Appendix

In this Appendix, we provide more implementation details in Section [/} defense against decision-
based DFME in Section [8] more experiment results in Section [0} baseline description in Section[I0]
We then provide math derivation, including Lagrangian duality derivation, Wasserstein gradient flow
for DRO and derivations of the worst-case test data simulation in Section[TT}

7 More Implementation Details

7.1 Teacher Training Details

For LeNet-5 on MNIST, following [51]], we train the target model for 10 epochs. Following [51]], for
ResNet34-8x and GoogLeNet on CIFAR10/100 datasets, we train the target model for 200 epochs.
For epochs less than 80, we set its learning rate to be 0.1, for epoch 80 to 120, we set its learning
rate to be 0.01. For epochs 120 to 200, we set its learning rate to be 0.001. For the score-based
DFME clone model training, we follow the procedure in [S1]. For decision-based DFME clone model
training, we follow the procedure in [47].

7.2 Computing Resources

We use Nvidia-A6000 GPU and Intel(R) Core(TM) 17-9700K CPU @ 3.60GHz to do experiments

8 Defense against decision-based DFME

The representative hard-label DFME methods are DFMS-HL [47]] and ZSDB3KD [54]. In the
following, we briefly describe how our proposed method can defend against those two attack methods.

8.1 Defending against DFMS-HL by Perturbing the Label Prediction

We denote the ground-truth label for the query data x as ¢(«), which is predicted by the teacher
without perturbation. The predicted label by the target victim model with parameters 61 is y(x +
he(x, €)). Suppose the label is wrongly predicted to be y’(x) with the perturbed input, i.e., y'(x) #
y(x). Thus, minimizing the loss L(C(x, ¢¢),y'(x))) would make the attacker learn incorrect
information.

8.2 Brief Introduction of ZSDB3KD

We briefly describe the method in the following. Intuitively, the distance between a training sample
to the teacher’s decision boundary is usually larger than the distance between a randomly generated
noise image to the boundary since the teacher is trained to distinguish the training samples maximally
[54]. The goal of ZSDB3KD is to move the random noise away from the decision boundary gradually.

Suppose the closest point to the point g{ (the random noise with prediction label 72) on the decision
boundary is g7, the data point g is updated as:

q =qp —£VT(q)), (14)

Where ¢ is the step size and VT'(q(}) is the gradient at the decision boundary of the teacher model
via zeroth-order gradient, defined as:

VT(qy) =

sign(qy + dp:) i, (15)
1

m

1
m 4

where sign(qly + dp;) is defined as the following

+1, T(qy + opi) = n;

—1, Otherwise. (16)

sign(qy + o) = {

After a certain amount of iterations, the attacker can obtain a certain amount of pseudo samples from
the target model 7' by the above approach. Then, with the proposed approach in [54] to construct

15

the pseudo data output probabilities based on the sample’s distance to the target model’s decision
boundary. Finally, the attacker will train a clone model based on the generated pseudo samples and
their class probabilities.

8.3 Defending against ZSDB3KD by Disturbing the Zero-Order Gradient Estimation

By adding data-dependent random perturbation, the zeroth-order gradient estimation at the decision
boundary in Eq. (I5) becomes:

VT(qy)= sign(qy +0pi +hew (gl +p:, €) ;. (17)

1 m
m

1=1
Since the synthetic noisy data are often nearer to the decision boundary than real training data [54]],
thus adding data-dependent random perturbation would easily make the prediction to change the
sign function in Eq. (I6) and Eq. (I5). This wrong information would incorrectly update the pseudo
sample in Eq. so that the generated samples are not informative for the attacker to learn a good
clone model.

9 More Experimental Results

9.1 Application on data-based model extraction (DBME) Attack

In this section, we apply our method (MeCo) on data-based model extraction (DBME) attack, where
an attacker can access a small subset of the in-distribution training data [41], or a relevant surrogate
dataset [36] of the target model. MeCo is orthogonal to existing DBME defense methods, we
integrate MeCo with EDM [22] as an example. We use Knockoff Nets [37] and Jacobian Based
Dataset Augmentation (JBDA) [41]] to extract the target victim model. We present the results in Table
6

» Knockoff Nets [37] extracts the target black-box model with a relevant surrogate dataset to
query the target model. Then, the attacker trains a clone model with the surrogate dataset
and the target model predictions on the surrogate dataset.

 Jacobian Based Dataset Augmentation (JBDA) [41]. Attacker first uses a small subset of
in-distribution data examples to query the target model to construct a labeled dataset. The
attacker then trains the clone model on the constructed labeled dataset. The attacker also
augments the dataset with additional synthetic examples by perturbing the raw data input
with the Jacobian of the loss function.

Table 6: Clone model accuracy after applying defense methods against DBME on CIFAR-10 by
combing MeCo with EDM [22]

Dataset KnockoffNets JBDA

undefended EDM EDM + MeCo undefended EDM EDM + MeCo
MNIST 90.18 5134 46.19 88.48 79.04 22.49
CIFAR10 85.39 68.50 59.18 22.03 22.01 21.81
CIFAR100 53.04 41.16 3571 4.09 3.69 317

9.2 More DFME defense results

For MNIST in Table|/} we follow [54] and use LeNet5 as the target model, and use LeNetS, LeNet5-
Half, and LeNet5-1/5 as the clone network architectures. The LeNet5-Half and LeNet5-1/5 networks
have half and 1/5 number of convolutional filters in each layer of that in LeNet-5.

16

Table 7: Clone model accuracy after applying different defense methods on MNIST with LeNet5 as
the target model.

Clone Model Architecture

Attack Defi
LeNet5 LeNet5-Half LeNet5-1/5
undefended | 98.76 +0.27% 96.65 + 0.43% 94.62 + 0.69%
RandP | 92.25 +£0.32% 91.86 +0.49% 90.37 +0.73%
DFME P-poison | 88.34 £0.78% 86.09+0.96% 84.98 +1.07%
GRAD | 87.22+0.70% 85.38+0.91% 84.23 +1.16%
MeCo | 85.07 £ 0.87% 8293 +1.27% 82.57 £ 1.53%

undefended | 98.09 +0.26% 95.91 +0.36% 89.41 +0.38%
(RandP, C) | 92.77+£0.41% 88.714+0.90% 86.38 £ 0.95%
MAZE P-poison | 85.34 +0.78% 87.05+0.86% 86.18 +0.97%
GRAD | 85.63+0.91% 87.31+0.75% 86.42 £ 0.78%
MeCo | 88.57+0.87% 86.99 +0.78% 85.03 + 0.68%

Table 8: Clone model accuracy after applying different defense methods against existing DFME
methods on MinilmageNet with ResNet34-8x as the target model.

Clone Model Architecture
ResNet18-8X MobileNetV2 DenseNet121
undefended | 46.72 +£4.86% 40.35+4.97% 38.71 £ 3.85%

Attack Defi

RandP | 45.09 £4.93% 39.51+£4.83% 38.08 + 3.95%
DFMS-HL P-poison | 4516 £5.03% 39.06 £4.72% 37.78 + 4.26%
GRAD | 45.32+5.21% 39.17+4.85% 37.85+4.32%
MeCo | 39.23+4.83% 3581 +4.69% 32.30 +4.56%
undefended | 35.89 £3.97% 28.714+3.25% 25.05 + 3.68%
RandP | 30.76 £ 4.09% 22.06 +3.83% 20.23 +3.97%
DFME P-poison | 29.36 £4.23% 21.83+3.77% 20.01 + 3.89%
GRAD | 29.87+3.76% 21.65+3.75% 19.82+3.77%
MeCo | 23.29 +3.83% 17.83+3.67% 16.73 + 3.88%

9.3 Change the Target Model as GoogLeNet

Table 9: Clone model accuracy after applying different defense methods on CIFAR10 against existing
DFME methods with GoogLeNet as the target model

Clone Model Architecture
ResNet18-8X MobileNetV2 DenseNet121
undefended |, 61.38 £1.93% 60.23 +£1.82% 58.37 £ 2.19%

Attack Def

DEMS-HL RandP | 61.06 +2.18% 59.82+1.87% 58.03 +2.31%
P-poison | 60.73+1.95% 59.07+1.93% 58.09 + 2.33%
GRAD | 59.41+1.90% 58.72+1.91% 58.18 +£1.98%
MeCo | 5377 £2.21% 53.89 +1.96% 53.28 +2.20%
undefended | 74.67 +1.35% 75.23+1.51% 70.96 £+ 0.78%
RandP | 70.05+1.97% 70.54+1.72% 66.78 £ 2.07%
DFME P-poison | 67.32+1.80% 69.28 £ 1.82% 64.90 +2.01%
GRAD | 69.32+1.91% 66.32+1.97% 65.73+1.77%
MeCo | 5453 +2.17% 50.28 +2.32% 59.42 +2.51%
undefended | 23.18 £2.37% 19.01 £1.09% 21.28 & 3.16%
RandP | 22.03+216% 17.244+1.16% 19.23 + 1.38%
MAZE P-poison | 2128 +£2.33% 17.284+1.22% 17.76 + 1.16%
GRAD | 20.79 £2.07% 16.96 +£1.27% 18.09 + 1.34%
MeCo | 19.65 +£2.61% 14.16 +2.30% 18.31 +2.75%

9.4 Hyperparameter Analysis

We evaluate the hyperparameter sensitivity for -y in Table[T0} We can observe that the model utility
increases as 7y increases with a trade-off of a decrease in defense performance. We additionally
present the sensitivity analysis of () in Table[TT] Results show that) = 2 performs the best. With
the increase of (), the simulated test data distribution may become harder to learn; thus, the benign
accuracy slightly worsens.

Table 10: Sensitivity analysis of v with ResNet34-8X as the target model and ResNet18-8X as the
clone model on CIFAR10.

Method [; norm model utility | defense performance |

v=0.0 0.128 £0.007 51.29 + 2.19%
v=0.5 0.099 = 0.006 51.68 + 1.96%
v=10 0.08+£0.005 55.16 + 1.77%

17

Clone model test accuracy varies with different budget
90 4

> =
g e ple

b=}

S 70

©

3 /

9 604

° b d
S 504 upperboun
£ —e— RandP
24 —e— P-poison

5 GRAD

w
S

—e— MeCo (Ours)

10 20 30 40 50 60
Query budget (million)

Figure 5: Clone model test accuracy on CIFAR10 (the lower, the better) varies with query budgets after applying
different defense methods to the victim model. MeCo (Ours) significantly outperforms various defense methods.

Table 11: Sensitivity analysis of () with ResNet34-8X as the target model and ResNet18-8X as the
clone model.

Method CIFARIO

93.97 +0.72%
94.17 £+ 0.56%
93.81 +0.78%
93.36 + 0.67%

LOOO
[T
(SN V]

9.5 Ablation Study

Effect of DRO We evaluate how much improvement DRO can bring to the model utility preservation
in Table We can observe that DRO significantly improves the model utility by 5.3% — 5.6%
compared to the method without DRO training. The results are close to the standard training without
defense.

Table 12: Ablation study of DRO on different datasets with ResNet34-8x as the target model.

Dataset

Method

CIFAR10 CIFAR100
Standard 1 94.91 £0.37% 76.71 +1.25%
MeCo 1 94.17 £0.56% 75.36 + 0.68%

MeCo w/o DRO T 88.59 4 0.42% 69.93 £ 0.32%

9.6 Clone model test accuracy varies with different query budgets
9.7 Running Time and Memory Cost Analysis

We provide the test time running time analysis in Table[T3] MeCo achieves up to 37x speed up on
CIFAR10 and 172x speed up on CIFAR100 compared with P-poison; achieves speed up of 17x on
CIFAR10 and speed up of 49x on CIFAR100 compared with GRAD. This is because P-poison and
GRAD solve computationally expensive optimization problems during testing. In contrast, MeCo
does not need this optimization.

Table 13: Running time (seconds) during deployment

Algorithm CIFAR10 CIFAR100
P-poison 223.68 £2.78 1126.83 £8.71
GRAD 107.29+1.66 317.83 £4.29
MeCo 6.06 + 0.80 6.53 + 0.82

We additionally evaluate the test time memory consumption compared with different methods in
Table[T4} MeCo uses less memory compared with P-poison since P-poison needs backpropagation
and optimization and during test time. GRAD needs much more memory since GRAD needs double
backpropogation, which is memory intensive.

Table 14: Running memory consumption during deployment

Algorithm CIFAR10

P-poison 2.2GB
GRAD 10.83 GB
MeCo 2.03GB

18

9.8 Training time analysis

We compare MeCo training efficiency to baselines in Table[I5] MeCo increases the training cost by
1.3 cost. However, since MeCo substantially improves the test time running efficiency, it is worth
this running cost.

Table 15: Training Time on CIFAR10

Algorithm one epoch training time (seconds)

Standard 37.68 £1.25
MeCo 86.68 = 1.19

10 Baseline

* RandP [38]]: Random target model output perturbation: we randomly perturb the prediction
logits with random noise @ = a + &; where a is the logit, and it is calculated from
the probability outputs y as a = log %; & is the random noise vector. The logits are

renormalized as § = 1= as outputs for the attacker.

+

* Prediction Poisoning (P-poison) [38]: They propose a perturbation objective, named
Maximizing Angular Deviation (MAD). The main goal of MAD approach is to perturb the
prediction probabilities yr of the target model so that it results in an adversarial perturbed
gradient that maximally deviates from the original gradient of target model.

* GRAD [33]: is a gradient redirection method so that the adversary gradient update direction
could be in any arbitrary direction.

11 Math derivation

11.1 Lagrangian Duality Derivation

The principle oof Lagrangian duality [6] is to transform the constraints through augmenting the
optimization objective function with a weighted sum of the constraint

min sup Bz, L(07, T + he (2, €),y) (18)
07, w ep

s.t. P ={p: KL(ul[po) < B} (19)
Bonnl[T(x + ho(x,€)) = T(2)|[L <7 (20)

Then, we can get the equivalent constrained optimization:

gmin sup[Eg~p L(07, @ + he (2, €),y) — KL(1|120)]
T 1)
VEzp||T(z + b (x, €) — T()|1

where - is the Lagrange multiplier for the model utility constraints. The coefficient before the KIL
divergence KIL(u|| o) is set to 1 since it can be dealt with WGF defined in Section

11.2 Gradient Flow for DRO derivation

Given a batch of raw training data Dy, = {(x},y1), (2,4?), -, (z},y")}, where N is the batch
size. We denote ! as the i'" datapoint in the perturbed batch data after ¢ evolution steps. The raw
training data is sampled from the random variable Xy, i.e., {z}, 2, - ,)’} ~ X,. The random
variable X has probability distribution g, i.e., Xog ~ po. At perturbation time ¢, the training data
Dy, is perturbed as random variable X, i.e., {x},x2,--- , ¥} ~ X;. The probability distribution
of random variable X, has probability measure pi, i.e., X; ~ p;. We define the empirical measure
on the perturbed training data at time ¢ as fi; = % Zi]lv §(xt); where § is the Dirac measure.
We model the training data perturbation process as continuous WGF in probability measure space,

19

i.e., we use the continuous (4;);>0 to model the gradual change of the training data probability
distribution. The gradual change of probability measures (1)¢>o Will in turn determine the training
data distribution perturbation process (X;);>o in Euclidean space.

Before we introduce how we formulate the perturbation as WGF, we first present some preliminaries.
In calculus of variations, the first variation is defined as following:

Definition 11.1 (First Variations). [34] The first variation of a functional F'() is defined as the
following functional at

oF o F(u+ep) — F(p)
@(u)—gg% . : (22)

where 1/ could be any arbitrary function.

By the above defined calculus of variation [34], the first variation for the KL divergence and V (1)
are [3]:

=lo #

L) _ o b,
1 T

OV (u)
op

:U(w,OT) = —E(OT,?E,y)

Then, we present the Wasserstein gradient flow in probability measure space. We denote Po(R?) as
the space of probability measures on R with finite second-order moments. Each element i1 € Po(R?)
is a probability measure represented by its density function ;2 : R? — R with respect to Lebesgue
measure dx. The Wasserstein distance between two probability measures ji1, 12 € Po(R?) is defined
as: >
Wo(puy, po) = (min /||a: - a:’|2dw(:c7w’))> ,
welT(p1,p2)

where [[(p1, p2) = {w|lw(A x RY) = py(A),w(R? x B) = us(B)}. w is the joint probability
measure with marginal measure of j; and p respectively. Thus, W? = (Py(R%), W5) forms a
metric space.

Definition 11.2 (Wasserstein Gradient Flow). [3]. Suppose we have a Wasserstein space W? =
(P2(RY), Wy). A curve of (u1¢)s>0 of probability measures is a Wasserstein gradient flow for
functional F' if it satisfies

. oF
Orpie = Vw, F () = div (’utv(;,u(ut)) ; (23)

where := means defined as, and div(r) := Z?zl d,:7r%(2) is the divergence operator of a vector-
valued function r : R? — R<, where z¢ and * are the i th element of z and r; V is the gradient of a
scalar-valued function. Vyy, F'(11;) := div(mvg—i (11¢)) is the Wasserstein gradient of functional F'
at y+, where g—i (¢) is the first variation of F' at y;. The first variation of a functional in function

space is analogous to the first-order gradient of a function in Euclidean distance. Intuitively, the above
defined WGEF states that the probability measure 1; moves along the steepest path of the functional
F () in the Wasserstein space of probability measures towards the target probability distribution.

11.3 Derivations of Test Data Distribution Simulation

We derive the solution to DRO in kernel space in the following:

1

OKL (|
L) _ it

op
= U(waeT) = _ﬁ(evavy)‘

=lo

oV (u)
op

The target worst-case test data distribution is defined as 7 oc e~Y; where the energy function U (x,07)
is defined above.

20

We transform the Wasserstein gradient Vw, F (we) in Eq. by the transformation K, Vi, F'(f1¢)
with the integral operator K, f(x) = [K(x, ') f(x")du(x"); where we use H to denote the RKHS
space induced by the kernel K. Then we transform the WGF Eq. (9) into the following kernelized
WGEF [29]:

) oF
Oppu = dZU(Mt’CmVE(Mt))- (24)

This equation reveals that the random variable X, which represents the perturbed training data
distribution at continuous time ¢ follows the following differential equation [29, [8]):

dX oF
e _[’Cuva(ﬂt)]o()- (25)

The kernelized Wasserstein gradient can be derived as the following equation:

ICMtVlog / K(x v1og— / K(x,)VUdp, — / VoK (z,)du, (26)

For the above equation, we adopt integration by parts technique in the second identity. Vs is defined
as the gradient of the kernel w.r.t. the second argument.

We then plug Eq. [26|into Eq. [25]to obtain the following differential equation for the continuous
gradual change of the training data distribution:

/ K(z,)VUdp + / VoK (z,-)d 27)

We further discretize the above Eq. (27)) and view each training data as one particle, and arrive at the
following training data distribution perturbation update equation:

I
=

X, —x = — [k(mi,m{)vm{ Ux!,0r) +Vm{k(m§,m{)], (28)

=2|2

1

<.
Il

smoothed gradient repulsive term

12 Theoretical Analysis

since the input is perturbed, then the loss function estimation is noisy for the attacker. Consequently,
the gradient estimation is noisy for the attacker. The attacker adopts the following inaccurate loss
function.

Eé(ec) = KL(T(:L‘ + hw(xa 6); 6T>7 C(.’L‘, 60))

where T'(z, O7) is the target victim model with parameters 07, C(z; 0¢) is the clone model with
parameters ¢ and h,, (1, €) is the data-dependent perturbation.

The ground truth loss function without input perturbation (inaccessible to the attackers since attacker
does not know the amount of noise added to the input) is shown in the following

Lc(0c) = KL(T(x;6r),C(x;0¢))
The attacker optimizes the following loss function.
L:C* = mingc Eé(ec)

Due to the noisy loss function, attacker loss function gradient becomes noisy and inaccurate, shown
as the following:

We model the attacker loss gradient as the following:
Gi(0c) = Vo, Lc™(0c) = Vo, Lo (0¢) + Bi(6c) + Ni(6¢)
where Vg, Eé (6¢) is the actual gradient adopted by the attacker,

21

Voo Lc(0¢) is the ground truth loss gradient without input perturbation, which is inaccessible to
attacker,

Bi(0¢) are the gradient bias due to the loss function introduced by the perturbation generator h,,.

N¢(8¢) is the random variable introduced by the randomness in the data samples. For analysis
convenience, the expectation of the noise is assumed to be zero, i.e. EN;(6-) = 0.

t+1
00

where the attacker updates the clone model as = 0. — aGy; where « is the learning rate.

Assumptions

Assumption 12.1. We assume Polyak- Lojasiewicz (PL) condition [20] on the attacker loss function
Lc(0c) Voo Le(0c)| = 2w(Le(0c))

Assumption 12.2. We assume the following smoothness condition for the loss function L-(6¢) by
following [2]:

LO(6Z) < LO(BE) + (Vo Lc(08),02 — 0L) + 5102 — 0
Assumption 12.3. We assume the following for gradient bias and randomness
E[|N:(0c)||* < D|Lc(8c) + Be(8c)||* + p°

1Be(8c)|I” < d||Voo Lo(Oc)|]? +72 (0 < d < 1)

where D, d, p, T are all constants.

Theory

Theorem 12.4. Assume the attacker loss Lo (0¢) function satisfy assumption 2 and 3. Then, the
attacker loss function satisfies the following inequality:

E[Lc(05)] < Lc(0%) + 2(d - 1)|Voo Lo(Bc)? + 272 + @ Ap

Proof. By adopting assumption 2 and 3. We set 8}, = 05" and 02, = 6%, with 05" = 0%, — oG,
E[Le(6¢)] < Le(6:) — (Voo Lo (60), B(GY) + 5 (EIGHI?)

The above equation can be equivalently converted into the following inequality due to the fact:
E‘Gt|2 = E|Gt - EGt + EGt|2 = E‘Gt - EGt|2 + QE[(Gt - EGt)EGt] + E“EGtP = E|Gt -
EG:|? + E|EG,|?

E[ﬁc(0t61+1)] < ,Cc(@t) — Ck<VQCﬁc(),]E(Gt)> a2 A (E|Gt EGt‘z + E|EG¢‘2)

= Le(0¢) — (Vo Le (oo, B (E\Ntl2+E\£C(90)+Bt\)

Le(8g) — (Ve Leoe), E(G

| /\

D—|—1 E|[/C 90)+Bt|2+p)

2

E[Lc(05)] < Le(6%) + (—2<VQC£C(QC),E(G1&)> + Voo Lo(00) + Bif?) + 22
= Lo(6L) + & (~ Voo Lo(00) + |B,J?) + Az
< Le(0L) + 2(d—1)| Voo Lo(00)? + Axe O

Theorem 12.5. With the assumption 3, the convergence error of attacker loss function can be
estimated as the following:

2+ Aap?
LL<(1—aw(l—d)TLY + wJ(rlfdg

Proof. We define LY, = L¢(0%) — L. Then, we apply the assumption 1 and got the following:
1 a a2 Ap?
Let = (1—aw(1 = d))LL + $72 + 2520

724 Aap?
w(l—d)

We set a constant k = and the above equation can be rearranged as the following inequality.
L — k< (1—aw(l—ad)T (LY — k)

2 2
Therefore, LL < (1 — aw(1 —d))TLY + Twmoé’)) .

22

Remark After analyzing the theoretical aspects, it becomes evident that the accumulation of gradient

estimation errors leads to a deviation of the final estimation error LY := L¢(0L) — Lc* from the

ground truth. The first term in the above inequality (1 — aw(1 — d))T"LY — 0. This deviation
2 2

occurs due to the increase in % caused by higher gradient bias 7 and gradient randomness

p. Consequently, the model extraction attacker’s extracted model diverges from the optimal stolen
model.

23

	More Implementation Details
	Teacher Training Details
	Computing Resources

	Defense against decision-based DFME
	Defending against DFMS-HL by Perturbing the Label Prediction
	Brief Introduction of ZSDB3KD
	Defending against ZSDB3KD by Disturbing the Zero-Order Gradient Estimation

	More Experimental Results
	Application on data-based model extraction (DBME) Attack
	More DFME defense results
	Change the Target Model as GoogLeNet
	Hyperparameter Analysis
	Ablation Study
	Clone model test accuracy varies with different query budgets
	Running Time and Memory Cost Analysis
	Training time analysis

	Baseline
	Math derivation
	 Lagrangian Duality Derivation
	Gradient Flow for DRO derivation
	Derivations of Test Data Distribution Simulation

	Theoretical Analysis

