1, . . . , at−d)
21: store (s̄t−d, st−d, at−d, rt−d, s̄t+1−d, st+1−d) in D
22: pop st−2d, at−2d from B
23: end if
24: end if
25: end for
26: for each gradient step do
27: ω ← ω − λQβ

∇θJQβ
(ω)

28: ϕ← ϕ− λπ̄∇ϕJπ̄(ϕ)
29: ω̄ ← τω + (1− τ)ω̄
30: end for
31: end for

12

B Proof of Proposition 3.2381

Proposition 3.2 Let the projection operator on the column-space of the belief matrix B with respect382

to the weighted Euclidean norm || · ||W be ΠW, where W = [ρπ̄(s̄1), ρ
π̄(s̄2), ..., ρ

π̄(s̄j)] is a steady-383

augmented state probability vector, and the Markov chain be irreducible i,e, ρπ̄(s̄k) > 0 for all384

k ∈ {1, 2, ..., j}. Then the combined operator ΠWT̄π̄ is γ-contraction with respect to || · ||W.385

Proof. Let V1
proj. and V2

proj. be an arbitrary vector in Rj , P̄ π̄(s̄′|s̄) be a transition probability of s̄→ s̄′386

when the agent follow the policy π̄, and V 1,proj.
k , V 2,proj.

k be the k-th element of the V1
proj. and V2

proj.387

respectively.388

||ΠWT̄ π̄V1
proj. −ΠWT̄ π̄V2

proj.||2W (28)

= ||ΠW(T̄ π̄V1
proj. − T̄ π̄V2

proj.)||2W (29)

≤ ||ΠW(T̄ π̄V1
proj. − T̄ π̄V2

proj.)||2W + ||(I−ΠW)(T̄ π̄V1
proj. − T̄ π̄V2

proj.)||2W (30)

= ||T̄ π̄V1
proj. − T̄ π̄V2

proj.||2W (31)

= ||R̄ + γP̄V1
proj. − (R̄ + γP̄V2

proj.)||2W (32)

= γΣj
k=1ρ

π̄(s̄k)
(
Σj

l=1P̄
π̄(s̄l|s̄k)

(
V 1,proj.
l − V 2,proj.

l

))2
(33)

≤ γΣj
k=1ρ

π̄(s̄k)Σ
j
l=1P̄

π̄(s̄l|s̄k)
(
V 1,proj.
l − V 2,proj.

l

)2
(34)

= γΣj
l=1Σ

j
k=1ρ

π̄(s̄k)P̄
π̄(s̄l|s̄k)

(
V 1,proj.
l − V 2,proj.

l

)2
(35)

= γΣj
l=1ρ

π̄(s̄l)
(
V 1,proj.
l − V 2,proj.

l

)2
(36)

∵ Σj
k=1ρ

π̄(s̄k)P̄
π̄(s̄l|s̄k) = ρπ̄(s̄l) by the definition of ρπ̄

= γ||V1
proj. − V2

proj.||2W, (37)

where Equality (31) holds by the Pythagorean Theorem, and Inequality (34) follows from the Jensen’s389

inequality.390

13

C Environment Details391

(a) (b) (c) (d) (e) (f)

Figure 5: MuJoCo continuous control environments in the experiment: (a) HalfCheetah-v3, (b)
Walker2d-v3, (c) Hopper-v3, (d) Swimmer-v3, (e) InvertedPendulum-v2, and (f) Reacher-v2.

Table 2: Details of the MuJoCo environment

Action dimension State dimension Timestep (s)

HalfCheetah-v3 6 17 0.05
Walker2d-v3 6 17 0.008
Hopper-v3 (s) 3 11 0.008
Swimmer-v3 2 6 0.04
InvertedPendulum-v2 1 4 0.04
Reacher-v2 2 11 0.02

D Implementation Details392

In this section, we provide the implementation details of the algorithms used in this study. All393

methods presented in the experiment used an SAC as their base learning algorithm with the following394

characteristics:395

• Stochastic Gaussian policy approaches.396

• Automated entropy adjustment [Haarnoja et al., 2018].397

• Clipped-double Q-learning, which was introduced in the TD3 algorithm to prevent overesti-398

mating the Q-value [Fujimoto et al., 2018].399

• Soft target update, which changes the target values slowly and improves the learning400

stability[Lillicrap et al., 2015].401

• Adam optimizer, a variant of the stochastic gradient descent method [Kingma and Ba, 2014].402

The details of the hyperparameters are presented in Table 3.

Table 3: Hyperparameters for BPQL and the baselines.

Hyperparameters Values

Critic network 256, 256
Policy network 256, 256
Discount factor 0.99
Replay memory size 1 M
Minibatch size 256
Learning rate 0.0003
Target entropy -dim|A|
Target smoothing coefficient 0.995
Optimizer Adam

403

14

E Plots of Performance Comparison404

In this section, we present several plots of the performance curves of BPQL and other baselines in405

the environments with delayed timesteps of 3, 6 and 9.406

Figure 6: Performance curves for each algorithm in continuous tasks with three, six and nine delayed
timesteps.

15

F Additional Experiments407

F.1 Extremely Long Delayed Environment408

We conducted additional experiments to determine how well BPQL could solve the control problem409

even in very long delayed environments. Figure 7 shows that in BPQL, the policy is improved through410

interaction with the environment in a very long delayed environment, but the conventional methods411

find it difficult improve their policy.

Figure 7: HalfCheetah-v3 environment with 20 delayed timesteps (left) and InvertedPendulum-v2
environment with 25 delayed timesteps (right). Each timestep is 0.05 s and 0.04 s for HalfCheetah-v3
and InvertedPendulum-v2 environments, respectively. In the InvertedPendulum-v2 environment,
to prevent early failure, the agent uses a pretrained policy to determine the actions of the first 25
(=number of delayed timesteps) timesteps. We repeated the test for the tasks five times with different
random seeds.

412

F.2 Action delay413

We also evaluated BPQL and other baselines in action delayed environments. Figure 8 illustrates the414

interaction between an agent and action delayed environment.

Figure 8: In an action delayed environment, the environment takes the delayed action at−d instead of
the current action at, where d is the number of delayed timesteps.

415

F.2.1 Augmented State in an Action Delayed Environment416

In an action delayed environment, the augmented state at time t+ d is defined as:417

s̄t+d = (st, at−d, at−d+1, · · · , at−1), (38)

where the d is the number of delayed timesteps for an action. The CDMDP for an action delayed418

environment is defined as a tuple (X ,A, R, P, γ, da), where X is the original state space, A is the419

action space, R : X × A 7→ R is the reward function, P : X × A × X 7→ [0, 1] is the transition420

kernel, γ ∈ (0, 1) is a discount factor, and da is the number of delayed timesteps for an action.421

16

This CDMDP can be reduced to a MDP (S,A, R̄, P̄ , γ), where S = X ×Ada is an augmented state422

space, R̄ : S ×A 7→ R is the reward mapping, and P̄ : S ×A× S 7→ [0, 1] is the transition kernel423

as in the case of observation delayed environments [Katsikopoulos and Engelbrecht, 2003]. BPQL424

for action delayed environments uses the augmented state defined in Equation (38) instead of the one425

defined in Equation (6).426

F.2.2 Results427

Figure 9: Performance curves for each algorithm in continuous tasks with 3 action delayed timesteps.
We repeated the test for the tasks five times with different random seeds.

Figure 10: Performance curves for each algorithm in continuous tasks with 6 action delayed timesteps.
We repeated the test for the tasks five times with different random seeds.

Figure 11: Performance curves for each algorithm in continuous tasks with 9 action delayed timesteps.
We repeated the test for the tasks five times with different random seeds.

17

	Architecture and Pseudo Code of BPQL
	Proof of Proposition 3.2
	Environment Details
	Implementation Details
	Plots of Performance Comparison
	Additional Experiments
	Extremely Long Delayed Environment
	Action delay
	Augmented State in an Action Delayed Environment
	Results

