PopSign ASL v1.0: An Isolated American Sign Language Dataset Collected via Smartphones Supplemental

Sean Forbes² Matthew So¹ Thad Starner¹ David Martin¹ **Rohit Sridhar**¹ Gururaj Deshpande¹ Sam Sepah³ Sahir Shahrvar¹ Khushi Bhardwaj¹ Daksh Sehgal¹ Tyler Kwok¹ Saad Hassan⁴ Bill Neubauer¹ Sofia Anandi Vempala¹ Alec Tan¹ Jocelyn Heath¹ Unnathi Utpal Kumar¹ **Priyanka Vijayaraghavan Mosur**¹ Tavenner M. Hall¹ Rajandeep Singh¹ Christopher Zhang Cui¹ Glenn Cameron³ Sohier Dane³ Garrett Tanzer³ ¹Georgia Institute of Technology ²Deaf Professional Arts Network ³Google ⁴Rochester Institute of Technology {thad,matthew.so,dmartin,rohitsridhar,gurudesh}@gatech.edu {khushi.bhardwaj,tkwok7,dsehgal34,wneubauer4}@gatech.edu {svempala7,atan70,jheath38,unnathikumar}@gatech.edu {pmosur3,rajandeep.singh,ccui46}@gatech.edu sean@dpan.tv, sh253@rit.edu, sahirshahryar@gmail.com tavennerh@yahoo.com, {sepah, glencam, sohier, gtanzer}@google.com

1 Introduction

This supplement to our main paper "PopSign ASL v1.0: An Isolated American Sign Language Dataset Collected via Smartphones" contains the plan for hosting, maintenance, and licensing of the dataset, an author statement affirming of the license, a reproducibility guide for the benchmarks we run on the dataset and a data card describing the dataset.

2 Hosting, Licensing, and Maintenance Plan

Our dataset, called PopSign ASL v1.0, will be hosted jointly by the Georgia Institute of Technology and NTID (National Technical Institute for the Deaf). DPAN also plans to host the dataset. It will be available for at least five years, as we have no plans to retire the dataset. The dataset will be available at http://signdata.cc.gatech.edu/, and will be provided under the Creative Commons CC-BY 4.0 license. The data is currently viewable using username: gtccg and password: popsignASL2023 We plan to remove the password protection before the conference. We (the authors) bear all responsibility, including the violation of rights, with respect to the release of this dataset.

3 ML Reproducibility

In this section, we describe our model, our experimental setup, the hardware used for training, and the data collection process.

3.1 Data Collection

The data collection procedure is given in the data card and the main paper, but we detail it here. The data was collected by DPAN (Deaf Professional Arts Network) using Pixel 4A phones that were shipped to participants. The individual signs videos were recorded in sessions of 10 signs each and

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

uploaded to a Google Photos account. The timestamps corresponding to the sign recordings within these videos were also uploaded and later used to split the videos. Once the videos were split, we used Mediapipe Hands to extract hand tracking features by frame. These features were used for modeling. PACE, a computing cluster at Georgia Tech using the SLURM scheduler to schedule 40 nodes each containing 24 cores to split videos as well as extract Mediapipe Hands features. To create a reproducible environment, a Docker container [] was used. This Docker container was converted to Apptainer and used on PACE. The scripts for splitting videos and extracting Mediapipe Hands features were each run for 2 hours

After the Mediapipe features were extracted, a script was run to process that data into the same format used for the Kaggle competition. This processing required transforming the .data files created by the Mediapipe Extraction script and formatting them into .parquet files. These parquet files were then placed into train, test, and validation folders based on the users. This task was also run on PACE using a single node with 24 cores for 1 hour.

We preserve eight users for test, eight users for validation and the remaining users for the train set. We further filtered the data using a validation process detailed in the data card. We set up a validation script ² to quickly validate sign videos.

3.2 Model Description

Using Keras³, a model was built using two bidirectional LSTM layers followed by a dropout layer and the output layer of 250 units with a softmax activation. During model training, a batch size of 256 was used along with the Adam optimizer and Categorical Cross Entropy Loss. The model was set to train for 40 epochs, and the validation data was used for early callback stopping if the validation loss had converged. The weights that resulted in the lowest validation loss were restored. We use PACE for training. The model was trained in 60 minutes on one PACE node (3x NVIDIA RTX 6000) using the interactive shell in Open OnDemand. We set a seed of 11 as well as used the aforementioned Apptainer container to ensure reproducibility.

4 Data Details

Table [] lists the 250 English concepts in alphabetical order with the total number of examples of that concept signed in the manner intended for the "Game." "Total Variants" are the number of examples where the hand motion was recognizable as a sign, but it was not the sign intended to be taught in the game. Also provided are the number of game examples where Mediapipe Hands provided at least one frame of hand landmarks from the video.

Table splits the data set into train, verification, and test sets. The first column is the English concept. The next column indicates how many examples in the training set were the signing intended for the game. The next column is the number of examples in the verification set that matched the signed intended for the game. The "Ver. Var." column indicates the number of examples that were not the sign intended for the game. The final two columns provide similar information for the test set.

Sign	Total Game	Total Game Tracked by Mediapipe	Total Variants
after	641	638	193
airplane	442	431	379
all	495	492	310
alligator	813	806	59
animal	825	811	42
another	851	832	24
any	765	761	98
apple	710	703	62
arm	429	415	327

¹https://hub.docker.com/layers/gurudesh/copycat/copycat-gpu-cuda10.2-cudnn7/images/sha256-91d359f26cf8cfc0f94a4a77d949f3487c03b9c4559ff545f9233a4bba7204a7?context=explore

²https://github.com/Benler123/hotkey_annotate

³https://github.com/keras-team/keras

aunt	740	729	63
awake	808	800	66
backyard	487	473	330
bad	476	462	17
balloon	588	585	273
bath	848	837	19
because	645	626	218
bed	737	734	55
bedroom	614	603	187
bee	442	441	336
before	457	443	270
beside	578	559	235
better	870	860	2
bird	862	860	2
black	575	570	290
blow	781	773	89
blue	735	720	123
boat	858	836	30
book	859	851	15
boy	861	848	5
brother	425	411	450
brown	829	826	17
bug	836	835	38
bye	692	681	188
callonphone	691	680	209
can	834	825	32
car	408	403	59
carrot	454	454	327
cat	782	778	101
cereal	457	457	395
chair	607	593	269
cheek	487	478	372
child	708	689	159
chin	299	299	544
chocolate	820	806	54
clean	741	734	155
close	423	417	441
closet	538	538	355
cloud	668	667	217
clown	839	831	37
cow	758	745	119
cowboy	772	761	67
cry	613	604	250
cut	763	744	117
cute	872	869	5
dad	868	850	3
dance	873	853	2
dirty	807	805	43
dog	266	262	617
doll	868	865	1
donkey	795	783	78
down	833	810	24
drawer	756	739	117
drink	862	854	27
drop	864	849	18
dry	869	863	13
dryer	430	429	426
duck	756	753	133
ear	425	422	449

elephant	716	707	114
empty	723	711	78
every	328	325	534
eye	446	439	397
face	778	764	95
fall	822	807	73
farm	680	678	207
fast	536	536	321
feet	593	592	286
find	398	389	476
fine	598	595	222
	558		
finger		552	278
finish	792	783	84
fireman	649	644	218
first	832	819	49
fish	510	508	373
flag	589	585	282
flower	861	855	23
food	876	869	5
for	865	849	10
frenchfries	880	870	2
frog	851	847	11
garbage	520	516	361
gift	849	842	21
giraffe	812	800	52
girl	780	765	103
give	499	483	351
glasswindow	484	481	349
go	444	443	410
	579	576	307
goose grandma	754	741	58
	734 784	770	35
grandpa	853	844	33 24
grass			
green	747	728	124
gum	858	847	15
hair	816	809	69
happy	865	859	5
hat	770	757	92
hate	821	808	56
have	864	850	11
haveto	792	775	88
head	596	579	299
hear	492	491	408
helicopter	531	528	306
hello	860	852	27
hen	663	657	233
hesheit	752	736	144
hide	564	560	309
high	874	848	17
home	808	797	2
horse	875	863	9
hot	790	779	60
	885	876	5
hungry	885 479	474	5 1
icecream			
if	695 694	692	170
into	684	684	154
jacket	744	735	120
jeans	288	280	544
jump	743	724	140

kiss	558	554	285
kitty	318	318	547
lamp	302	302	548
later	864	852	9
like	830	825	59
lion	864	857	4
lips	809	804	83
listen	396	393	465
look	655	641	238
loud	627	627	243
mad	622	612	245
make	874	864	8
man	739	737	146
	859	851	140
many milk	868	854	8
	872	871	10
minemy	309	305	539
mitten			
mom	843	837	41
moon	862	853	10
morning	833	822	48
mouse	876	872	26
mouth	852	844	25
nap	253	252	560
napkin	514	511	334
night	862	846	33
no	881	869	0
noisy	666	655	219
nose	878	875	3
not	884	868	5
now	857	844	22
nuts	603	598	114
old	847	842	36
on	740	728	115
open	802	787	48
orange	862	855	8
outside	544	533	144
owie	693	677	188
owl	827	822	49
pajamas	672	661	198
pen	507	502	400
pencil	598	592	268
penny	666	664	215
person	600	591	273
pig	610	608	273
pizza	510	510	352
please	883	878	0
police	167	164	304
pool	613	607	282
potty	805	790	67
pretend	672	668	185
pretty	854	847	0
puppy	386	383	479
puzzle	711	701	149
quiet	817	803	59
radio	712	703	169
rain	871	861	9
read	883	870	11
red	816	870	52
refrigerator	392	390	459
renngerator	574	520	4.17

ride	821	801	53
room	550	547	304
sad	834	828	45
same	734	734	154
say	699	688	167
scissors	888	872	0
see	744	743	142
shhh	887	887	1
shirt	746	736	99
shoe	865	853	9
shower	96	96	696
sick	844	835	34
sleep	859	854	25
sleepy	197	190	607
smile	548	540	290
snack	340	339	483
snow	687	684	159
stairs	738	737	146
stay	867	863	9
sticky	690	670	197
store	789	783	93
story	414	409	432
stuck	866	858	4
sun	784	768	65
table	874	864	6
talk	802	793	86
taste	874	860	25
thankyou	864	857	7
that	881	877	4
there	406	393	457
think	260	259	607
thirsty	869	858	6
tiger	861	852	12
time	824	811	42
tomorrow	882	873	1
tongue	251	250	613
tooth	827	820	62
toothbrush	690	688	194
touch	849	844	43
toy	787	771	95
tree	885	872	2
TV	795	783	76
uncle	775	773	85
underwear	587	587	289
up	835	822	49
vacuum	775	759	89
wait	844	835	34
wake	854	846	30
water	636	632	213
wet	853	840	36
weus	744	741	132
where	861	844	4
white	836	831	46
who	836	830	46
why	452	452	411
will	805	803	72
wolf	879	874	3
yellow	830	821	24
yes	851	840	40

yesterday	503	494	385
yourself	887	868	1
yucky	559	550	328
zebra	465	458	33
zipper	822	804	52

Table 1: List of the English concepts in PopSign, the number of signed examples that match the intended sign for the game, the number of "game sign" examples where Mediapipe provided landmarks, and the number of examples where the sign provided was not the intended sign for the game (i.e., a variant).

~						
Sign	Train Game	Train Var.	Ver. Game	Ver. Var.	Test Game	Test Var.
after	395	156	116	37	130	0
airplane	272	270	36	109	134	0
all	291	250	96	60	108	0
alligator	534	42	140	17	139	0
animal	542	41	149	1	134	0
another	557	24	157	0	137	0
any	505	73	129	25	131	0
apple	479	24	100	38	131	0
arm	300	187	39	107	90	33
aunt	507	13	118	28	115	22
awake	525	66	157	0	126	0
backyard	351	177	37	112	99	41
bad	307	17	38	0	131	0
balloon	426	144	88	69	74	60
bath	561	18	153	1	134	0
because	450	124	76	82	119	12
bed	464	47	135	8	138	0
bedroom	397	125	106	44	111	18
bee	258	234	79	75	105	27
before	289	196	93	51	75	23
beside	360	197	119	38	99	0
better	579	2	154	0	137	0
bird	577	2	152	0	133	0
black	401	167	91	68	83	55
blow	500	73	145	16	136	0
blue	471	101	133	22	131	0
boat	563	27	159	3	136	0
book	571	15	153	0	135	0
boy	574	3	154	2	133	0
brother	309	278	76	79	40	93
brown	556	4	143	13	130	0
bug	544	36	158	2	134	0
bye	465	123	102	59	125	6
callonphone	476	130	79	79	136	0
can	552	30	152	2	130	0
car	249	58	40	0	119	1
carrot	299	256	98	51	57	20
cat	493	95	156	6	133	0
cereal	245	313	103	57	109	25
chair	407	181	130	25	70	63
cheek	342	239	47	106	98	27
child	459	108	132	33	117	18

chin	147	404	25	134	127	6	
chocolate	570	16	115	38	135	0	
clean	480	119	125	36	136	0	
close	241	333	87	80	95	28	
closet	318	276	85	79	135	0	
cloud	383	208	149	9	136	0	
clown	567	200	137	16	135	0	
	538	49	87	70	133		
cow						0	
cowboy	500	49	139	18	133	0	
cry	406	163	71	86	136	1	
cut	495	91	132	26	136	0	
cute	580	2	158	3	134	0	
dad	584	2	145	1	139	0	
dance	579	1	156	1	138	0	
dirty	517	42	151	1	139	0	
dog	153	436	94	64	19	117	
doll	585	0	147	1	136	0	
donkey	528	51	154	7	113	20	
down	545	17	153	7	135	0	
drawer	498	77	139	22	119	18	
	498 589	8					
drink			139	19	134	0	
drop	568	16	159	1	137	1	
dry	572	13	158	0	139	0	
dryer	228	330	95	67	107	29	
duck	537	66	101	67	118	0	
ear	254	322	77	83	94	44	
elephant	477	90	128	24	111	0	
empty	465	57	123	21	135	0	
every	173	387	54	114	101	33	
eye	252	304	58	93	136	0	
face	537	44	123	34	118	17	
fall	540	64	152	7	130	2	
farm	428	164	117	41	135	$\frac{2}{2}$	
			93	65	133	23	
fast	331	233					
feet	400	185	88	72	105	29	
find	263	315	98	62	37	99	
fine	335	198	131	23	132	1	
finger	315	240	127	37	116	1	
finish	534	55	121	29	137	0	
fireman	380	191	131	25	138	2	
first	543	47	155	2	134	0	
fish	343	252	72	82	95	39	
flag	395	198	65	84	129	0	
flower	568	23	154	0	139	0	
food	593	5	155	0	128	0	
for	580	10	152	0	133	Ō	
frenchfries	592	2	153	Ő	135	Ő	
frog	566	10	155	1	128	0	
garbage	338	247	92	72	90	42	
	565	247	152	0	132		
gift circeffe						1	
giraffe	530 510	50 78	153	2	129	0	
girl	510	78	132	25	138	0	
give	305	271	85	72	109	8	
glasswindow	291	272	81	77	112	0	
go	263	310	87	77	94	23	
goose	396	189	77	92	106	26	
grandma	484	43	137	15	133	0	
grandpa	505	23	142	12	137	0	
grass	569	19	148	5	136	0	
C							

green	469	117	145	7	133	0
gum	575	12	149	3	134	Õ
hair	563	30	118	39	135	0
	571	4	159	1	135	0
happy hat	492	83	139	9	133	0
hate	552	34	150	2	119	20
have	581	10	153	1	130	0
haveto	521	71	151	4	120	13
head	378	219	81	80	137	0
hear	337	256	78	94	77	58
helicopter	393	170	62	96	76	40
hello	569	24	157	3	134	0
hen	397	196	131	33	135	4
hesheit	499	99	123	38	130	7
hide	374	209	58	100	132	Ó
high	590	13	148	4	136	0
home	525	2	140	0	130	0
	583	8	144	1	139	0
horse						
hot	529	34	132	26	129	0
hungry	603	3	150	2	132	0
icecream	306	1	40	0	133	0
if	440	126	124	37	131	7
into	454	101	100	53	130	0
jacket	490	85	119	35	135	0
jeans	186	379	45	126	57	39
jump	487	109	123	31	133	0
kiss	347	196	81	85	130	4
kitty	180	406	64	96	74	45
lamp	165	397	78	85	59	66
later	574	7	158	2	132	0
				7		
like	548	50	151		131	2
lion	577	4	153	0	134	0
lips	539	59	133	24	137	0
listen	218	332	76	99	102	34
look	441	157	81	81	133	0
loud	427	147	82	77	118	19
mad	440	137	46	109	136	0
make	582	8	155	0	137	0
man	500	90	140	22	99	34
many	566	16	160	0	133	0
milk	580	7	152	1	136	0
minemy	586	10	158	0	128	0
mitten	156	432	53	105	100	2
mom	565	26	147	15	131	0
moon	578	20 7	147	3	131	0
morning	564	25	138	21	131	2
mouse	580	25	158	1	138	0
mouth	562	17	151	8	139	0
nap	175	386	37	131	41	43
napkin	304	252	78	82	132	0
night	567	32	160	1	135	0
no	591	0	157	0	133	0
noisy	488	104	84	75	94	40
nose	590	3	158	0	130	0
not	590	5	156	0	138	0
now	571	22	150	0	136	Ō
nuts	396	61	67	53	140	Ő
old	559	35	155	1	133	0
on	497	85	126	28	117	2
UII	77/	05	120	20	11/	2

open	529	47	141	1	132	0
orange	577	8	152	0	133	0
outside	339	104	78	40	127	0
owie	467	125	98	63	128	0
owl	559	26	134	23	134	0
pajamas	431	157	109	40	132	1
pen	284	317	83	79	140	4
pencil	385	197	111	44	102	27
penny	400	188	150	4	116	23
person	395	184	89	64	116	25
pig	329	266	148	4	133	3
pizza	313	256	88	74	109	22
please	588	0	159	0	136	0
police	80	217	39	0	48	87
pool	400	201	78	79	135	2
potty	547	34	126	33	132	0
pretend	431	152	126	33	115	0
pretty	578	0	158	0	118	0
puppy	247	333	59	100	80	46
puzzle	466	95	112	51	133	3
quiet	535	48	147	11	135	0
radio	482	102	112	47	118	20
rain	577	8	159	1	135	0
read	588	10	159	1	136	0
red	564	18	135	19	117	15
refrigerator	241	334	61	100	90	25
ride	526	53	158	0	137	0
room	344	209	82	83	124	12
sad	565	25	134	20	135	0
same	484	113	120	35	130	6
say	476	103	99	56	124	8
scissors	591	0	158	0	139	0
see	491	108	124	33	129	1
shhh	589	0	160	1	138	0
shirt	480	78	133	21	133	0
shoe	576	9	157	0	132	0
shower	54	483	23	137	19	76
sick	562	26	149	8	133	0
sleep	569	22	153	3	137	0
sleepy	141	406	17	142	39	59
smile	360	187	90	70	98	33
snack	160	377	54	105	126	1
snow	431	133	129	26	127	0
stairs	465	124	137	22	136	0
stay	574	9	156	0	137	0
sticky	475	121	79	75	136	1
store	508	77	147	16	134	0
story	273	290	81	63	60	79
stuck	582	3	155	0	129	1
sun	521	43	130	22	133	0
table	587	6	152	0	135	0
talk	509	83	154	3	139	0
taste	583	20	159	1	132	4
thankyou	573	5	152	2	139	0
that	591	4	154	0	136	0
there	318	246	41	120	47	91
think	149	422	34	127	77	58
thirsty	583	6	152	0	134	0
tiger	577	12	148	0	136	0

time	550	24	136	18	138	0
tomorrow	591	1	156	0	135	0
tongue	158	416	37	119	56	78
tooth	553	38	158	3	116	21
toothbrush	474	107	114	47	102	40
touch	565	37	150	6	134	0
toy	513	76	139	19	135	0
tree	593	2	154	0	138	0
TV	526	68	147	8	122	0
uncle	503	65	139	19	133	1
underwear	348	229	100	58	139	2
up	560	32	153	2	122	15
vacuum	507	64	132	25	136	0
wait	554	33	154	1	136	0
wake	563	27	153	3	138	0
water	409	157	93	56	134	0
wet	565	31	157	0	131	5
weus	457	131	153	1	134	0
where	568	2	155	2	138	0
white	555	25	142	20	139	1
who	545	44	156	2	135	0
why	281	284	108	50	63	77
will	532	53	135	19	138	0
wolf	584	3	155	0	140	0
yellow	549	21	149	2	132	1
yes	568	31	144	9	139	0
yesterday	387	200	63	99	53	86
yourself	595	1	159	0	133	0
yucky	370	218	68	89	121	21
zebra	284	32	42	0	139	1
zipper	553	30	142	21	127	1

Table 2: Number of examples of each of the 250 English concepts (with Hands tracking) in the training, verification, and test sets. Examples that were not the intended sign for the game are labeled "variants" and are not used to create the recognition system for PopSignAI.

5 PopSign v1.0 Data Card

PopSign ASL v1.0

95% of deaf children are born to hearing parents. Since many hearing parents do not know sign, these deaf children are at risk for language acquisition delays resulting in cognitive issues. We are making an educational smartphone game PopSign that helps hearing parents practice their signing vocabulary.

Our dataset is the largest collection of isolated sign videos collected using mobile phones. We are using the data to train recognition models for use in smartphone applications, including the PopSign game. PopSign and related educational technology teach hearing parents and deaf children to sign, reducing developmental problems.

Dataset Link https://signdata.cc.gatech.edu

Data Card Author(s)

- Thad Starner, Georgia Tech: Owner
- Rohit Sridhar, Georgia Tech: Contributor
- Matthew So, Georgia Tech: Contributor
- Gururaj Deshpande, Georgia Tech: Contributor

Authorship

Publishers

Publishing Organization(s)

- Georgia Institute of Technology
- Deaf Professional Arts Network

Industry Type(s)

- Academic Tech
- Not-for-profit Tech

Contact Detail(s)

- Publishing POC: Thad Starner
- Affiliation: Georgia Institute of Technology
- Contact: thad@gatech.edu
- Mailing List: popsigngame@gmail.com
- Website: popsign.org

Funding Sources

Institution(s)

• Deaf Professional Arts Network

Funding or Grant Summary(ies) DPAN (Deaf Professional Arts Network) is a non-profit. Funding for this project came through non-restrictive gifts to DPAN from both public and private entities.

Additional Notes: Georgia Tech contributed to this project through course work and volunteer efforts.

Dataset Overview

Data Subject(s)

- Sensitive Data about people
- Non-Sensitive Data about people

Dataset Snapshot

Category	Data
Size of Dataset	1.1 TB
Total Number of Videos	214,326
Number of Game Videos	175,022
Total Number of Signs	250
Total Number of Signers	47
Average Videos Per Sign	857
Number of Video Quality Categories	3

Content Description This dataset was collected from October 2022 to March 2023. Videos were sorted into three categories: game (videos which only contained the sign intended to be used for the PopSign game), unrecognizable (videos which clearly did not correspond to any sign and are not included), and variant (videos which contained signs that did not match the game sign). This dataset was collected from October 2022 to March 2023. Videos were sorted into three categories: game (videos which only contained the sign intended to be used for the PopSign game), unrecognizable (videos which clearly did not correspond to any sign and are not included), and variant (videos which contained signs that did not match the game sign). Note that the dataset currently does not contain unrecognizable videos, as these were removed for v1.0 of this dataset. They may be added to future releases.

Descriptive Statistics

Statistic	Game Videos Per Sign	Variant Videos Per Sign
count	250	250
mean	700	157
std	179	164

Statistic	Game Videos Per Sign	Variant Videos Per Sign
min	96	0
25%	587	25
50%	764	89
75%	851	272
max	888	696

Sensitivity of Data

Sensitivity Type(s)

- User Content
- User Metadata
- User Activity Data
- Identifiable Data
- S/PII

Field(s) with Sensitive Data Intentional Collected Sensitive Data

(S/PII were collected as a part of the dataset creation process.)

Field Name	Description
Participant Video	Video of participant (upper body captured)
Participant Sign	Video of participant performing isolated sign gestures

Security and Privacy Handling Method: Participants were given a consent form. They were only allowed to record after providing consent for the following:

"The app will collect video and photographic images of Your face, torso, hands, and whatever is in view of the camera(s) along with associated camera metadata (such as color correction, focal length, etc.). ... Beyond the video, the following data may be recorded: - The details of each Task, such as the type of Task that was done, signing certain words, or performing specific actions as instructed

- Date and time information associated with the Tasks - Self identified gender - Self identified age range - Self-identified ethnicity - Self assessed sign language proficiency - Signing style information (such as general location where You learned, type of sign learned, age range when you started learning, signing community You are most closely associated with, etc)

As described earlier, if you consent, we will use photos or video clips where your face can be identified. We may use identifiable photos or video clips of you in written or oral presentations about this work and in publicly available on-line databases."

Risk Type(s)

- Direct Risk
- Residual Risk

Risk(s) and Mitigation(s) The direct risk involves participants' visual features (their face and body) being linked to their full name. To mitigate this risk, we use anonymized user IDs to identify users. There is still some residual risk. Participants may still be identified using their faces alone. This risk is unavoidable with video data. We have participants sign consent forms acknowledging that they are creating a dataset intended for public use.

Dataset Version and Maintenance

Maintenance Status Regularly Updated - New versions of the dataset have been or will continue to be made available.

Version Details Current Version: 1.0

Release Date: Sept 2023

Maintenance Plan Versioning: Major updates will be released as a new version, incremented to the nearest tenth from the previous version. For example, if the current version is between 1.0 and 1.09, then a major update will be released as version 1.1. Major updates include the addition of new users and/or new signs. Minor updates are covered below.

Updates: If there are missing/extraneous/erroneous videos (error cases described below), any fixes will be released as a new version, incremented by 0.01. E.g. if the current version is 1.0, then any minor updates will be released as 1.01.

Errors: Errors in the dataset include incorrectly labeled videos, missing videos, or extraneous videos. Missing videos include videos that the participant recorded but weren't included in the final release. Extraneous videos include videos that only have a partial sign or no sign at all, but were included in the final dataset.

Feedback: We will accept feedback via our group email, popsigngame@gmail.com.

Next Planned Update(s) Version affected: 1.0

Next data update: TBD

Next version: 1.1

Next version update: TBD

Expected Change(s) Updates to Dataset: The current dataset includes 250 signs from the MacArthur Bates CDI. We plan to include an additional 313 signs in the new version. It will be recorded by a new set of participants.

Data Points

Primary Data Modality

• Video Data

Typical Data Point A typical data point includes only the full sign motion, with little to no empty space (i.e. no motion) at the beginning or the end of the video. The full sign must be completed within roughly 1 or 2 seconds and a full view of the signing motion must be included. The sign must be the example variant provided in our in house ASL Capture app.

Atypical Data Point An atypical data point may include a lot of empty space (i.e. moments without any motion) at the beginning or end of the video. The full sign may take longer than 1 or 2 seconds to complete. The beginning or the end of the sign may be obscured by poor camera framing, though the sign should still be recognizable. Atypical data points also include signs that are alternate variants or are fingerspelled, rather than the example sign variant provided by the in house ASL Capture App.

Motivations & Intentions

Motivations

Purpose(s)

- Research
- Production
- Education

Domain(s) of Application Educational Technology, Accessibility, Sign Language Recognition, Machine Learning, Computer Vision

Motivating Factor(s)

- Teaching Sign
- Developing Educational Technology
- Developing Sign Language Recognition

95% of deaf children are born to hearing parents. The communication barrier can cause language deficiencies and cognitive issues in these children. We want to close the gap by developing interactive technologies using sign language recognition, to actively teach hearing parents sign.

Our dataset is collected on mobile phones and is designed to facilitate sign language recognition in mobile games to interactively teach sign. We also hope our example will bring wider focus on the use of interactive machine learning in general to improve educational technology.

Intended Use

Dataset Use(s)

• Safe for research use

Suitable Use Case(s) Suitable Use Case: Isolated Sign Language Recognition

Suitable Use Case: Isolated Sign Language Recognition for mobile phone applications and games

In general, the data can be used for isolated sign language recognition and related downstream applications.

Unsuitable Use Case(s) Unsuitable Use Case: Continuous Sign Language Recognition

Unsuitable Use Case: Sign to English Translation

The data is not intended for use in continuous sign language recognition, or sign language to English translation.

Access, Rentention, & Wipeout

Access

Access Type

• External - Open Access

Documentation Link(s)

• Dataset Website URL: https://signdata.cc.gatech.edu

Retention

Duration The dataset will be available for at least 5 years, but we have no plans to retire the dataset

Wipeout and Deletion

Policy We do not have plans to retire the dataset, so there is no deletion policy/procedure

Provenance

Collection

Method(s) Used We collected data from our mobile recording app, the ASL Capture App. The app presented 10 signs for recording in a single recording session. The entire session was captured on video, but the sign recordings happened during specific time intervals. The participants were presented a sign to record. They then tapped and held a record button to record themselves signing. The timestamps corresponding to the recording intervals for each sign were saved in a separate file.

Methodology Detail(s) Collection Method: ASL Capture App

Platform: [Platform Name], Google Pixel 4a

Dates of Collection: [10 2022 - 02 2023]

Primary modality of collection data: - Video Data

Update Frequency for collected data: - Static

Source Description(s) Participants were recruited by DPAN

Collection Cadence Static: Data was collected once from single or multiple sources.

Data Processing Collection Method: ASL Capture App

Description: We split session recordings from the ASL Capture App using a python. The resulting split videos were named following this convention: "—.mp4".

Tools or libraries: Python, FFMPEG

Collection Criteria

Data Selection

• We selected data based on whether a sign was recognizable or not, i.e. the sign could be clearly made out from the video. We further categorized whether the sign presented was the example sign we (the data collectors) intended for the participant to sign, or another variant.

Data Inclusion

• We included any videos that contained a discernible sign and most of the participant's sign was in frame.

Data Exclusion

• We excluded any videos that did not contain a full sign from the participant. We also excluded videos where the participant was out of frame so as to make the sign unrecognizable.

Human and Other Sensitive Attributes

Sensitive Human Attribute(s)

- Gender
- Geography
- Language
- Age
- Culture
- Experience or Seniority

Intentionality Intentionally Collected Attributes

Human attributes were labeled or collected as a part of the dataset creation process.

Field Name	Description
Sign Language	Participant's signing style and dialect
Gender	Participant's Gender
Age Range	Participant's Age

Additional Notes: By providing isolated sign data, participants provided information about their signing style and preferred dialect.

Unintentionally Collected Attributes

Human attributes were not explicitly collected as a part of the dataset creation process but can be inferred using additional methods.

Field Name	Description
Geography	Participant's geographic location
Culture	Participant's Ethnic Background
Seniority	Participant's signing proficiency

Additional Notes: We did not intentionally collect the attributes listed above, but they may be (incorrectly) inferred from the videos. For instance, videos may suggestive of the participant's age or their signing proficiency. Such inferences may be incorrect since may of these attributes cannot be determined using visual cues alone and may depend on the participant's self identification.

Rationale We intended to collect isolated sign language data; hence videos of the participant's signing were collected. The collected attributes (both intentional and unintentional) may be inferred (though not always accurately) from the videos.

Risk(s) and Mitigation(s) The direct risk with this type of video data is with the participant's identity being revealed. For this reason, we use anonymous identifiers. There is still some residual risk with the participant being identified through their faces alone. These participants have signed a consent form (given in the Data Sensitivity section) to address this concern.

Annotations & Labeling

Annotation Workforce Type

• Annotation Target in Data

Annotation Characteristic(s)

Annotation Type	Number
Number of unique annotations	250
Total number of annotations	$214,\!326$
Average annotations per example	1

Annotation Description(s) Description: Annotations were automatically generated with the data, since participants were prompted to record specific signs in each sessions. These sign labels served as the target for the Isolated Sign Language Recognition problem. The annotation count only includes annotations of videos available in the dataset.

Annotation Distribution(s)

\mathbf{Sign}	Count
pen	907
mouse	902
call on phone	900
hear	900
taste	899

Above: We provide the top 5 sign annotations that occur in the dataset. Note that these counts do not include cases where the sign was unrecognizable in the video (these are post-validation counts). To understand our validation procedure, see the next section.

Validation Types

Method(s)

• Annotation/Label Validation

Description(s) (Validation Type)

Method: Each video was validated by a team of reviewers. Reviewers would first check whether the video contained a discernible sign and then check whether the sign was the example variant we provided. Only those videos with any discernible sign are kept, while the videos with different sign variants have been preserved for linguistic analysis.

Platforms, tools, or libraries:

• Python, openCV

Description of Human Validators

Characteristic(s) (Validation Type) - Unique validators: 15 - Number of examples per validator: 14,545 - Training provided: Yes - Expertise required: No

Description(s) (Validation Type)

Training provided: We trained validators in watching videos for discernible signs and in detecting the variants. We also trained validators in how to use the tool.

Validator selection criteria: We selected validators who had interest in sign language research and who were technically proficient enough to use the Validation tool.

Gender(s) (Validation Type)

- Identifies as Male (36%)
- Identifies as Female (64%)

Known Applications & Benchmarks

ML Application(s)

- Isolated Sign Language Recognition
- Mobile Applications using Sign Language Recognition

Evaluation Process(es) We train an LSTM model designed to output a label (one of the 250 signs) on the training set and then compute accuracies on the validation/test sets.

Evaluation Result(s) Evaluation Results - Accuracy (over Total Videos): 82% (Val), 84% (Test)

We provide accuracy in which the denominator consists of all of the originally recorded videos. For a small percent of videos, MediaPipe did not generate features. Note that during PopSign gameplay, players naturally ensure that the hand tracking is showing the overlay skeleton on their hands before signing (i.e., the players are active participants in trying to get the recognition to work). Thus, for the current application, using accuracy measures for the files with Mediapipe Hands features gives a better sense of the accuracy expected during gameplay.