A Method Details

In the following section, we specify further details of the proposed method. We show the symmetries
we employ in the multisets and give details on the approximation of the log-evidence. Furthermore,
we describe the base kernels and their parameter priors, the marginal likelihood maximization of the
kernel-kernel hyperparameters and how the acquisition function optimization is done.

A.1 Symmetries in the Multisets

Our method can be used with general operators 7' : K x K — K in kernel space. However,
depending on the concrete operators, one might also incorporate properties that leave the expres-
sion/subexpressions unchanged. In particular, addition and multiplication are commutative and
associative. For commutative operators two trees/subtrees describe the same kernel if one rotates the
nodes under a commutative operator, e.g.

ADD ADD
LIN/\ADD LIN ADD
Sl = /\ 82 = /\
MULT SE SE MULT
/\
PER SE PER SE

This symmetry is automatically considered in the multisets Base(7") and Path(7) as the base kernels
and paths stay unchanged when rotating two nodes. For Subtree(7), we account explicitly for that
symmetry via hashing functions that are invariant to rotation of subtrees. This allows counting tree
S) and tree S, as an identical subtree S in the multiset Subtree(7).

For the multiset Path(7"), we furthermore consider a symmetry that exists in case an operator is
associative and commutative. In this case, one can exchange the nodes of two consecutive operators
of the same kind without changing the expression, e.g.

/\ /\ ADD
LIN ADD SE ADD TN

<~ <~
P P MULT ADD
MULT SE MULT LIN PER 3E SE I
PER SE PER SE

We incorporate this symmetry into Path(7") by only considering the smallest path to that base kernel
that exist in an equivalent expression (equivalent under this symmetry). This is realized in Path(7)
by counting identical operators in a row along a path only as one, e.g. the following paths would be
considered the same:

ADD — ADD — MULT — PER,
ADD — MULT — PER.

While one might also integrate more symmetries that stem from, e.g. the distributive property of the
multiplication, we found that these two symmetries are particularly easy and efficient to implement.
The symmetries are also not restricted to multiplication or addition. The first symmetry can be used
whenever T is associative, thus, T'(k1, k2) = T'(k2, k1) and the second whenever T is associative
and commutative, thus, T'(ky, T'(ko, k3)) = T'(ka, T'(k1,k3)) = T(T(k1, ks), k2). The motivation
of considering symmetries at all is that two trees 71 and 73 are considered more similar in case they
share the same structure (with respect to the symmetry) and, therefore, similar kernels can be detected
more easily.

A.2 Mapping from Kernels to Trees

As we already observed in the previous section, two different trees 77 and 73 might describe the same
kernel k. For technical reasons, we therefore consider in Proposition 1 a mapping f : K — 7 (K)

13

that maps a kernel always to the same tree. Concretely, this is done such that the pseudo metric is
defined in kernel space rather than in tree space. When using addition and multiplication, one could
check if 77 and 73 describe the same expression via recursive hashes that follow the same rules as
addition and multiplication. One could use this check to implement such a function f : K — 7 (K).
However, in our experiments we directly deal with the trees (the BO and the acquisition function
algorithm directly act on the trees anyway) and ignore filtering out potential collisions of two trees -
we did not observe any downsides of doing that.

A.3 Approximation of Log-Model-Evidence

In all our experiments, we use the normalized log-model-evidence g(k|D) = log p(y|X, k)/|D| as
selection criteria. Similar to [9] we use the Laplace approximation to approximate the log-evidence,
which is (see [9])

1 d
log p(y|X, k) ~ log p(y|X, k,%) + log p(¥) — 5log det 24 5 log 27,

where v = (0,0%) € R? are the parameters of the kernel and the likelihood variance, d € N is
the number of parameters, 4 denotes the MAP estimate of 7, and £ ~! = —V?log p(v|D, k)|y=4-
Creating the MAP estimate of y scales cubically in the dataset size |D| in each optimization step. We
use the LBFGS optimizer to create the MAP estimate. As the loss function is non-convex, we make
10 restarts with random initialization of the initial parameters.

A.4 Base Kernels and Priors on Parameters:

Here, we specify the base kernels that are used, including their priors on the parameters. We chose
the parameter priors such that broad priors in function space are induced (Here, we assume that
the datasets contain normalized outputs and inputs scaled to the unit interval). All base kernels are
defined on R and are applied on dimension ¢ if this is indicated by the base kernel symbol, e.g. SE;.
We consider the following base kernels:

1. Squared Exponential SE:

1 2
k(z,2") = UQGXp(- 2(1‘1233))

with [~ Gamma(2.0,2.0) and 02 ~ Gamma(2.0, 3.0),
2. Periodic PER:

Lsin® (mla x'|/p>>

k(z,2') = UQexp< -3 2

with [~ Gamma(2.0,2.0), 0% ~ Gamma(2.0, 3.0), and p ~ Gamma(2.0, 2.0),
3. Linear LIN:

k(z,2') = o’z y + o2

with 02 ~ Gamma(2.0,3.0) and 02 ~ Gamma(2.0, 3.0),
4. Rational Quadratic RQ:

(x—a")2\ "
k(l‘,l‘/) = O'2 (1 + W

with [~ Gamma(2.0,2.0), 02 ~ Gamma(2.0, 3.0), and & ~ Gamma(2.0, 2.0).

A.5 Marginal Likelihood Maximization of Kernel-Kernel Parameters
Doing GP regression with the meta GP model f ~ GP(u.(-), Ksor(:,-)) involves fitting some

parameters, namely, the constant ¢ € R in the mean function, the kernel-kernel variance o2, the
kernel-kernel lengthscale {2, the distance weights a1, as, as, and the likelihood variance denoted

14

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

11
12

13

Function BOKernelSearch (D, T, L, njyitjal) 2
Dy = GetInitialDataset(D, Ninitial)
fort=0,..., T —1do
Fit Meta GP model f ~ GP(uc(-), Ksor(-,-)) to D;
k; + EvolutionaryAlg(a(-|D;),L)
Query model selection criteria g; < g(k:|D)

Div1 =Dy U{(ke,g0)}

end
t* < argmax;—o,... 7—1 G¢
return k;-
Algorithm 1: BO for kernel search via SOT kernel-kernels.
by US. The distance weights are reparameterized with a; = JL%, &; € R, where o(-) is
j=1 [eaNe)

the standard sigmoid function. Thus, oy + a2 + a3 = 1 and «; > 0. For the other parameters,
we use standard GPflow bijectors to transform them to their domain of definition. Let 6 denote all
kernel-kernel parameters and let D = {(k;, g(k;|D))|j = 1,..., R} denote the kernel-selection-
criteria pairs to which the meta-GP model is to be fitted. We fit the parameter via maximization of
the log-marginal likelihood

(9*, 0;’ C*) = arg QH}TaXP IOg N(g; ,Uc(Xkernels)a KSOT,S (Xkerne137 Xkernels) + 051) 5
with g= [g(kl‘D)a cee 79(]{;R|D)]T and Xyerpels = {kh ceey kR}

A.6 BO Algorithm and Acquisition Function Optimization

In Algorithm I} we show the BO steps for kernel search. First, we draw an initial dataset of kernel-
selection-criteria pairs. Our base setting applies two random grammar operations from each base
kernel. The meta-GP parameters are fitted in each BO optimization. The acquisition function is
optimized via the evolutionary algorithm in [2| This algorithm searches in the hypotheses space
from small to big hypotheses. Given an initial population of kernels, we calculate the acquisition
function on all kernels in the population. Then the ng,,vive best kernels in the population survive.
Each selected kernel gets nogspring children by generating nogspring new kernels via applying one
random grammar operation. The new population is formed via the selected kernel combined with
its offspring. L is the number of iterations in the evolutionary algorithm. In combination with the
initial population it determines how many base kernels the hypotheses can contain maximally. In
each iteration, the number of base kernels in the best hypothesis can maximally grow by one.

Function EvolutionaryAlg(a(-|D,),L):
. __ Dpopulation
Dsurvive = (Nottspring +1)

Ko = GetlnitialKernels(npopulation)
for(=0,...,L—1do
fitness; = a(K;|D;)
KCpelected — Select (K, fitness;, Ngurvive)
ICoﬁ'spring o @

. =
for k in IClselected do

]C?ﬂ“sprmg “ K?ffsprlng U ApplyGrammarOps(k, Nofspring)

end
ICl—i—l — IClsclcctcd U]C;)ffspring

end

return arg max(a(Kr,|D;))

Algorithm 2: Evolutionary algorithm for BO kernel search.

15

B Example Calculation of SOT Kernel-Kernel

In this section, we give a small example calculation of our proposed kernel-kernel. We calculate our
proposed pseudo-metric dsor (k1, k2) for the two kernels k1 and ko with the following expression
trees

MULT MULT
LIN ADD ADD/\ADD
Ti= and Ty = P /\ .
MULT SE LIN SE MULT SE
/\ /\
PER SE PER LIN

In the first step, we extract the tree features and create the multisets. Here, we use the notation
{(&1;n(&1)), (E2;n(E2)), - . . } to denote the existence of an element £ in the multiset as well as the
cardinality of the element. We obtain the following multisets:

Base(T;) = {(LIN; 1), (SE: 2), (PER; 1)},
Base(72) = {(LIN; 2), (SE; 2), (PER; 1)},
Path(7;) = {(MULT — ADD — MULT —s PER; 1),

(
(MULT — ADD — MULT — SE; 1),
(MULT — ADD — SE; 1)
(MULT — LIN; 1)},
Path(73) = {(MULT — ADD — MULT — PER; 1),
(MULT — ADD — MULT — LIN; 1),
(MULT — ADD — SE;2)
(MULT — ADD — LIN; 1)},
ADD
PN MULT
Subtree(71) = {(T1; 1), MULT SE;1 |, _-—~_;1],(LIN;1),(SE;2),(PER;1)},
o~ PER SE
PER SE
ADD
P MULT ADD
Subtree(73) = {(72: 1), MULT SE;L |, > 1|, | . ;1]/,(LIN;2),
P PER LIN IN SE
PER LIN

(SE;2), (PER;1)}.
Next, we build the probability vector for each feature multiset, for example, for the base kernels:

1 1 1
ase —) =4 =4)
W1,b 1 LIN + 5 SE + 1 OPER

2 2 1
ase — —& = -0)
W1,b 5 OLIN + 5 SE + 5 OPER

and calculate the total variation distance between w1 pase and w2 base:
2\|4 5| |2 5
For the paths, the total variation distance results to:
+ —1—12—1—10+01—&-01—11
2\|4 5 4 4 5 5 20

1//1 2 1 2 1 1 3
Wd(wl,baseywzbase) = < - ‘ + 1 - 5‘) = %
1//1 1 1
W;(Wl,path7 w?,path) =35 (
For the subtrees, the total variation distance results to:

1/11 1 1 1 2 2 1 1

Wil g wapun) = 5 |7 =0+ |7 =0 {7 =0 Tz 75| |7 75| T|7 75
1 1 1 1 11
—Z|4+l0—= —Zl4+lo-=]) ==.
elo-glelo-gl+lo-g[+o-s]) -

16

1 Function GetKernel (7):

2 if Root of T is leaf then

3 \ return base kernel BB associated with leaf

4 else

5 return 7' (GetKernel(7L), GetKernel(7x)) where T is the operator associated with
the root of 7 and 77, and Tg are the left and right subtree below the root of 7.

6 end

Algorithm 3: Get a kernel from an expression tree.

The complete distance given the weights is then

3 11 11
d(k‘l,k‘g) = 041% + (12270 + Oé3ﬁ

and

—d(k1,k
Ksor(ki, ko) := UQQXp((Z;2)>.

The parameters are learned via marginal likelihood maximization and are dependent on the dataset.

C Technical Details and Proofs

When referring to a kernel & from the kernel-grammar generated kernel space K such as writing
k € K, we actually refer to the associated kernel family over its parameters {k¢|0 € ©}. Applying
an operator 7" onto two kernels k1 and k5 then results in another kernel family {T'(k1 ¢, , k2,0,)|61 €
©1, 02 € O3} and we refer with the notation T'(k1, k2) to this kernel family with new parameter space
O1 X O,. In case the same kernel family {159|9 € O} appears twice in an operator the parameters are
not shared, e.g. T'(k, k) corresponds to the family {T'(ky, , kg,)|61 € ©,05 € ©} with new parameter
space © x ©.

Definition 2 We call a binary tree T whose nodes are associated with the operators {11y, ...,T;}
and whose leafs are associated with the base kernels {B1, ..., B,} an expression tree of a kernel k

if k is constructed by applying the operators recursively onto the leafs, meaning k is the result of
Algorithm

Any kernel & in a kernel-grammar generated kernel space has an expression tree 7 via the construction

of K. We further denote the set of all trees that can generate a kernel in K as 7(K) := {7 |3k € K :
k is result of GetKernel(7)}.

Proof of Proposition 1: W.l.o.g. we consider K without separate base kernels for dimensions. We
denote by g; : T(K) — [0,1]% and i € {base, path, subtree} the mappings from expression trees
to the probability vectors whase; Wpaths, Wsubtrees, Where L; denotes the number of different elements
of the respective type (e.g. number of different paths to the leafs for expression trees of depth M).
Then

(ks ko) = d(f (k). £(k2)) = S lga(F (k) = g (F k) s
+ S llga(£(k1)) = ga(f (k2)) s

+ % ga(F(k) — as(F k)l

is a pseudo metric as chaining of a metric with a mapping results in a pseudo metric, and the
positive-weighted sum of pseudo metrics still is a pseudo metric. B

Proposition 2 Let K be the kernel space generated by a kernel grammar. Then

—d(k1, k2) >

3 ©)

Kgor(k1, ko) := 0’2€Xp<

is a proper p.s.d. kernel over K.

17

Proof: As in the proof of Proposition 1 we can write J(kl, k2) as a weighted sum of Manhatten
metrics, which leads to:

—d(ky,
Ksor(ki,ks) = 026XP((1212))

3
= o® [T exp(—5 55 ll9: (£ (k1)) = gil £ (k2))l):
i=1

Thus, Kgor(k1, k2) can be written as a product of Ornstein-Uhlenbeck kernels chained with func-
tions g; o f. Kernels chained with arbitrary mappings are kernels and products of kernels are kernels
(see [16], Proposition 3.22). Thus, Ksor(k1, k2) is a proper (p.s.d.) kernel. B

D Experimental Details

In this section, we give further details on parameter configuration and implementation details of the
different methods.

Datasets: All datasets are publically available. Powerplant, Airfoil and Concrete are UCI regres-
sion datasets (https://archive.ics.uci.edu/ml/datasets.php). For LGBB and Airline,
we describe how to access the datasets in the accompanying code at https://github.com/
boschresearch/bosot!

SOT Kernel-Kernel (Our method): We use Algorithm [2]to optimize the acquisition function. Our
base setting uses a population size of 100 and nfspring = 4. The number of selected kernels is
chosen such that the population stays constant. We choose 10 optimization steps for the bigger search
spaces LGBB, Powerplant as well as Airfoil and 6 steps for the smaller search space Airline. We
chose this number depending on the number of base kernels in the search space.

Hellinger Kernel-Kernel: For the Hellinger Kernel-Kernel [9], we use their principle of optimizing
the acquisition function, where an active set of kernels is kept in memory over the iterations. In
each iteration, 15 random walks are performed in the kernel grammar, where the walk length is
drawn randomly from a geometric distribution with p = % These kernels are added to the active
set. Furthermore, the neighbors of the best kernel found so far are added to the active set (we
limit this set to 50 neighbors per iteration, since for large expressions there may be several hundred
neighbors, making it computationally almost infeasible to evaluate the kernel-kernel on all of them).
The active set is limited to 600 kernels, where only the ones are kept with the highest acquisition
function value. We initialize the active set with random walks in the grammar, with one random
walk of length 5 from each base kernel (this is an alternative to their computationally very expensive
version of using all kernels two edges apart from the base kernels). We stick to their base settings
of using 100 hyperparameter samples and a subset of the design matrix X of size of 20 inside the
Hellinger distance calculation. We cache all distance calculations d(M, M) over the iterations, thus,
recalculation of the Hellinger distance for kernels in the active set or the current dataset is very cheap.
On the other hand, calculating the distance that involves a new kernel, such as a new neighbor of the
currently best kernel, is very expensive. Given the distance matrix between kernels, optimization of
the kernel-kernel hyperparameters is cheap again.

Greedy Search: The greedy method in [3] starts with the empty kernel, then evaluates all base
kernels. It picks the best performing base kernel and determines its immediate neighbors via
expanding the base kernels with all possible grammar operations. Then the neighbors are evaluated
(we pick the order in which the neighbors are evaluated at random - for each seed a different order).
Once all neighbors have been evaluated, the best kernel is determined and the process repeats. We
give greedy search a head start of 1n;,,;.,4; log-evidence evaluations in Figure 1, meaning log-evidence
values are shown once greedy search has evaluated as many kernels as the other methods have in their
initial dataset.

TreeGEP: For the evolutionary algorithm in [4], we use their base settings in the paper, which is a
population size of 200, a reproduction rate of 0.1, and a probability of mutation vs. cross-over of

18

https://archive.ics.uci.edu/ml/datasets.php
https://github.com/boschresearch/bosot
https://github.com/boschresearch/bosot

Test-RMSE LGBB (d=2,N=150) Powerplant (d=4,N=500) Airfoil (d=5,N=500) Airline (d=1,N=100) Concrete (d=8,N=500)

. . . 035 N
50 iterations 009) o7 o
027 030
: : ' ' 06 . 06
] N 8 —_] Boas k]
EN £ H H H
. ,m_x_—§ %05 %020 Zos
. - o
o 02 . 04 .
003 = . — - o3 .
oz os
Gy TR e eE ST & e Tl TeeGE 5T e o= =

o1

Final time stamp

Boas.]
z H
£ o020 Zos
015 H - 04
- =
03 ——

Greedy Helinger Tree.GEP SOT Greedy elinger Tree GEP ST Greedy Helinger Tree GEP _ SOT

L

Helinger Tree GEP

0
0.09. :
0z
o0s .
Hoor # o026 —_
2 : z =
Foos Foas - .
F 005 . T
0zs
- i L -
0.03. 023
Creedy Tl e oEr SoT =" o

Test-NLL LGBB (d=2,N=150) Powerplant (d=4,N=500) Airfoil (d=5,N=500) Airline (d=1,N=100) Concrete (d=8,N=500)

= B n 12 - 0
0s o5
10
o0 10 -
00 000
. o8 o8
ERYIEN T 3 oo _u L] 3 g0 3
Z H Zos § -0s0 foo
o £ oo ¥ i H
' . . X —— 075,
—_— . HE . o4 :
as{ g N 00 2 100
20+)) ool . — 00 = 1asf L - . 02 — —_—
Gready Welinger e GER 0T = % Greedy Pelinger TeeGEP 50T Gready Velinger Tee'GEP 0T Greedy Telinger Tes'GEP SO

Greedy Helinger Tree GEP SO

: 015 - 12 s
z . 20 025
o - oo
iy, 08
P 3 oos = P
o - 3 3°° .
B2 ¥ o i :
: 04 |
_y | — .
- -00s T 02 ¢ - -100
i N L __] +
o oo == -2
e wor e sor Greedy Tilinger Tee GEP 3T

Greedy Hellinger Tree:

50 iterations

Final time stamp

— ==
S

Greedy Hellinger Tree

aif-

00
Greedy Wellnger Tree GEP Greedy Hellinger Tree GEP

Figure 2: Box-plots of the test-RMSE and test-NLL of the selected hypotheses after 50 iterations and
at the final time stamp.

50% each. They don’t specify the size of the mutation subtrees and the tournament fraction in the
tournament selection. Here, we make a reasonable choice and generate mutation subtrees of size four
and use a tournament fraction of 0.1.

Test Performance - Box-Plots: In Figure[2] we show box-plots of the RMSE and NLL on the held
out test-sets for the selected kernels. We see that on both metrics, our search method also finds a final
model that often yields the best test-performance or is among the best models. However, we also note
that test performance is mainly a property of the model selection criteria and how well models that
maximize that criteria generalize to new data points.

Acquisition Function Optimization vs. Oracle Evaluation Ratio: In Table3} the ratio LAcquisition

racle

between the CPU-time needed for optimization of the acquisition function and the CPU-time for
evaluating the oracle (calculating the log-evidence) is shown for the SOT kernel-kernel and the
Hellinger kernel-kernel [9]. As described in the previous section, the approach in [9] uses a different
kind of acquisition function optimization, that has fewer evaluations of the acquisition function than
the evolutionary algorithm we use. Nevertheless, we are magnitudes of orders faster. This can be
understood more clearly when looking at the raw kernel-kernel evaluation times in Figure 3] A
faster acqusition to oracle time ratio in the end results in a faster search procedure, measured over
CPU-Time (as we show in our main results in Figure 1), which is the metric we are interested in.

kNN for Meta Prediction: For the k-nearast-neighbour approach that was used in Table 1 we
employ the same principle as in [9] who also consider kNN for comparision. The set Kcomplete

Table 3: Acquisition to oracle time ratio.

Dataset Hellinger SOT (ours)
Airfoil(N = 500) 18.77 0.25
Airline(N = 100) 54.21 0.825
LGBB(N = 150) 42.63 0.52
Powerplant(N = 500) 16.51 0.278
Concrete(N = 500) 16.81 0.213

19

SOT Kernel-Kernel Hellinger Kernel-Kernel

CPU-Time per kernel-kernel evaluation CPU-Time per kernel-kernel evaluation

Kernel 1 { 0.013 sec 0.02 sec 0.012 sec 0.014 sec 0.013 sec Kernel 1 5.3 sec 20 sec

Kernel 2 0.015 sec 0.015 sec 0.014 sec 0.012 sec Kernel 2

Kernel 3 0.022sec 0.011sec 0.013 sec Kemel 3

Kernel 4 0.012sec 0.013 sec Kemel 4

Kernel 5 0.022 sec Kernel 5

> g
> >
& <&

& & &

Figure 3: CPU-time for single kernel-kernel evaluations K (k1, k2) for the SOT kernel-kernel and the
Hellinger kernel-kernel.

Table 4: Summary of kernels used in Figure 3]

Kernel-Index 1 2 3 4 5

Parameters 2 5 8 10 12
#BaseKemels 1 2 3 4 5

consists of kernel expressions which form a directed graph where two neighbour nodes are one
grammar operation apart from each other. For each test expression k € Kiest, we search in this graph
the k expressions l~<;1, R l;:k € Kirain With shortest path in this directed graph. The prediction of the
log-evidence value of k is the average of the log-evidence values of l:;l, ey kr. The number k of
neighbours is determined via cross validation.

Runs and Time Stamps: In Figure 1, all methods were repeated over 30 seeds, where each seed
corresponds to a different initial dataset for the both BO methods and TreeGEP and a different ordering
of neighbor evaluations in greedy search. All runs have different run-times. The reasons for this is
that the oracle evaluation times differ depending on the kernel that is evaluated. The log-evidence can
be calculated faster for smaller hypothesis. The final time stamps in Figure 1 are therefore determined
by the shortest run of our method, as we only have log-evidence values for all runs/seeds up to
that time point. In rare cases, a run can be interrupted, in case the Laplace approximation returns
NaNs. This can happen due to numerical instabilities in the Cholesky decomposition and happened
independently of the search method. We filtered out these runs.

E Further Experiments

Computational Time for Single Kernel-Kernel Evaluations: In Figure[3| we show CPU-time for
single kernel-kernel evaluations K (k1, ko) for the SOT kernel-kernel and the Hellinger kernel-kernel,
each evaluated on five kernels generated from the kernel grammar (search space was the same as used
for the LGBB dataset). We selected the five kernels with increasing numbers of base kernels and,
thus, kernel parameters, as this could affect the computation time (see Table E[) Our kernel-kernel
can be evaluated orders of magnitudes faster, which also explains the smaller acquisition function
optimization times.

Kernel-Kernel Hyperparameters: In Figure[d] we show the values of the distance weights for the
three OT metrics W;(w1 base, W2,base) (on Airfoil summed over dimensions), W ;(w1 paths, W2, paths)

20

Airfoil Airline

SOT Distance Weights SOT Distance Weights
1.0 1.0 — Base
— Paths
—— Subtrees
0.8 0.8
2] —1 2]
H N g
206 206
= —— Base =
o o
g — Paths g I — \ /
2 —— Subtrees £
304 304 \ ——
= =
o o
@)
02 02 — |
0.0 0.0

0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration

Figure 4: Distance weights of the SOT kernel-kernel over the BO iterations.

and Wd(stubtreeS, W2 subtrees) OVer the BO iterations on Airline, and Airfoil. The weights were
fitted via marginal likelihood maximization as described in@ First, we observe that all OT metrics
are used. Secondly, we see that it is dependent on the dataset which OT metric is used primarily. For
example, on Airline the Subtree features are the most important ones (according to the marginal
likelihood maximization) whereas on Airfoil the Base features obtain the largest weights.

Interpretability of Final Hypothesis: The kernel grammar is used in a line of work called Auto-
matic Statistician [3, 7]. In particular [7], utilize the kernel grammar to automatically generate natural
language description of the data from the selected hypothesis (they also employ greedy search).
Here, we show a configuration of our algorithm where the method of [7] can be applied to the final
hypothesis of our model selection procedure and can give good descriptions of the dataset. As done in
[7], we drop the rational quadratic kernel from the search space, as this captures small and long range
correlations at the same time, which can also be modelled with separate squared exponential kernels
(see [7]). Furthermore, we take fewer steps in the acquisition function optimizer such that fewer base
kernels are maximally possible in the final hypothesis. This renders the final hypothesis smaller and
easier to interpret, as fewer components needs to be described. We show two example hypotheses that
were selected for the Airline dataset using the described search space and four steps in the acquisition
function optimizer. We used the principles presented in [7] to simplify the expression and to generate
the sentences.

Example 1:
LIN 4+ SE 4+ LIN x SE + PER x LIN x SE

Desciption - Example 1: The data can be described as a sum of:

1. A linearly increasing function
2. A smooth function
3. A smooth function with increasing variation

4. An approx. periodic function with linearly increasing amplitude

Example 2:
SE + 2LIN? x PER + 2SE x PER x LIN

Desciption - Example 2: The data can be described as a sum of:

1. A smooth function
2. Two approx. periodic functions with linearly increasing amplitude

3. Two periodic functions with quadratically increasing amplitude

21

Table 5: RMSE and predictive NLL values on the respective test-sets after 50 iterations of our
proposed search method + the RMSE/NLL values of FKL [2] and a standard RBF kernel. SOT values
are marked bold if they are not significantly different from the best value (FKL and RBF are point
evaluations) according to a t-test (o = 0.05).

Dataset SOT (ours) FKL RBF SOT (ours) FKL RBF
RMSE NLL

Airline 0.1335 (0.079) 0.3614 0.3598 -0.7069 (0.442) 0.4712 0.3978

LGBB 0.0422 (0.011) 0.1296 0.0740 -0.9762 (0.517) 0.0200 -1.0913

Powerplant 0.2362 (0.004) 0.2532 0.2507 -0.0693 (0.019) 0.1755 0.0419

Airfoil 0.3334 (0.017) 0.4356 0.4075 0.0855 (0.081) 0.6469 0.2985

Concrete 0.2980 (0.008) 0.3230 0.3617 0.2787 (0.044) 4.2150 0.2743

Comparision with RBF Kernel: In Table [5|the test-set results (RMSE and NLL) of our proposed
kernel search method is shown after 50 iterations compared to test values of a standard RBF kernel.
We note that Table[5]shows different NLL values as Table 2 as it shows values at last iteration and not
at last time stamp (see Appendix [D|for details). In terms of NLL, the RBF kernel shows competitive
performance on the LGBB and Concrete dataset. However, considering the RMSE and NLL values
on the other three datasets, it appears that kernel selection in general seems to be very important.

Comparision with Nonparametric Kernel Learning Methods: In Table[5]we also compare with
the nonparametric kernel learning method, presented in [2], called Function Kernel Learning (FKL).
FKL places a GP prior on the spectral density of the kernel - thus utilizing a nonparametric approach
to kernel learning/selection. This results in a prior over spectral-mixture kernels, thus a prior over a
fixed but highly flexible kernel structure. The results in Table [5]might be an indication that search
over a discrete set of structural kernels might be beneficial, compared to placing a prior over a very
flexible, but fixed kernel family.

Experiments on Simulated Data & Type-3 Maximum Likelihood Overfitting: In Figure[5] we
show experimental results on simulated data. Here, we draw n datapoints from a GP prior with

d=3, n=300 d=2, n=200 d=4, n=100 d=4, n=300
(LINg + (SEo x PERo)) x (SE1 x LIN;) x PER, ((SEq x LINo) + LINg) x (SE; + PERy) SE; x SE; x SEj x SE4 SE; x SE; x SE; x SE4

Figure 5: Learning-curves of our kernel selection method (over iterations) for simulated datasets.
Upper plot shows log-evidence values, lower plot shows test-set RMSE and NLL values. Blue lines
mark log-evidence/test values of the ground-truth kernel, from which the dataset was generated.

22

a given kernel structure and employ our kernel selection method on that dataset (likelihood noise
was 0.01 for all datasets). First, we observe that we reach (almost) the same log-evidence values
as the ground truth kernel within 50 iterations. For the RBF ground-truth kernel we simulated one
big dataset and used n = 100 and n = 300 for model selection in the third and fourth plot. For
the smaller dataset, we observe that we find kernels that have even higher log-evidence values than
the ground-truth kernel. Considering the test-set NLL we also observe a small increase in the NLL
from iteration 10 to 30, indicating a small overfitting. We think that in particular for smaller datasets
maximizing the log-evidence over kernel structures can also lead to overfitting. However, this might
not be surprising as the same was observed for type-2 maximum likelihood in GP’s (see. [12])
whereas maximizing the log-evidence might be interpreted as type-3 maximum likelihood. Possible
methods to avoid overfitting could be to use a different model selection criterion such as the Bayesian
information criterion or cross-validation error, or to use a smaller search space.

23

	Method Details
	Symmetries in the Multisets
	Mapping from Kernels to Trees
	Approximation of Log-Model-Evidence
	Base Kernels and Priors on Parameters:
	Marginal Likelihood Maximization of Kernel-Kernel Parameters
	BO Algorithm and Acquisition Function Optimization

	Example Calculation of SOT Kernel-Kernel
	Technical Details and Proofs
	Experimental Details
	Further Experiments

