
A Derivation1

Here we present a derivation showing that the transfer entropy equals the difference between two2

types of mutual information:3
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Applying the conditional Bayes formula p (y | x) = p(y,x)
p(x) on the numerator and denominator in the4

log term of equation 1:5
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Adding the marginal distribution of time series Y to the numerator and denominator simultaneously:6
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In these expressions, yr is sampled from time series Y randomly each time step and independently7

of the time step t.8

B Transfer Entropy Neural Estimator9

B.1 Consistency10

Definition. A neural estimator Ŝ(X,Y )n which uses n samples from the data distribution to estimate11

a statistic S(X,Y ) on variables X,Y is strongly consistent if for any ϵ > 0, there exists a positive12

integer N and a choice of neural network such that:13

∀n ≥ N, | S(X,Y )− S(X,Y )n |≤ ϵ, almost everywhere (a.e.) (6)

The Mutual Information Neural Estimator (MINE) depends on a choice of a neural network and the14

number of samples n from the data distribution [S1]. Let fθ be the family of functions parameterized15

by the neural network with parameters θ ∈ Θ. MINE is defined as:16
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Theorem 1 [S1]. MINE is strongly consistent.17

The Transfer Entropy Neural Estimator (TENE) consists of two independent MINE and depends on18

choice of neural network and sample number n. TENE is defined as:19
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We will prove the following:22

Theorem 2. TENE is strongly consistent.23

Proof. Let ϵ > 0. By Theorem 1, we can choose neural networks and integers N1, N2 and such that24
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Letting N = max {N1, N2}, for n ≥ N and for some neural network we have, a.e.,25
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The proof is complete.26

B.2 Variation of bias vary with dimension and noise27

We examine the performance of TENE for the considered class of neural networks on linear dynamic28

system, consisting of variables X and Y defined as:29

xt+1 = αxt + εx (15)
yt+1 = βyt + gcxt + εy (16)

We set α = β = 0.5 and εx = εx ∼ N(0, σ2). The true values of transfer entropy TE(X → Y )30

in this simple coupled system can be determined analytically [S2]. We can increase the dimension31

of the system by considering multiple independent copies of variables X and Y , in which case the32

mutual information and transfer entropy scale linearly with the dimension of the system. For each33

considered dimension, standard deviation σ, and coupling strength gc in an interval from -0.4 to34

0.4, we generate a time series of length 50,000. We also consider an alternative non-parametric35

estimator of mutual information, the Kraskov estimator [S3] with k = 5 nearest neighbours. In Fig 136

we compare the results of MINE with the analytic formula and the Kraskov estimator. MINE shows37

marked improvement over the Kraskov estimator, especially when variables are high-dimensional.38

Comparing Fig 1(a,b) or (c,d) shows that the amplitude of the driving Gaussian noise has little39

influence on estimates. Interestingly, as coupling strength gc grows small, i.e., as X and Y become40

more independent, the Kraskov estimator can suggest a negative value of the mutual information,41

i.e., we estimate that MIn (Yt+1, Yt, Xt) < MIn (Yt+1, Yt). We deduce that irrelevant information42

about the nearly independent variable Xt interferes with the estimation of the mutual information by43

the Kraskov estimator.44
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(d)(b)

(c)(a)

Figure 1: True and estimated transfer entropy versus coupling strength gc. The dimension and
standard deviation (std) σ of system noise is indicated in the titles of subplots. The units of transfer
entropy are bits.

C Algorithm45

Details on the implementation of coupling attention mechanism are provided in Algorithm 1.46

Algorithm 1 Coupling Relationship Inference

Input: Small samples e.g., {(xi, yi)}Li=1 as train set S, total number of epochs E
1: θ, ϕ, α← initialize network parameters
2: Stage 1: iteration until epoch exceeds E
3: Assign coupling attention coefficients {ai}Li=1
4: Compute L1,L2 on S
5: θ, ϕ← θ +∇θL1, ϕ+∇ϕL2

6: Redo lines 3-4
7: α← α+∇α (L1 − L2)
8: η ← initialize network parameters
9: Compute L3 on S′, e.g., {(xi, yi) ∗ ai}Li=1

10: η ← η −∇ηL3

11: Record optimal parameter η∗ during Stage 1
12: Stage 2: iteration until L3 convergence
13: Compute L3 on S′

14: η∗ ← η∗ −∇η∗L3
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D Model Neuronal Dynamics47

Here we give detailed information about five neuronal dynamics applied to modeling membrane48

potential and relevant quantities in biological connectomes. We input to each causal discovery49

algorithm the coordinate corresponding to the neuron membrane voltage potential, because this50

variable is most likely to be experimentally accessible.51

D.1 Hindmarsh-Rose dynamics52

The spikes of activity in neurons are considered an important part of the brain’s information process-
ing [S4, S5]. Hindmarsh and Rose [S6] (HR) proposed a phenomenological neuron model that is a
simplification of the Hodgkin-Huxley model [S7]. The HR model is described by

ṗ = q − ap3 + bp2 − n+ Iext

q̇ = c− dp2 − q

ṅ = r [s (p− p0)− n]

where p(t) is the action potential of the membrane, q(t) is related to the fast current and n(t) is
associated with the slow current. Presynaptic neurons with an action potential pj coupled by chemical
synapses to neurons i modifying its action potential pi according to

ṗi = qi − ap3i + bp2i − n+ Iext + Γ

Γ = gc (Vsyn − pi)
∑N

j=1

Bij

1 + exp(−λ (pj −Θsyn))

where i, j = 1, . . . , N , N is the number of neurons, gc is the chemical coupling strength and Bij53

describes neurons’ chemical connections. The chemical synapse function is modeled by the above54

sigmoidal function, with Θsyn = 1.0. We use parameters a = 1, b = 3, c = 1, u = 5, s = 4, r =55

0.005, p0 = −1.60, coupling strength gc = 0.1, Vsyn = 2, λ = 10, and external current Iext = 3.24,56

for which HR neurons exhibits a chaotic burst behavior.57

D.2 Izhikevich dynamics58

Izhikevich dynamics reproduce spiking and bursting behavior of known types of cortical neurons,
and combine the biological plausibility of Hodgkin–Huxley-type dynamics and the computational
efficiency of integrate-and-fire neurons [S8]. The equations governing Izhikevich spike dynamics are:

v̇ = 0.04v2 + 5v + 140− u+ I + gc
∑

Bijuj

u̇ = a(bv − u)

with the auxiliary after-spike resetting

if v ≥ +30mV, then
{

v ← c
u← u+ d

.

Here, variable v represents the membrane potential of the neuron and u represents a membrane59

recovery variable, which accounts for the activation of K+ionic currents and inactivation of Na+60

ionic currents, and it provides negative feedback to v. Here, we use the parameters a = 0.2, b =61

2, c = −56, d = −16, I = −99. After the spike reaches its apex (+30mV), the membrane voltage62

and the recovery variable are reset. If v skips over 30 , then it first is reset to 30 , and then to c so that63

all spikes have equal magnitudes.64

D.3 Rulkov dynamics65

The Rulkov model is a map-based neuron model with a surprising abundance of features, such
as periodic and chaotic spiking, and bursting. The Rulkov map is an abstract mathematical
model, although it shares some specific features with others neuron models closer to experimen-
tal observations. We use synthetic time series where each neuron is simulated using the Rulkov
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model [S9], which has two variables, u and w, evolving at different timescales as described by
x(t+ 1) = (u(t+ 1), v(t+ 1)) = F (x(t)) = (F1(u(t), w(t)), F2(u(t), w(t))), with

F1(u,w) =
β

1 + u2
+ w + Γ (u) and F2(u,w) = w − νu− σ.

The two variables reflect the two important time scales of a neuron model. The variable u represents
the fast dynamics of the system and usually models the membrane voltage of the neuron, whereas w is
the slow variable and represents the variations of the ionic recovery currents. Different combinations
of parameters σ and β give rise to different dynamical states of the neuron, such as resting, tonic
spiking, and chaotic bursts. As for the coupling, we consider chemical synaptic coupling, that is,
H (xi,xj) = (h (ui, uj) , 0) with h (ui, uj) = (ui − Vs) Γ (uj), where

Γ (uj) =
1

1 + exp {λ (uj −Θs)}

and electrical synaptic coupling, H (xi,xj) = (h (ui, uj) , 0), with h (ui, uj) = uj − ui. In the66

chemical coupling, Vs is a parameter called the reverse potential. Here, we use the parameters with67

β = 4.4, σ = ν = 0.001,, Vs = 20, Θs = −0.25 and λ = 10.68

D.4 FitzHugh-Nagumo dynamics69

A FitzHugh-Nagumo neuron comprises a two-dimensional system of smooth ODEs, so cannot exhibit
autonomous chaotic dynamics and bursting. Adding noise allows for stochastic bursting [S10]. The
equations governing the FitzHugh-Nagumo neuronal network dynamics are

v̇ = a+ bv + cv2 + dv3 − u+ Γ

u̇ = ε(ev − u)

with the coupling term
Γ(vi) = −gc

∑N
j=1 Bij (vj − vi) .

The FitzHugh-Nagumo dynamics capture the firing behaviors of neurons with two components.70

The first component v represents the membrane potential, which contains self- and interaction71

dynamics, and the second component u represents a recovery variable. To simulate the shape of72

each spike, the time step in the model must be relatively small, e.g., τ = 0.25 ms. Here, we use73

the parameters a = 0.28, b = 1, c = 0, d = −1, ε = 0.04, e = 12.5. Moreover, the parameters in74

the FitzHugh–Nagumo model can be tuned so that the model describes spiking dynamics of many75

resonator neurons.76

D.5 Time series generation77

To obtain the time series from above neural dynamics, we use Runge-Kutta method with variable-step78

to solve the ordinary differential equation of Hindmarsh-Rose and FitzHugh-Nagumo with sample79

interval τ = 0.1. Izhikevich dynamics are solved by the Euler formula with time step h = 0.05. For80

the Rulkov map we consider a unit sample interval.81

E Real Connectomes Information82

E.1 Cat connectome83

The cat connectivity dataset comprises a description of cortical connections in the cat brain [S11],84

a connectivity set resulting from a comprehensive literature search of anatomical tracing studies in85

the cat cortex. Detailed information on the delineated regions, including information on the used86

parcellation scheme, abbreviations and possible overlap with other parcellation schemes, as well87

as information on the physiological characteristics of these regions, is given in the appendix of the88

original study Ref. [S11]. The connectivity dataset incorporates data of one hemisphere, including 6589

regions and 1139 interregional macroscopic axonal projections [S12].90
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E.2 Macaque connectome91

The macaque connectivity data set used in this study comprises anatomical data from 410 tract92

tracing studies collated in the online neuroinformatics data base CoCoMac (http://cocomac.org), first93

analyzed and made publicly available in Ref. [S13]. In the present study they focused primarily94

on an analysis of the connectivity among regions of the cerebral cortex. The cortical connection95

matrix was extracted from the primary connection data by removing all subcortical (thalamus, basal96

ganglia, brainstem) regions. In addition, regions that did not maintain at least one incoming and97

one outgoing connection were also removed to ensure that the network was strongly connected.98

The remaining connection data set used in this study consisted of 242 regions and 4090 directed99

projections represented in binary format (connection present = 1, connection absent = 0) [S14].100

E.3 Mouse connectome101

The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-102

expressing adeno-associated viral vectors to trace axonal projections from defined regions and103

cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons104

throughout the brain. This systematic and standardized approach allows spatial registration of indi-105

vidual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain106

connectivity matrix. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational107

resource for structural and functional investigations into the neural circuits that support behavioural108

and cognitive processes in health and disease [S15].109

E.4 C.elegans connectome110

All the chemical and gap junction synapses, the connectome, in the posterior nervous system of the111

C.elegans adult male are identified by serial section electron microscopy [S16]. The feasibility of112

comprehensive synapse-level nervous system reconstruction by this method was a primary reason for113

the initial selection of C. elegans as an experimental model. They developed a PC-based software114

platform to facilitate assembly of a connectome from electron micrographic images. The connectome115

is of a single adult animal and was produced from a series of 5000 serial thin sections of 70 to 90 nm116

encompassing the posterior half of the body.117

E.5 Rat connectome118

The Rat Connectome used in this work represents connection patterns between distinct gray matter119

regions in a rat brain, and was presented as an example of the Brain Architecture Knowledge Manage-120

ment System (BAMS) [S17], where it is called the rat macroconnectome. The rat (macro)connectome121

was inferred by combining data from neuroscientific literature as well as connectivity reports inserted122

into BAMS [S17].123

E.6 Drosophila connectome124

Electron microscopy was used to collect the connectome of a Drosophila brain [S18]. The brain was125

cut into very thin slices and photographed with an electron microscope. A three-dimensional map of126

the neurons and connections in the brain was then reconstructed from these images using machine127

learning algorithms. By matching reconstructed neurons to examples from light microscopy, they128

assigned neurons to cell types and assembled a connectome of the repeating module of the medulla.129

Information about the above datasets is summarized in Table 1. We access all the brain connectomes130

from NeuroData’s Graph DataBase from https://neurodata.io/project/connectomes/.131
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Table 1: Statistical information of six real networks: dataset name, type of network, number of nodes,
number of edges, mean degree ⟨k⟩, and data acquisition method.

Dataset Region #Nodes #Edges Mean degree Sensor

Cat Cerebral Cortex 65 1139 17.5 Tract tracing studies
Macaque Cerebral Cortex 242 4090 16.9 Tract tracing studies
Mouse Cerebral Cortex 195 214 1.1 Electron microscopy

C. elegans Neural 272 4451 16.4 Electron Microscopy
Rat Gray matter 503 30088 59.8 Neuroanatomical experiments

Drosophila Medulla 1781 33641 18.9 Electron Microscopy

F Additional Experiments132

Performance on real coupled networks. Results are provided in Table 2345 as the supplement of133

main text Table 2.134

Table 2: Performance comparison on Macaque connectome. Each point contains the mean and
standard deviation of AUROC.

HR IZH RULKOV FHN

GRANGER 0.50±0.01 0.48±0.02 0.54±0.02 0.54±0.01

TE KRASKOV 0.62±0.02 0.50±0.02 0.60±0.02 0.45±0.02

CCM 0.44±0.02 0.51±0.01 0.55±0.01 0.56±0.01

LATENT CCM 0.47±0.01 0.51±0.01 0.53±0.02 0.53±0.01

PCMCI 0.47±0.01 0.50±0.02 0.50±0.01 0.52±0.01

PCMCI+ 0.47±0.02 0.51±0.02 0.52±0.02 0.52±0.01

CLASSIFIER 0.72±0.04 0.57±0.04 0.74±0.03 0.60±0.04

TENE 0.53±0.07 0.47±0.02 0.71±0.03 0.51±0.05

ATEN 0.90±0.1 0.63±0.14 0.79±0.10 0.84±0.13

Table 3: Performance comparison on Mouse connectome.

HR IZH RULKOV FHN

GRANGER 0.62±0.03 0.54+0.03 0.89+0.01 —

TE KRASKOV 0.50±0.02 0.54±0.03 0.86±0.03 —

CCM 0.55±0.05 0.47±0.04 0.58±0.01 —

LATENT CCM 0.47±0.01 0.51±0.01 0.53±0.02 —

PCMCI 0.50±0.02 0.50±0.02 0.77±0.03 —

PCMCI+ 0.53±0.03 0.50±0.05 0.79±0.02 —

CLASSIFIER 0.78±0.07 0.64±0.05 0.99±0.01 —

TENE 0.53±0.04 0.51±0.03 0.80±0.08 —

ATEN 0.72±0.12 0.63±0.20 0.90±0.09 —
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Table 4: Performance comparison on Cat connectome.

HR IZH RULKOV FHN

GRANGER 0.50±0.01 0.59±0.02 0.65±0.01 0.53±0.01

TE KRASKOV 0.62±0.02 0.50±0.02 0.60±0.02 0.45±0.02

CCM 0.75±0.01 0.51±0.01 0.57±0.01 0.68±0.02

LATENT CCM 0.69±0.02 0.48±0.03 0.51±0.01 0.64±0.02

PCMCI 0.53±0.01 0.49±0.01 0.66±0.01 0.53±0.01

PCMCI+ 0.57±0.01 0.52±0.02 0.63±0.02 0.56±0.01

CLASSIFIER 0.72±0.04 0.57±0.04 0.74±0.03 0.60±0.04

TENE 0.53±0.07 0.47±0.02 0.71±0.03 0.51±0.05

ATEN 0.84±0.13 0.62±0.10 0.89±0.07 0.75±0.13

Table 5: Performance comparison on Rat connectome.

HR IZH RULKOV FHN

GRANGER 0.50±0.01 0.50±0.01 0.46±0.01 0.52±0.02

TE KRASKOV 0.56±0.01 0.56±0.01 0.43±0.02 0.51±0.02

CCM 0.63±0.02 0.54±0.05 0.50±0.01 0.52±0.03

LATENT CCM 0.63±0.02 0.55±0.01 0.53±0.02 0.51±0.03

PCMCI 0.51±0.01 0.53±0.01 0.46±0.01 0.49±0.02

PCMCI+ 0.51±0.02 0.55±0.01 0.44±0.02 0.49±0.01

CLASSIFIER 0.86±0.04 0.78±0.07 0.82±0.03 0.77±0.06

TENE 0.89±0.03 0.32±0.10 0.86±0.03 0.70±0.06

ATEN 0.94±0.06 0.93±0.03 0.90±0.06 0.85±0.11

We observe that our method usually substantially improves reconstruction performance on real135

coupled networks, exception for the Mouse connectome with very low mean degree (see Table. 1).136
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