
A Omitted Proofs

In this section we include all of the proofs omitted from the main body. For the convenience of the
reader, we will restate each claim before proceeding with its proof.

A.1 Preliminary Proofs

We commence with the proof of Proposition 1.

Proposition 1. For any η ≥ 0 and at all times t ∈ N, the OFTRL optimization problem on Line 3 of
Algorithm 1 admits a unique optimal solution (λ(t),y(t)) ∈ X̃ ∩ Rd+1

>0 .

Proof. Uniqueness follow immediately from strict convexity. In the rest of the proof we focus on
the existence part.

We start by showing that there exists a point x̃ ∈ X̃ whose coordinates are all strictly positive.
By hypothesis (see Section 3.1), for every coordinate r ∈ [[d]], there exists a point xr such that
xr[r] > 0. Hence, by convexity of X ⊆ [0,+∞)d and by definition of X̃ , the point

(1,x◦) :=

(
1,

1

d

d∑
r=1

xr

)
.

is such that (1,x◦) ∈ X̃ ∩ Rd>0.

Let now M be the ℓ∞ norm of the linear part in the OFTRL step (Line 3 of Algorithm 1). Then, a
lower bound on the optimal value v⋆ of objective is obtained by plugging in the point (1,x◦) at least

v⋆ ≥ −M(1 + ∥X∥1) +
d∑
r=1

logx◦[r]. (9)

Let now

m := exp

{
−(2M + d)(1 + ∥X∥1) +

d∑
r=1

logx◦[r]

}
> 0. (10)

We will show that any point (λ,y) /∈ [m,+∞) ∩ X̃ cannot be optimal for the OFTRL objective.
Indeed, take a point (λ,y) /∈ [m,+∞) ∩ X̃ . Then, at least one coordinate of (λ,y) is strictly less
than m. If λ < m, then the objective value at (λ,y) is at most

Mλ+M∥X∥1 + log λ+
d∑
r=1

log y[r] ≤M(1 + ∥X∥1) + logm+
d∑
r=1

log ∥X∥1

≤M(1 + ∥X∥1) + logm+ d(∥X∥1 − 1)

< (M + d)(1 + ∥X∥1) + logm

= −M(1 + ∥X∥1) +
d∑
r=1

logx◦[r] (from (10))

≤ v∗, (from (9))

where the first inequality follows from upper bounding any coordinate of y with ∥X∥1, and the
second inequality follows from using the inequality log z ≤ z − 1, valid for all z ∈ (0,+∞).
Similarly, if y[s] < m for some s ∈ [[d]], then we can upper bound the objective value at (λ,y) as

M +M∥X∥1 + log 1 +

d∑
r=1

log y[r] ≤M(1 + ∥X∥1) + logm+

d∑
r=1

log ∥X∥1

≤M(1 + ∥X∥1) + (d− 1)(∥X∥1 − 1) + logm

< (M + d)(1 + ∥X∥1) + logm ≤ v∗.

15



So, in either case, we see that no optimal point can have any coordinate strictly less than m. Con-
sequently, the maximizer of the OFTRL step lies in the set S := [m,+∞)d+1 ∩ X̃ . Since both
[m,+∞)d+1 and X̃ are closed, and since X̃ is bounded by hypothesis, the set S is compact. Fur-
thermore, note that S is nonempty, as (1,x◦) ∈ S, as for any s ∈ [[d]]

logm = −(2M + d)(1 + ∥X∥1) +
d∑
r=1

logx◦[r]

≤ −(2M + d)(1 + ∥X∥1) + logx◦[s] + (d− 1) log ∥X∥1
≤ −(2M + d)(1 + ∥X∥1) + logx◦[s] + (d− 1)(∥X∥1 − 1)

≤ logx◦[s],

implying that (1,x◦) ∈ [m,+∞)d+1. Since S is compact and nonempty and the objective function
is continuous, the optimization problem attains an optimal solution on S by virtue of Weierstrass’
theorem.

Theorem 2. For any time T ∈ N it holds that R̃eg
T
= max{0,RegT }. In particular, it follows that

R̃eg
T ≥ 0 and RegT ≤ R̃eg

T
for any T ∈ N.

Proof. First, by definition of ũ(t) in Line 6, it follows that for any t,〈
ũ(t),

(
λ(t)

y(t)

)〉
=

〈
ũ(t),

(
1

x(t)

)〉
= 0.

As a result, we have that max{0,RegT } is equal to

max

{
0, max

x∗∈X

T∑
t=1

⟨u(t),x∗ − x(t)⟩

}
= max

{
0, max

x∗∈X

T∑
t=1

〈
ũ(t),

(
1
x∗

)
−
(

1
x(t)

)〉}

=max

{
0, max

x∗∈X

T∑
t=1

〈
ũ(t),

(
1
x∗

)〉}
= max

(λ∗,y∗)∈X̃

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)〉

= max
(λ∗,y∗)∈X̃

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−
(
λ(t)

y(t)

)〉
= R̃eg

T
,

as we wanted to show.

A.2 Analysis of OFTRL with Logarithmic Regularizer

For notational convenience, we define the log-regularizer ψ : X̃ → R≥0 as

ψ(x̃) := −1

η

d+1∑
r=1

log x̃[r],

and its induced Bregman divergence

Dψ (x̃ ∥ z̃) := 1

η

d+1∑
r=1

h

(
x̃[r]

z̃[r]

)
, where h(a) = a− 1− ln(a).

Moreover, we define

x̃(t) = argmax
x̃∈X̃

−Ft(x̃) = argmin
x̃∈X̃

Ft(x̃), where Ft(x̃) = −
〈
Ũ (t) + ũ(t−1), x̃

〉
+ ψ(x̃).

(11)

We note that Ft is a convex function for each t and x̃(t) is exactly equal to
(
λ(t)

y(t)

)
computed by

Algorithm 1. Further, we define an auxiliary sequence {z̃(t)}t=1,2,... defined as follows.

z̃(t) = argmax
x̃∈X̃

−Gt(x̃) = argmin
x̃∈X̃

Gt(x̃), where Gt(x̃) = −
〈
Ũ (t), x̃

〉
+ ψ(x̃). (12)

16



Similarly, Gt is a convex function for each t. We also recall the primal and dual norm notation:

∥z̃∥t =
d+1∑
r=1

(
z̃[r]

x̃(t)[r]

)2

, ∥z̃∥∗,t =
d+1∑
r=1

(
x̃(t)[r]z̃[r]

)2
.

Finally, for a (d + 1) × (d + 1) positive definite matrix M, we use ∥z̃∥M to denote the induced
quadratic norm

√
z̃⊤Mz̃. We are now ready to establish Proposition 2.

Proposition 2 (RVU bound of OFTRL in local norms). Let R̃eg
T

be the regret cumulated up to time
T by the internal OFTRL algorithm. If ∥u(t)∥∞∥x∥1 ≤ 1 at all times t ∈ [[T ]], then for any time
horizon T ∈ N and learning rate η ≤ 1

50 ,

R̃eg
T ≤ 4 +

(d+ 1) log T

η
+ 5η

T∑
t=1

∥∥∥ũ(t) − ũ(t−1)
∥∥∥2
∗,t
− 1

27η

T−1∑
t=1

∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥2
t

.

Proof of Proposition 2. For any comparator x̃ ∈ X̃ , define x̃′ = T−1
T · x̃+ 1

T · x̃
(1) ∈ X̃ , where we

recall x̃(1) = argminx̃∈X̃ F1(x̃) = argminx̃∈X̃ ψ(x̃). Then, we have

T∑
t=1

〈
x̃− x̃(t), ũ(t)

〉
=

T∑
t=1

〈
x̃− x̃′, ũ(t)

〉
+

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
=

1

T

T∑
t=1

〈
x̃− x̃(1), ũ(t)

〉
+

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
≤ 4 +

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
,

where the last inequality follows from Cauchy-Schwarz together with the assumption that
∥u(t)∥∞ ≤ 1

∥X∥1
.

Now, by standard Optimistic FTRL analysis (see Lemma 2), the last term
∑T
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
(cumulative regret against x̃′) is bounded by
T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
≤ ψ(x̃′)− ψ(x̃(1)) +

T∑
t=1

〈
z̃(t+1) − x̃(t), ũ(t) − ũ(t−1)

〉
−

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

.

For the term ψ(x̃′)− ψ(x̃(1)), a direct calculation using definitions shows

ψ(x̃′)− ψ(x̃(1)) =
1

η

d+1∑
i=1

log
x̃(1)[i]

x̃′[i]
≤ d+ 1

η
log T.

For the other terms, we apply Lemma 3 and Lemma 5, which completes the proof.

Lemma 2. The update rule (11) ensures the following for any x̃ ∈ X̃ :
T∑
t=1

〈
x̃− x̃(t), ũ(t)

〉
≤ ψ(x̃)− ψ(x̃(1)) +

T∑
t=1

〈
z̃(t+1) − x̃(t), ũ(t) − ũ(t−1)

〉
−

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

.

Proof. First note that for any convex function F : X̃ → R and a minimizer x̃⋆, we have for any
x̃ ∈ X̃ :

F (x̃⋆) = F (x̃)− ⟨∇F (x̃⋆), x̃− x̃⋆⟩ −DF (x̃, x̃
⋆) ≤ F (x̃)−DF (x̃, x̃

⋆),

17



where DF is the Bregman Divergence induced by F and the inequality is by the first-order optimal-
ity. Using this fact and the optimality of z̃(t), we have

Gt(z̃
(t)) ≤ Gt(x̃(t))−Dψ

(
x̃(t)

∥∥∥ z̃(t)
)

= Ft(x̃
(t)) +

〈
x̃(t), ũ(t−1)

〉
−Dψ

(
x̃(t)

∥∥∥ z̃(t)
)

Similarly, using the optimality of x̃(t), we have

Ft(x̃
(t)) ≤ Ft(z̃(t+1))−Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
)

= Gt+1(z̃
(t+1)) +

〈
z̃(t+1), ũ(t) − ũ(t−1)

〉
−Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
)

Combining the inequalities and summing over t, we have

G1(z̃
(1)) ≤ GT+1(z̃

(T+1)) +

T∑
t=1

(〈
x̃(t), ũ(t)

〉
+
〈
z̃(t+1) − x̃(t), ũ(t) − ũ(t−1)

〉)
+

T∑
t=1

(
−Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
−Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

.

Observe thatG1(z̃
(1)) = ψ(x̃(1)) andGT+1(z̃

(T+1)) ≤ −
〈
x̃, Ũ (T+1)

〉
+ψ(x̃). Rearranging then

proves the lemma.

Lemma 3. If η ≤ 1
50 , then we have∥∥∥z̃(t+1) − x̃(t)

∥∥∥
t
≤ 5η

∥∥∥ũ(t) − ũ(t−1)
∥∥∥
∗,t
≤ 10

√
2η ≤ 15η, (13)∥∥∥x̃(t+1) − x̃(t)

∥∥∥
t
≤ 5η

∥∥∥2ũ(t) − ũ(t−1)
∥∥∥
∗,t
≤ 15

√
2η ≤ 22η. (14)

Proof. The second part of both inequalities is clear by definitions:

∥∥∥ũ(t) − ũ(t−1)
∥∥∥2
∗,t

=
(
λ(t)

(〈
x(t),u(t)

〉
−
〈
x(t−1),u(t−1)

〉))2
+

d∑
r=1

(
y(t)[r]

(
u(t)[r]− u(t−1)[r]

))2
≤ 4(λ(t))2 +

4

∥X∥21

d∑
r=1

(
y(t)[r]

)2
≤ 8,

where we use
〈
x(τ),u(τ)

〉
≤ ∥x(τ)∥1∥u(τ)∥∞ ≤ 1 and |u(τ)[r]| ≤ 1

∥X∥1
for any time τ and any

coordinate r by the assumption, and similarly,

∥∥∥2ũ(t) − ũ(t−1)
∥∥∥2
∗,t

=
(
λ(t)

(
2
〈
x(t),u(t)

〉
−
〈
x(t−1),u(t−1)

〉))2
+

d∑
r=1

(
y(t)[r]

(
2u(t)[r]− u(t−1)[r]

))2
≤ 9(λ(t))2 +

9

∥X∥21

d∑
r=1

(
y(t)[r]

)2
≤ 18

To prove the first inequality in Eq. (13), let Et =
{
x̃ :
∥∥x̃− x̃(t)

∥∥
t
≤ 5η

∥∥ũ(t) − ũ(t−1)
∥∥
∗,t

}
.

Noticing that z̃(t+1) is the minimizer of the convex function Gt+1, to show z̃(t+1) ∈ Et, it suf-
fices to show that for all x̃ on the boundary of Et, we have Gt+1(x̃) ≥ Gt+1(x̃

(t)). Indeed, using

18



Taylor’s theorem, for any such x̃, there is a point ξ on the line segment between x̃(t) and x̃ such that

Gt+1(x̃) = Gt+1(x̃
(t)) +

〈
∇Gt+1(x̃

(t)), x̃− x̃(t)
〉
+

1

2

∥∥∥x̃− x̃(t)
∥∥∥2
∇2Gt+1(ξ)

= Gt+1(x̃
(t))−

〈
ũ(t) − ũ(t−1), x̃− x̃(t)

〉
+
〈
∇Ft(x̃(t)), x̃− x̃(t)

〉
+

1

2

∥∥∥x̃− x̃(t)
∥∥∥2
∇2ψ(ξ)

≥ Gt+1(x̃
(t))−

〈
ũ(t) − ũ(t−1), x̃− x̃(t)

〉
+

1

2

∥∥∥x̃− x̃(t)
∥∥∥2
∇2ψ(ξ)

(by the optimality of x̃(t))

≥ Gt+1(x̃
(t))−

∥∥∥ũ(t) − ũ(t−1)
∥∥∥
∗,t

∥∥∥x̃− x̃(t)
∥∥∥
t
+

1

2

∥∥∥x̃− x̃(t)
∥∥∥2
∇2ψ(ξ)

.

(by Hölder’s inequality)

≥ Gt+1(x̃
(t))−

∥∥∥ũ(t) − ũ(t−1)
∥∥∥
∗,t

∥∥∥x̃− x̃(t)
∥∥∥
t
+

2

9η

∥∥∥x̃− x̃(t)
∥∥∥2
t

(⋆)

= Gt+1(x̃
(t)) +

5

9
η
∥∥∥ũ(t) − ũ(t−1)

∥∥∥2
∗,t

(
∥∥x̃− x̃(t)

∥∥
t
= 5η

∥∥ũ(t) − ũ(t−1)
∥∥
∗,t)

≥ Gt+1(x̃
(t)).

Here, the inequality (⋆) holds because Lemma 4 (together with the condition η ≤ 1
50 ) shows

1
2 x̃

(t)[i] ≤ x̃[i] ≤ 3
2 x̃

(t)[i], which implies 1
2 x̃

(t)[i] ≤ ξ[i] ≤ 3
2 x̃

(t)[i] as well, and thus
∇2ψ(ξ) ⪰ 4

9∇
2ψ(x̃(t)). This finishes the proof for Eq. (13). The first inequality of Eq. (14)

can be proven in the same manner.

Proposition 3 (Multiplicative Stability). For any time t ∈ N and learning rate η ≤ 1
50 , if

∥u(t)∥∞∥x∥1 ≤ 1,

∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
t

≤ 22η.

Proof. The statement is proved in Lemma 3.

Lemma 4. If x̃ satisfies ∥x̃− x̃(t)∥t ≤ 1
2 , then 1

2 x̃
(t)[i] ≤ x̃[i] ≤ 3

2 x̃
(t)[i] for every coordinate i.

Proof. By definition, ∥x̃ − x̃(t)∥t ≤ 1
2 implies for any i, |x̃[i]−x̃(t)[i]|

x̃(t)[i]
≤ 1

2 , and thus 1
2 x̃

(t)[i] ≤
x̃[i] ≤ 3

2 x̃
(t)[i].

Lemma 5. If η ≤ 1
50 , then we have

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))
≥ 1

27η

T−1∑
t=1

∥∥∥x̃(t+1) − x̃(t)
∥∥∥2
t
.

19



Proof. Recall h(a) = a− 1− ln(a) and Dψ (x̃ ∥ z̃) = 1
η

∑d+1
i=1 h

(
x̃[i]
z̃[i]

)
. We proceed as

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

≥
T−1∑
t=1

(
Dψ

(
x̃(t+1)

∥∥∥ z̃(t+1)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

=
1

η

T−1∑
t=1

d+1∑
i=1

(
h

(
x̃(t+1)[i]

z̃(t+1)[i]

)
+ h

(
z̃(t+1)[i]

x̃(t)[i]

))

≥ 1

6η

T−1∑
t=1

d+1∑
i=1

(
(x̃(t+1)[i]− z̃(t+1)[i])2(

z̃(t+1)[i]
)2 +

(z̃(t+1)[i]− x̃(t)[i])2

(x̃(t)[i])2

)
(h(y) ≥ (y−1)2

6 for y ∈ [ 13 , 3])

≥ 2

27η

T−1∑
t=1

d+1∑
i=1

(
(x̃(t+1)[i]− z̃(t+1)[i])2(

x̃(t)[i]
)2 +

(z̃(t+1)[i]− x̃(t)[i])2

(x̃(t)[i])2

)

≥ 1

27η

T−1∑
t=1

d+1∑
i=1

(
(x̃(t+1)[i]− x̃(t)[i])2(

x̃(t)[i]
)2

)
=

1

27η

T−1∑
t=1

∥∥∥x̃(t+1) − x̃(t)
∥∥∥2
t
.

Here, the second and the third inequality hold because by Lemma 3 and Lemma 4, we have 1
2 ≤

z̃(t+1)[i]
x̃(t)[i]

≤ 3
2 and 1

2 ≤
x̃(t+1)[i]
x̃(t)[i]

≤ 3
2 , and thus 1

3 ≤
x̃(t+1)[i]
z̃(t+1)[i]

≤ 3.

A.3 RVU Bound in the Original Space

Next, we establish an RVU bound in the original (unlifted) space, namely Corollary 1. To this end,
we first proceed with the proof of Lemma 1, which boils down to the following simple claim.

Lemma 6. Let (λ,y), (λ′,y′) ∈ X̃ ∩ Rd+1
>0 be arbitrary points such that∥∥∥∥(λ′y′

)
−
(
λ
y

)∥∥∥∥
(λ,y)

≤ 1

2
.

Then, ∥∥∥∥yλ − y′

λ′

∥∥∥∥
1

≤ 4∥X∥1 ·
∥∥∥∥(λ′y′

)
−
(
λ
y

)∥∥∥∥
(λ,y)

.

Proof. Let µ be defined as

µ := max

{∣∣∣∣λ′λ − 1

∣∣∣∣ ,max
r∈[[d]]

∣∣∣∣y′[r]

y[r]
− 1

∣∣∣∣} . (15)

By definition, ∣∣∣∣λ′λ − 1

∣∣∣∣ ≤ µ,
which in turn implies that

(1− µ)λ ≤ λ′ ≤ (1 + µ)λ. (16)

Similarly, for any r ∈ [[d]],
(1− µ)y[r] ≤ y′[r] ≤ (1 + µ)y[r]. (17)

As a result, combining (16) and (17) we get that for any r ∈ [[d]],

y′[r]

λ′
− y[r]

λ
≤
(
1 + µ

1− µ
− 1

)
y[r]

λ
≤ 4µ

y[r]

λ
= 4µx[r],

20



since µ ≤ 1
2 . Similarly, by (16) and (17),

y[r]

λ
− y′[r]

λ′
≤
(
1− 1− µ

1 + µ

)
y[r]

λ
≤ 2µ

y[r]

λ
= 2µx[r].

Thus, it follows that ∣∣∣∣y′[r]

λ′
− y[r]

λ

∣∣∣∣ ≤ 4µx[r],

in turn implying that

∥x′ − x∥1 =

d∑
r=1

∣∣∣∣y′[r]

λ′
− y[r]

λ

∣∣∣∣ ≤ 4µ

d∑
r=1

x[r] ≤ 4µ∥X∥1. (18)

Moreover, by definition of (15),

(µ)
2 ≤

∥∥∥∥(λ′y′

)
−
(
λ
y

)∥∥∥∥2
t

.

Finally, combining this bound with (18) concludes the proof.

Lemma 1. For any time t ∈ N and learning rate η ≤ 1
50 , if ∥u(t)∥∞∥x∥1 ≤ 1,

∥x(t+1) − x(t)∥1 ≤ 4∥X∥1
∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
t

.

Proof. Since η ≤ 1
50 by assumption, we have∥∥∥x(t+1) − x(t)

∥∥∥
t
≤ 22η <

1

2
.

Hence, we are in the domain of applicability of Lemma 6, which immediately yields the statement.

Corollary 1 (RVU bound in the original (unlifted) space). Fix any time T ∈ N, and suppose that
∥u(t)∥∞ ≤ B for any t ∈ [[T ]]. If η ≤ 1

256B∥X∥1
,

R̃eg
T ≤ 6B∥X∥1+

(d+ 1) log T

η
+16η∥X∥21

T−1∑
t=1

∥u(t+1)−u(t)∥2∞−
1

512η∥X∥21

T−1∑
t=1

∥x(t+1)−x(t)∥21.

Proof. At first, assume that ∥u(t)∥∞ ≤ 1/∥X∥1. By definition of the induced dual local norm in
(3),

∥ũ(t) − ũ(t−1)∥2∗,t ≤ (⟨x(t),u(t)⟩ − ⟨x(t−1),u(t−1)⟩)2(λ(t))2 +
d∑
r=1

(y[r])2(u(t)[r]− u(t−1)[r])2

≤ (⟨x(t),u(t)⟩ − ⟨x(t−1),u(t−1)⟩)2 +
d∑
r=1

(x[r])2(u(t)[r]− u(t−1)[r])2

≤
(
⟨x(t),u(t)⟩ − ⟨x(t−1),u(t−1)⟩

)2
+ ∥X∥21∥u(t) − u(t−1)∥2∞, (19)

for any t ≥ 2. Further, by Young’s inequality,(
⟨x(t),u(t)⟩ − ⟨x(t−1),u(t−1)⟩

)2
≤ 2

(
⟨x(t),u(t) − u(t−1)⟩

)2
+ 2

(
⟨x(t) − x(t−1),u(t−1)⟩

)2
≤ 2∥X∥21∥u(t) − u(t−1)∥2∞ +

2

∥X∥21
∥x(t) − x(t−1)∥21.

Combining with (19),

∥ũ(t) − ũ(t−1)∥2∗,t ≤ 3∥X∥21∥u(t) − u(t−1)∥2∞ +
2

∥X∥21
∥x(t) − x(t−1)∥21,

21



for t ≥ 2, since ∥u∥∞ ≤ 1
∥X∥1

(by assumption). Further, ∥ũ(1) − ũ(0)∥2∗,t = ∥ũ(1)∥2∗,t ≤ 2.

Combining with Proposition 2 and Lemma 1, we get that R̃eg
T

is upper bounded by

6 +
(d+ 1) log T

η
+ 16η∥X∥21

T−1∑
t=1

∥u(t+1) − u(t)∥2∞ +
1

∥X∥21

(
10η − 1

432η

) T−1∑
t=1

∥x(t+1) − x(t)∥21

≤ 6 +
(d+ 1) log T

η
+ 16η∥X∥21

T−1∑
t=1

∥u(t+1) − u(t)∥2∞ −
1

512η∥X∥21

T−1∑
t=1

∥x(t+1) − x(t)∥21.

Finally, we relax the assumption that ∥u(t)∥∞ ≤ 1/∥X∥1. In that case, one can reduce to the
above analysis by first rescaling all utilities by the factor 1/(B∥X∥1)—which in turn is equivalent
to rescaling the learning rate η by 1/(B∥X∥1). We then need to correct for the fact that the norm
of the difference of utilities gets rescaled by a factor 1/(B∥X∥1)2, and that the regret R̃eg

T
with

respect to the original utilities is a factor B∥X∥1 larger than the regret measured on the rescaled
utilities. Taking these considerations into account leads to the statement.

A.4 Main Result: Proof of Theorem 4

Finally, we are ready to establish Theorem 4. To this end, the main ingredient is the bound on the
second-order path lengths predicted by Theorem 3, which is recalled below.
Theorem 3. Suppose that Assumption 1 holds for some parameters B,L > 0. If all players follow
LRL-OFTRL with learning rate η ≤ min

{
1

256B∥X∥1
, 1
128nL∥X∥2

1

}
, where ∥X∥1 := maxi∈[[n]] ∥Xi∥1,

then
n∑
i=1

T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
1 ≤ 6144nηB∥X∥31 + 1024n(d+ 1)∥X∥21 log T. (4)

Proof. By Assumption 1, it follows that for any player i ∈ [[n]],

(
∥u(t+1)

i − u
(t)
i ∥∞

)2
≤

L n∑
j=1

∥x(t+1)
j − x

(t)
j ∥1

2

≤ L2n

n∑
j=1

∥x(t+1)
j − x

(t)
j ∥

2
1,

by Jensen’s inequality. Hence, by Corollary 1 the regret RegTi of each player i ∈ [[n]] can be upper
bounded by

6B∥X∥1+
(d+ 1) log T

η
+16η∥X∥21L2n

n∑
j=1

T−1∑
t=1

∥x(t+1)
j −x(t)

j ∥
2
1−

1

512η∥X∥21

T−1∑
t=1

∥x(t+1)
i −x(t)

i ∥
2
1,

Summing over all players i ∈ [[n]], we have that
n∑
i=1

R̃eg
T

i ≤ 6nB∥X∥1 + n
(d+ 1) log T

η
+

n∑
i=1

(
16η∥X∥21L2n2 − 1

512η∥X∥21

) T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
1

≤ 6nB∥X∥1 + n
(d+ 1) log T

η
− 1

1024η∥X∥21

n∑
i=1

T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
1,

since η ≤ 1
256nL∥X∥2

1
. Finally, the theorem follows since

∑n
i=1 R̃eg

T

i ≥ 0, which in turn follows
directly from Theorem 2.

Theorem 4 (Detailed Version of Theorem 1). Suppose that Assumption 1 holds for some parameters
B,L > 0. If all players follow LRL-OFTRL with learning rate η = min

{
1

256B∥X∥1
, 1
128nL∥X∥2

1

}
,

then for any T ∈ N the regret RegTi of each player i ∈ [[n]] can be bounded as

RegTi ≤ 12B∥X∥1 + 256(d+ 1)max
{
nL∥X∥21, 2B∥X∥1

}
log T. (5)

Furthermore, the algorithm can be adaptive so that if player i is instead facing adversarial utilities,
then RegTi = O(

√
T ).

22



Proof. First of all, by Assumption 1 we have that for any player i ∈ [[n]],

∥u(t+1)
i − u

(t)
i ∥

2
∞ ≤

L n∑
j=1

∥x(t+1)
j − x

(t)
j ∥1

2

≤ L2n

n∑
j=1

∥x(t+1)
j − x

(t)
j ∥

2
1.

Hence, summing over all t,
T−1∑
t=1

∥u(t+1)
i − u

(t)
i ∥

2
∞ ≤ L2n

T−1∑
t=1

n∑
j=1

∥x(t+1)
j − x

(t)
j ∥

2
1

≤ 6144n2L2ηB∥X∥31 + 1024n2L2(d+ 1)∥X∥21 log T,
where the last bound uses Theorem 3. As a result, from Corollary 1, if η = 1

128nL∥X∥2
1

,

R̃eg
T

i ≤ 6B∥X∥1 +
(d+ 1) log T

η
+ 16η∥X∥21

T−1∑
t=1

∥u(t+1)
i − u

(t)
i ∥

2
∞

≤ 12B∥X∥1 + 256(d+ 1)nL∥X∥21 log T.

Thus, the bound on RegTi follows directly since RegTi ≤ R̃eg
T

i by Theorem 2. The case where
η = 1

256B∥X∥1
is analogous.

Next, let us focus on the adversarial bound. Each player can simply check whether there exists a
time t ∈ [[T ]] such that

t−1∑
τ=1

∥u(τ+1)
i − u

(τ)
i ∥

2
∞ > 6144n2L2ηB∥X∥31 + 1024n2L2(d+ 1)∥X∥21 log t. (20)

In particular, we know from Theorem 3 that when all players follow the prescribed protocol (20)
will never by satisfied. On the other hand, if there exists time t so that (20) holds, then it suffices to
switch to any no-regret learning algorithm tuned to face adversarial utilities.

A.5 Extending the Analysis under Approximate Iterates

In this subsection we describe how to extend our analysis, and in particular Theorem 4, when the
OFTRL step of Algorithm 1 at time t is only computed with tolerance ϵ(t), in the sense of (6). We
start by extending Proposition 2 below.

Proposition 5 (Extension of Proposition 2). Let R̃eg
T

be the regret cumulated up to time T by the
internal OFTRL algorithm producing approximate iterates (λ(t),y(t)) ∈ X̃ , for any t ∈ [[T ]]. Then,
for any T ∈ N and learning rate η ≤ 1

50 ,

R̃eg
T ≤ 4 +

(d+ 1) log T

η
+ 5η

T∑
t=1

∥∥∥ũ(t) − ũ(t−1)
∥∥∥2
∗,t
− 1

27η

T−1∑
t=1

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

+2

T∑
t=1

∥∥∥∥∥
(
λ(t)

y(t)

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

,

where (
λ
(t)
⋆

y
(t)
⋆

)
:= argmax

(λ,y)∈X̃

{
η

〈
Ũ (t) + ũ(t−1),

(
λ
y

)〉
+ log λ+

d∑
r=1

log y[r]

}
.

Proof. Fix any (λ∗,y∗) ∈ X̃ . Then,
T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−
(
λ(t)

y(t)

)〉
=

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−

(
λ
(t)
⋆

y
(t)
⋆

)〉
+

T∑
t=1

〈
ũ(t),

(
λ
(t)
⋆

y
(t)
⋆

)
−
(
λ(t)

y(t)

)〉

≤
T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−

(
λ
(t)
⋆

y
(t)
⋆

)〉
+ 2

T∑
t=1

∥∥∥∥∥
(
λ(t)

y(t)

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

,

23



where the last inequality uses Hölder’s inequality along with the fact that ∥ũ(t)∥∗,(λ(t),y(t)) ≤ 2,
which in turn follows since ∥u(t)∥∞∥X∥1 ≤ 1 (by assumption). Finally, the proof follows as an
immediate consequence of Proposition 2.

We next proceed with the extension of Lemma 1.

Lemma 7 (Extension of Lemma 1). Suppose that ϵ(t) ≤ 1
8 , for any t ∈ [[T ]]. Then, for any time

t ∈ [[T − 1]] and learning rate η ≤ 1
256 ,

∥x(t+1) − x(t)∥1 ≤ 8∥X∥1

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

+ 16∥X∥1ϵ(t+1) + 8∥X∥1ϵ(t),

where x(t) := y(t)/λ(t).

Proof. First, by the triangle inequality,∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≥
∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

−

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−
(
λ(t+1)

y(t+1)

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

−

∥∥∥∥∥
(
λ
(t)
⋆

y
(t)
⋆

)
−
(
λ(t)

y(t)

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

.

Now given that η ≤ 1
50 , it follows from Proposition 3 that∥∥∥∥∥

(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≤ 1

2
,

which in turn—combined with Lemma 4—implies that∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−
(
λ(t+1)

y(t+1)

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≤ 2

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−
(
λ(t+1)

y(t+1)

)∥∥∥∥∥
(λ

(t+1)
⋆ ,y

(t+1)
⋆ )

.

Similarly, since ϵ(t) ≤ 1
8 , it follows that∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≥ 1

2

∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ(t),y(t))

.

As a result,∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≥ 1

2

∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ(t),y(t))

− 2ϵ(t+1) − ϵ(t). (21)

Next, we will prove that

max

{∣∣∣∣λ(t+1)

λ(t)
− 1

∣∣∣∣ ,max
r∈[[d]]

∣∣∣∣y(t+1)[r]

y(t)[r]
− 1

∣∣∣∣} ≤ 1

2
. (22)

Indeed, since ϵ(t), ϵ(t+1) ≤ 1
8 , it holds that∣∣∣∣1− λ(t)

λ
(t)
⋆

∣∣∣∣ ≤ 1

8
=⇒ 7

8
λ
(t)
⋆ ≤ λ(t) ≤

9

8
λ
(t)
⋆ ,

and ∣∣∣∣1− λ(t+1)

λ
(t+1)
⋆

∣∣∣∣ ≤ 1

8
=⇒ 7

8
λ
(t+1)
⋆ ≤ λ(t+1) ≤ 9

8
λ
(t+1)
⋆ .

Furthermore, for η ≤ 1
256 ,∣∣∣∣∣1− λ

(t+1)
⋆

λ
(t)
⋆

∣∣∣∣∣ ≤ 1

10
=⇒ 9

10
λ
(t)
⋆ ≤ λ(t+1)

⋆ ≤ 11

10
λ
(t)
⋆ ,

24



by Proposition 3 and Lemma 4. Thus,

2

3
λ(t+1) ≤ 7

8

10

11

8

9
λ(t+1) ≤ λ(t) ≤ 9

8

10

9

8

7
λ(t+1) ≤ 3

2
λ(t+1),

in turn implying that ∣∣∣∣1− λ(t+1)

λ(t)

∣∣∣∣ ≤ 1

2
.

Similarly, we conclude that for any r ∈ [[d]],∣∣∣∣1− y(t+1)[r]

y(t)[r]

∣∣∣∣ ≤ 1

2
,

confirming (22). Hence, following the proof of Lemma 6, we derive that∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ(t),y(t))

≥ 1

4∥X∥1

∥∥∥∥y(t+1)

λ(t+1)
− y(t)

λ(t)

∥∥∥∥
1

=
1

4∥X∥1
∥x(t+1) − x(t)∥1.

Combining this bound with (21) concludes the proof.

We also state the following immediate implication of Lemma 7.

Corollary 3. Suppose that ϵ(t) ≤ 1
8 , for any t ∈ [[T ]]. Then, for any t ∈ [[T − 1]] and learning rate

η ≤ 1
256 ,

∥x(t+1)−x(t)∥21 ≤ 192∥X∥21

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
2

(λ
(t)
⋆ ,y

(t)
⋆ )

+768∥X∥21(ϵ(t+1))2+192∥X∥21(ϵ(t))2,

where x(t) := y(t)/λ(t).

As a result, combining this bound with Proposition 5 extends Corollary 1 with an error term propor-
tional to

∑T
t=1 ϵ

(t). Finally, the rest of the extension is identical to our proof of Theorem 4.

B Implementation via Proximal Oracles

In this section we provide the omitted proofs from Section 3.5 regarding the implementation of
LRL-OFTRL using proximal oracles (recall Equation (7)).

B.1 The Proximal Newton Method

In this subsection we describe the proximal Newton algorithm of Tran-Dinh et al. [2015], leading
to Theorem 5 we presented in Section 3.5. More precisely, Tran-Dinh et al. [2015] studied the
following composite minimization problem:

min
x̃∈Rd+1

{F (x̃) := f(x̃) + g(x̃)} , (23)

where f is a (standard) self-concordant and convex function, and g : Rd+1 → R ∪ {+∞} is a
proper, closed and convex function. In our setting, we will let g be defined as

g(x̃) :=

{
0 if x̃ ∈ X̃ ,
+∞ otherwise.

Further, for a given time t ∈ N, we let

f : x̃ 7→ −η
〈
Ũ (t) + ũ(t−1), x̃

〉
−
d+1∑
r=1

log x̃[r].

Before we describe the proximal Newton method, let us define s̃k as follows.

25



s̃k := argmin
x̃∈X̃

{
f(x̃k) + (∇f(x̃k))⊤(x̃− x̃k) +

1

2
(x̃− x̃k)

⊤∇2f(x̃k)(x̃− x̃k)

}
, (24)

for some x̃k ∈ Rd+1
>0 . We point out that the optimization problem (24) can be trivially solved when

we have access to a (local) proximal oracle—given in Equation (7).

In this context, the proximal Newton method of Tran-Dinh et al. [2015] is given in Algorithm 2.
Their algorithm proceeds in two phases. In the first phase we perform damped steps of proximal
Newton until we reach the region of quadratic convergence. Afterwards, we perform full steps of
proximal Newton until the desired precision ϵ > 0 has been reached. Below we summarize the main
guarantee regarding Algorithm 2, namely [Tran-Dinh et al., 2015, Theorem 9].

Theorem 7 ( [Tran-Dinh et al., 2015]). Algorithm 2 returns x̃K ∈ Rd+1
>0 such that ∥x̃K − x̃∗∥x̃∗ ≤

2ϵ after at most

K =

⌊
f(x̃0)− f(x̃∗)

0.017

⌋
+

⌊
1.5 ln ln

(
0.28

ϵ

)⌋
+ 2

iterations, for any ϵ > 0, where x̃∗ = argminx̃ F (x̃), for the composite function F defined in (23).

To establish Theorem 5 from this guarantee, it suffices to initialize Algorithm 2 at every iteration
t ≥ 2 with x̃0 := x̃(t−1) = (λ(t−1),y(t−1)). Then, as long as ϵ(t−1) is sufficiently small, the num-
ber of iterations predicted by Theorem 7 will be bounded by O(log log(1/ϵ)), in turn establishing
Theorem 5.

Algorithm 2: Proximal Newton [Tran-Dinh et al., 2015]
Data: Initial point x̃0

Precision ϵ > 0
Constant σ := 0.2

1 for k = 1, . . . ,K do
2 Obtain the proximal Newton direction d̃k ← s̃k − x̃k, where s̃k is defined in (24)
3 Set λk ← ∥d̃k∥x̃k

4 if λk > 0.2 then
5 x̃k+1 ← x̃k + αkd̃k, where αk := (1 + λk)

−1 [▷ Damped Step]
6 else if λk > ϵ then
7 x̃k+1 ← x̃k + d̃k [▷ Full Step]
8 else
9 return x̃k

B.2 Proximal Oracle for Normal-Form and Extensive-Form Games

In order to show that the proximal oracle of Section 3.5 can be implemented efficiently for prob-
ability simplexes (i.e., the strategy sets of normal-form games) and sequence-form strategy spaces
(i.e., the strategy sets of extensive-form games), we will prove a slightly stronger result concerning
treeplex sets, of which sequence-form strategy spaces are instances.

Definition 1. A set Q ⊆ [0,+∞)d, d ≥ 1, is treeplex if it is:

1. a simplex Q = ∆d;

2. a Cartesian product of treeplex sets Q1 × · · · ×QK; or

3. (Branching operation) a set of the form

△(Q1, . . . , QK) := {(x,x[1]q1, . . . ,x[K]qK) : x ∈ ∆K , qk ∈ Qk ∀k ∈ [[K]]},

where Q1, . . . , QK are treeplex.

26



We will show that any treeplexQ is such that [0, 1]Q admits an efficient (positive-definite) quadratic
optimization oracle. This is sufficient, since it is well-known that every sequence-form strategy space
X is treeplex (e.g., Hoda et al. [2010]) and therefore, by definition, so is the set {(1,x) : x ∈ X}.
Introduce the value function

VQ(t; g,w) := min
x∈tQ

{
−g⊤x+

1

2

d∑
r=1

(
x[r]

w[r]

)2
}

(t ≥ 0,w > 0) (25)

(note the rescaling by t in the domain of the minimization). We will be interested in the derivative
of VQ(t; g,w), which we will denote as6

λQ(t; g,w) :=
d

dt
VQ(t; g,w).

Preliminaries on Strictly Monotonic Piecewise-Linear (SMPL) Functions
Definition 2 (SMPL function and standard representation). Given an interval I ⊆ R and a function
f : I → R, we say that f is SMPL if it is strictly monotonically increasing and piecewise-linear on
I .
Definition 3 (Quasi-SMPL function). A quasi-SMPL function is a function f : R→ [0,+∞) of the
form f(x) = [g(x)]+ where g(x) : R→ R is SMPL and [ · ]+ := max{0, · }.
Definition 4. Given a SMPL or quasi-SMPL function f , a standard representation for it is an ex-
pression of the form

f(x) = ζ + α0x+

S∑
s=1

αs[x− βs]+,

valid for all x in the domain of f , where S ∈ N ∪ {0} and β1 < · · · < βS . The size of the standard
representation is defined as the natural number S.

We now mention four basic results about SMPL and quasi-SMPL functions. The proofs are elemen-
tary and omitted.
Lemma 8. Let f : I → R be SMPL, and consider a standard representation of f of size S. Then,
for any ζ ∈ R and α ≥ 0, a standard representation for the SMPL function I ∋ x 7→ ζ+αf(x) can
be computed in O(S + 1) time.
Lemma 9. The sum f1 + · · ·+ fn of n SMPL (resp., quasi-SMPL) functions fi : I → R is a SMPL
(resp., quasi-SMPL) function I → R. Furthermore, if each fi admits a standard representation of
size Si, then a standard representation of size at most S1 + · · ·+ Sn for their sum can be computed
in O((S1 + · · ·+ Sn + 1) log n) time.
Lemma 10. Let f : R → R be SMPL, and consider a standard representation of f of size S.
Then, for any β ∈ R, a standard representation of size at most S for the quasi-SMPL function
I ∋ x 7→ [f(x)− β]+ can be computed in O(S + 1) time.
Lemma 11. The inverse f−1 : range(f) → R of a SMPL function f : I → R is SMPL. Further-
more, if f admits a standard representation of size S, then a standard representation for f−1 of size
at most S can be computed in O(S + 1) time.
Lemma 12. Let f : R → [0,+∞) be quasi-SMPL. The restricted inverse f−1 : (0,+∞) →
R of f is SMPL, where we restrict the domain to (0,+∞) because f−1(0) may be multivalued.
Furthermore, if f admits a standard representation of size S, then a standard representation of size
at most S for f−1 can be computed in O(S + 1) time.

Proof. We have f(x) = [g(x)]+ where g is SMPL. It follows that the function ḡ : I → R defined
as ḡ(x) = g(x) for the interval I = {x : g(x) > 0} is SMPL as well. For any x such that f(x) > 0
we have x ∈ I , and thus f−1 = g−1, and it follows from Lemma 11 that f−1 is SMPL.

6For t = 0 we define λQ(t; g,w) in the usual way as

λQ(0; g,w) = lim
t→0+

VQ(t; g,w)− VQ(0; g,w)

t
= lim

t→0+

VQ(t; g,w)

t
.

27



Lemma 13. Let f : [0,+∞) → R be a SMPL function, and consider the function g that maps
y to the unique solution to the equation x = [y − f(x)]+. Then, g is quasi-SMPL and satisfies
g(y) = [(x+f)−1(y)]+, where (x+f)−1 denotes the inverse of the SMPL function x 7→ x+f([x]+).

Proof. For any y ∈ R, the function hy : x 7→ x − [y − f(x)]+ is clearly SMPL on [0,+∞).
Furthermore, hy(0) ≤ 0 and hy(+∞) = +∞, implying that hy(x) = 0 has a unique solution. We
now show that g(y) = [(x + f)−1(y)]+ is that solution, that is, it satisfies g(y) = [y − f(g(y))]+
for all y ∈ R. Fix any y ∈ R and let

ḡ := (x+ f)−1(y) ⇐⇒ ḡ + f([ḡ]+) = y ⇐⇒ ḡ = y − f([ḡ]+) (26)

There are two cases:

• If ḡ ≥ 0, then g(y) = [ḡ]+ = ḡ, and so we have

g(y) = [ḡ]+ = [y − f([ḡ]+)]+ = [y − f(g(y))]+,

as we wanted to show.

• Otherwise, ḡ < 0 and g(y) = 0. From (26), the condition ḡ < 0 implies y < f([ḡ]+) =
f(0). So, it is indeed the case that

0 = g(y) = [y − f(0)]+ = [y − f(g(0))]+,

as we wanted to show.

Finally, we note that the function (x + f)−1 : R → R is SMPL due to Lemma 11, implying that
g(y) is quasi-SMPL.

Central result The following result is central in our analysis.

Lemma 14. For any treeplex Q ⊆ Rd, gradient g ∈ Rd, and center w ∈ Rd>0, the function t 7→
λQ(t; g,w) is SMPL, and a standard representation of it of size d can be computed in polynomial
time in d.

Proof. We will prove the result by structural induction on Q.

• First, we consider the case where Q is a Cartesian product,

Q = Q1 × · · · ×QK .

In that case, the value function decomposes as follows

VQ(t; g,w) =

K∑
k=1

min
xk∈tQk

{
−g⊤

k xk +
1

2

dk∑
r=1

(
xk[r]

wk[r]

)2
}

=

K∑
k=1

VQk
(t; gk,wk).

By linearity of derivatives, we have

λQ(t; g,w) =

K∑
k=1

λQk
(t; gk,wk).

From Lemma 9, we conclude that λQ(t; g,w) is a SMPL function with domain [0,+∞) which
admits a standard representation of size at most d = d1 + · · · + dK computable in time
O(d logK) starting from the standard representation of each of the λQk

(t; gk,wk).

• Second, consider the case where Q is a simplex or the result of a branching operation

△(Q1, . . . , QK) = {(x,x[1]q1, . . . ,x[K]qK) : x ∈ ∆K , qk ∈ Qk ∀k ∈ [[K]]},

where Qk ∈ Rdk . With a slighty abuse of notation, we will treat the two cases together, consid-
ering the K-simplex ∆K as a branching operation over empty sets Qk = ∅.

28



In this case, we can write

g = (g•[1], . . . , g•[K], g1 ∈ Rd1 , · · · , gK ∈ RdK ), and

w = (w•[1], . . . ,w•[K],w1 ∈ Rd1>0, · · · ,wK ∈ RdK>0).

The value function then decomposes recursively as

VQ(t; g,w) = min
x•∈t∆K

{(
−

K∑
r=1

g•[r]x•[r] +
1

2

K∑
r=1

(
x•[r]

w•[r]

)2
)

+

K∑
k=1

min
xk∈x•[k]Qk

{
−g⊤

k xk +

dk∑
r=1

(
xk[r]

wk[r]

)2
}}

= min
x•∈t∆K

{(
−

K∑
r=1

g•[r]x•[r] +
1

2

K∑
r=1

(
x•[r]

w•[r]

)2
)

+ VQk
(x•[k]; gk,wk)

}
.

(27)

Suppose that for each k ∈ [[K]], λQk
(t; gk,wk) is piecewise linear and monotonically increasing

in t. Now we consider the KKT conditions for x• in Equation (27):

−g•[k] +
x•[k]

w•[k]2
+ λQk

(x•[k]; gk,wk) = λ• + µ[k] ∀k ∈ [[K]] (Stationarity)

x• ∈ t ·∆K (Primal feasibility)

λ• ∈ R,µ ∈ Rd≥0 (Dual feasibility)

µ[k]x•[k] = 0 ∀k ∈ [[K]] (Compl. slackness)

Solving for x•[k] in the stationarity condition, and using the conditions x•[k]µ[k] = 0 and
µ[k] ≥ 0, it follows that for all k ∈ [[K]]

x•[k] = w•[k]
2
(
λ• + µ[k] + g•[k]− λQk

(x•[k]; gk,wk)
)

= w•[k]
2
[
λ• + g•[k]− λQk

(x•[k]; gk,wk)
]+
. (28)

Strict monotonicity and piecewise-linearity of x•[k] as a function of λ•. Given the prelim-
inaries on SMPL functions, it is now immediate to see that x•[k] is unique as a function of λ•.
Indeed, note that (28) can be rewritten as

x•[k] =
[
(w•[k]

2)λ• −w•[k]
2(−g•[k] + λQk

(x•[k]; gk,wk))
]+
,

which is a fixed-point problem of the form studied in Lemma 13 for y = (w•[k]
2)λ• and

function fk defined as

fk(x•[k]) = w•[k]
2(−g•[k] + λQk

(x•[k]; gk,wk)),

which is clearly SMPL by inductive hypothesis. Hence, the unique solution to the previous
fixed-point equation is given by the quasi-SMPL function

gk : λ• 7→
1

w•[k]2
[
(x•[k] + fk)

−1(λ•)
]+
,

a standard representation of which can be computed in time O(d+ 1) by combining the results
of Lemmas 8, 10 and 11 given that a standard representation of λQk

(t; gk,wk) of size d is
available by inductive hypothesis.

Strict monotonicity and piecewise-linearity of λ• as a function of t. At this stage, we know
that given any value of the dual variable λ•, the unique value of the coordinate x•[k] that solves
the KKT system can be computed using the quasi-SMPL function gk. In turn, this means that
we can remove the primal variables x• from the KKT system, leaving us a system in λ• and t
only. We now show that the solution λ⋆• of that system is a SMPL function of t ∈ [0,+∞).

29



Indeed, the value of λ⋆• that solves the KKT system has to satisfy the primal feasibility condition

t =

K∑
k=1

x•[k] =

K∑
k=1

gk(λ•).

Fix any t > 0. The right-hand side of the equation is a sum of quasi-SMPL functions. Hence,
from Lemma 9, we have that the right-hand side has a standard representation of size at most
K+

∑K
k=1 dk = d can be computed in timeO(d logK). Furthermore, from Lemma 12, we have

that the λ⋆• that satisfies the equation is unique, and in fact that the mapping (0,+∞) ∋ t 7→ λ⋆•
is SMPL with standard representation of size at most d.

Relating λ• and λQ(t; g,w). Since λ⋆•(t) is the coefficient on t in the Lagrangian relaxation
of (27), it is a subgradient of VQ(t; g,w), and since there is a unique solution, we get that it is
the derivative, that is,

λ⋆•(t) = λQ(t; g,w)

for all t ∈ (0,+∞). To conclude the proof by induction, we then need to analyze the
case t = 0, which has so far been excluded. When t = 0, the feasible set tQ is a
singleton, and VQ(0; g,w) = 0. Since VQ(t; g,w) is continuous on [0,+∞), and since
limt→0+ λQ(t; g,w) = limt→0+ λ

⋆
•(t) exists since λ⋆•(t) is piecewise-linear, then by the mean

value theorem,

λQ(0; g,w) = lim
t→0+

λ⋆•(t),

that is, the continuous extension of λ⋆• must be (right) derivative of VQ(t; g,w) in 0. As extend-
ing continuously λ⋆•(t) clearly does not alter its being SMPL nor its standard representation, we
conclude the proof of the inductive case.

Lemma 14 also provides a constructive way of computing the argmin of (25) in polynomial time for
any t ∈ [0,+∞). To conclude the construction of the proximal oracle, it is then enough to show
how to pick the optimal value of t ∈ [0, 1] that minimizes

min
x∈[0,1]Q

{
−g⊤x+

1

2

d∑
r=1

(
x[r]

w[r]

)2
}

= min
t∈[0,1]

VQ(t; g,w).

That is easy starting from the derivative λQ(t; g,w), which is a SMPL function by Lemma 14.
Indeed, if λQ(0; g,w) ≥ 0, then by monotonicity of the derivative we know that the optimal value
of t is t = 0. Else, if λQ(1; g,w) ≤ 0, again by monotonicity we know that the optimal value of t
is t = 1. Else, there exists a unique value of t ∈ (0, 1) at which the derivative of the objective is 0,
and such a value can be computed exactly using Lemma 11.

C Experimental Results

In this section we provide preliminary experimental results in order to verify our theoretical findings,
and in particular the per-player regret bound established in Theorem 4. More specifically, we inves-
tigate the behavior of our learning dynamics (LRL-OFTRL) in four standard extensive-form games
used in the literature: 2-player and 3-player Kuhn poker [Kuhn, 1950]; 2-player Goofspiel [Ross,
1971];7 and the baseline version of (2-player) Sheriff [Farina et al., 2019]. From those games, only
2-player Kuhn poker is a zero-sum game. Our findings are summarized in Figure 1.

7We consider instances of Goofspiel with r = 3 cards and limited information—the actions of the other
player are only observed at the end of the game. Also, we note that the tie-breaking mechanism makes the
game general-sum.

30



100 101 102 103 104 105

Iteration

0

20

40

60

R
eg

re
t

2-player Kuhn poker

Player 1
Player 2

100 101 102 103 104 105

Iteration

0

50

100

R
eg

re
t

3-player Kuhn poker

Player 1
Player 2
Player 3

100 101 102 103 104 105

Iteration

0

100

200

300

400

R
eg

re
t

2-player Goofspiel

Player 1
Player 2

100 101 102 103 104 105

Iteration

0

500

1000

1500

2000

R
eg

re
t

2-player Sheriff

Player 1
Player 2

Figure 1: The regret of the players when they follow our learning dynamics, LRL-OFTRL; after a
very mild tuning process, we selected the same learning rate η := 0.5 for all games. The x-axis
indexes the iteration, while the y-axis the regret. The scale on the x-axis is logarithmic. We observe
that the regret of each player grows as O(log T ), verifying Theorem 4.

31


	Omitted Proofs
	Preliminary Proofs
	Analysis of OFTRL with Logarithmic Regularizer
	RVU Bound in the Original Space
	Main Result: Proof of Theorem 4
	Extending the Analysis under Approximate Iterates

	Implementation via Proximal Oracles
	The Proximal Newton Method
	Proximal Oracle for Normal-Form and Extensive-Form Games

	Experimental Results

