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Abstract

We propose a new fast algorithm to estimate any sparse generalized linear model
with convex or non-convex separable penalties. Our algorithm is able to solve
problems with millions of samples and features in seconds, by relying on coor-
dinate descent, working sets and Anderson acceleration. It handles previously
unaddressed models, and is extensively shown to improve state-of-art algorithms.
We release skglm, a flexible, scikit-learn compatible package, which easily
handles customized datafits and penalties.

1 Introduction

Sparse generalized linear models play a central role in modern machine learning and signal processing.
The Lasso (Tibshirani, 1996) and its derivatives (Zou and Hastie, 2005; Ng, 2004; Candes et al., 2008;
Simon et al., 2013) have found numerous successful applications to large scale tasks in genomics
(Ghosh and Chinnaiyan, 2005), vision (Mairal, 2010), or neurosciences (Strohmeier et al., 2016). This
impact was made possible by two key factors: efficient algorithms and software implementations.

State-of-the-art algorithms for “smooth + non-smooth separable” problems predominantly rely on
coordinate descent (CD, Tseng and S.Yun 2009; Nesterov 2012), which, when it can be applied,
is more efficient than full gradient methods (Richtárik and Takáč, 2014, Sec. 6.1). Coordinate
descent can even be improved with Nesterov-like acceleration, to obtain improved convergence rates
(Lin et al., 2014; Fercoq and Richtárik, 2015). However, these better rates may fail to reflect in
practical accelerations. On the contrary, Bertrand and Massias (2021) relied on Anderson acceleration
(Anderson, 1965) to provide both better rates and practical acceleration for coordinate descent.

Even with efficient algorithms such as coordinate descent, the practical use of sparsity hits a com-
putational barrier for problems with more than millions of features (Le Morvan and Vert, 2018).
Multiple techniques have been proposed to make coordinate descent scale to huge problems. Notably,
algorithms can be accelerated by reducing the number of variables to optimize over, using screening
rules or working sets. Screening rules discard features from the problem in advance (El Ghaoui
et al. 2010; Bonnefoy et al. 2015) or dynamically (Fercoq et al., 2015; Ndiaye et al., 2017). On the
other side, working sets (Johnson and Guestrin, 2015; Massias et al., 2018) iteratively solve larger
subproblems and progressively include variables identified as relevant.

For the Lasso and a few convex models, coordinate descent has been broadly disseminated to
practitioners in off-the-shelf packages such as glmnet (Friedman et al., 2007) or scikit-learn
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Figure 1: Regularization paths computed with our algorithm. Non-convex sparse penalties
behave better than the L1 norm. Due to their lower bias, they achieve perfect support recovery, lower
prediction error and their optimal regularization strength λ in estimation (top) and prediction (bottom)
correspond.

(Pedregosa et al., 2011). More recently, celer, a state-of-the-art convex working set algorithm
(Massias et al., 2020) allowed for successful applications of the Lasso in large scale problems in
medicine (Reidenbach et al., 2021; Kim et al., 2021) or seismology (Muir and Zhan, 2021).

Yet the Lasso is limited: non-convex sparse models enjoy better theoretical and empirical properties
(Breheny and Huang, 2011; Soubies et al., 2015). As illustrated in Figure 1, they yield sparser
solutions than convex penalties and mitigate the intrinsic Lasso bias. Yet, they have not so often
been applied to huge scale applications. This is mostly an algorithmic barrier: while coordinate
descent can be applied to non-convex penalties (Breheny and Huang, 2011; Mazumder et al., 2011;
Bolte et al., 2014), screening rules and working sets are heavily dependent on convexity or quadratic
datafits (Rakotomamonjy et al., 2019, 2022).

In this work, we solve this issue by designing a state-of-the-art generic algorithm to solve a wide
range of sparse generalized linear models. The contributions are the following:

• We propose a non-convex converging working set algorithm relying on Anderson accelerated
coordinate descent. For a specific class of non-convex penalties, we show:
(a) Convergence of the proposed working set algorithm (Proposition 5).
(b) Support identification of coordinate descent (Proposition 10).
(c) Local convergence rates for the Anderson extrapolation (Proposition 13).

• We provide an extensive experimental comparison and we show state-of-the-art improve-
ments on a wide range of convex and non-convex problems. In addition we release an
efficient and modular python implementation, with a scikit-learn API, for practitioners
to apply non-convex penalties to large scale problems.

2 Framework and proposed algorithm

2.1 Problem setting

In this paper, we consider problems of the form:

β̂ ∈ argmin
β∈Rp

Φ(β) , F (Xβ)︸ ︷︷ ︸
,f(β)

+

p∑
j=1

gj(βj) , (1)

where F is smooth, and the functions gj are proper and lower semicontinuous but not necessarily
convex, whose proximal operator can be computed exactly. We write g =

∑
j gj . Instances of

Problem (1) include convex estimators: the Lasso, the elastic net, the sparse logistic regression,
the dual of SVM with hinge loss. They also include non-convex penalties: `0.5 and `2/3 penalties
(Foucart and Lai, 2009), the minimax concave penalty (MCP, Zhang 2010) or SCAD (Zhang, 2010),
both with regression and classification losses. Formally, the assumptions are the following.
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Assumption 1. f : Rp → R is convex and differentiable and for all j ∈ [p], the restriction of∇jf
to the j-th coordinate is Lj-Lipschitz: for all (x, h) ∈ Rp × R, |∇jf(x+ hej)−∇jf(x)| ≤ Lj |h|.

Assumption 2. For any j ∈ [p], gj : R→ R is proper, closed, and lower bounded.

Following Attouch and Bolte 2009; Bolte et al. 2014 we focus on finding a critical point of Φ.

Definition 3. Using the Fréchet subdifferential (Kruger, 2003), a critical point x ∈ Rp is a point
which satisfies −∇f(x) ∈ ∂g(x).

Assumptions 1 and 2 are usual, and, under boundedness of the iterates, ensure convergence of
forward-backward and coordinate descent algorithms to a critical point (Attouch et al. 2013, Thm
5.1, Bolte et al. 2014, Thm. 3.1). In addition, our work focuses on the case where gj’s present
non-differentiability points, leading to the following extended notion of sparsity.

Definition 4 (Generalized support). The generalized support of β ∈ Rp is the set of indices j ∈ [p]
such that gj is differentiable at βj: gsupp(β) = {j ∈ [p] : ∂gj(βj) is a singleton}.

Penalties such as `1, `q (0 < q < 1), MCP or SCAD are only not differentiable at 0, and this
corresponds to the usual notion of sparsity. But Definition 4 goes beyond sparsity and extends to
estimators such as SVM, where gj = ι[0,C] and the generalized support is the complement of the
support vectors’ set {j ∈ [p] : βj = 0 or βj = C}. The generalized support of a critical point is
usually of cardinality much smaller than p, and its knowledge makes the problem easier and faster to
solve. Our working set algorithm exploits this structure in order to converge faster.

2.2 Proposed algorithm

The proposed algorithm exploits two main ideas:

• A working set strategy, able to handle a large class of convex and non-convex penalties
(Algorithm 1).

• An Anderson accelerated coordinate descent for non-convex problems (Algorithm 2). The
building blocks of Algorithm 2, coordinate descent (CD, Algorithm 3) and Anderson extrap-
olation (Anderson, Algorithm 4), can be found in Appendix A.

To avoid wasting computation on features outside the generalized support, working set algorithms
iteratively select a subset of coordinates deemed important (the working set), and solve Prob-
lem (1) restricted to them. The key question is thus the notion of important features. Stem-
ming from Definition 3, we rank features by their violation of the optimality condition: score∂j =
dist(−∇jf(β), ∂gj(β)) . For example, the MCP Fréchet subdifferential at 0 is ∂gj(0) = [−λ, λ],
and the proposed score reads

score∂j =

{
max{0, |∇jf(β)| − λ} if βj = 0 ,

|∇jf(β) +∇gj(βj)| otherwise .
(2)

To control the working set growth, we use score∂j to rank the features. Then, with nk =

max(nk−1, 2 | gsupp(β(t))|) we take the nk largest of them in the working set, while retaining
features currently in the working set. This growth quickly rises to the unknown size of the generalized
support while avoiding overshooting, as backed up by recent theory in Ndiaye and Takeuchi (2021).

Proposition 5. LetWt be the t-th working set. Suppose that Algorithm 2 converges toward a critical
point, and for all t ≥ 0,Wt ⊂ Wt+1, then the iterates of Algorithm 1 converge towards a critical
point of Problem (1).
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Algorithm 1 skglm (proposed)
input : X,β ∈ Rp, nout ∈ N,

nin ∈ N,ws_size ∈ N, ε > 0
1 for t = 1, . . . , nout do
2 score =

(
dist (−∇jf(β), ∂gj(βj))

)
j∈[p]

3 ws_size = max(ws_size, 2× | gsupp(β)|)
// ws_size features with largest

scores
4 ws = arg_topK(score,K = ws_size)
5 if maxj∈[p] dist (−∇jf(β), ∂gj(βj)) ≤ ε

then stop
6 else // accelerated CD on working set
7 β ← inner_solver(X,β,ws, nin, ε)
8 return β

Algorithm 2 inner_solver

input :X,β(0) ∈ Rp,ws ⊂ [p], nin, ε, M = 5
1 for k = 1, . . . , nin do
2 β(k) ← CD(X,β(k−1), Xβ,ws) // Algo. (3)
3 if kmodM = 0 then

// Algo. (4), O(M2|ws|+M3)

4 βextr
ws ← Anderson(β

(k−M)
ws , . . . , β

(M)
ws )

// test objective O(n|ws|)
5 if Φ(βextr

ws ) < Φ(β
(k)
ws ) then

6 β
(k)
ws ← βextr

ws ;Xβ ← Xwsβ
extr
ws

7 if maxj∈ws dist (−∇jf(β), ∂gj(βj)) ≤ ε
then stop

8 return β(k)

Proof of Proposition 5 can be found in Appendix B.1. The second key ingredient to our algorithm is to
use state-of-the-art Anderson accelerated coordinate descent for non-convex problems. In Section 2.3
we show that coordinate descent yields finite time support identification for a large class of non-
convex problems (Proposition 10), which leads to acceleration (Proposition 13). As experiments
demonstrate in Section 3, this rate allows our algorithm to surpass state-of-the-art solvers.

2.3 Anderson accelerated coordinate descent analysis for α-semi-convex penalties

We now turn to our main technical contributions: we show that Algorithm 2 achieves finite time
support identification (Proposition 10) of the generalized support (Definition 4) for specific class of
non-smooth non-convex penalties (Assumption 6), which includes the MCP (Proposition 7). Based
on Proposition 10, we are able to derive convergence rates for Anderson acceleration (Proposition 13).

We study our inner solver (Algorithm 2); for convenience we still refer to β and X for their counter-
parts restricted to the working set. The following assumptions are required.
Assumption 6 (α-semi-convex). For all j ∈ [p] gj/Lj is α-semi-convex, i.e., gj/Lj + α‖·‖2/2 is
convex, with α < 1.

Note that in statistics, the admissible value range of hyperparameters for MCP and SCAD are datafit-
dependent, (see Breheny and Huang 2011, Sec. 2.1, normalized columns and γ > 1 = 1/ ‖X:j‖ =
1/Lj or Soubies et al. 2015, Eq. 4.2) and yields α-semi-convexity for MCP and SCAD1.

Proposition 7 (α-semi-convexity of MCP). Let MCPλ,γ(x) ,

{
λ|x| − x2

2γ , if |x| ≤ γλ ,
1
2γλ

2 , if |x| > γλ .

If γ > 1/Lj , then MCPλ,γ /Lj is α-semi-convex with α = 1
2 (1 + 1

γLj
) (i.e., Assumption 6 holds).

Note that Assumption 6 does not hold for the `q-penalties (0 < q < 1), for which we propose an
alternative in Appendix C.
Assumption 8 (Existence). Problem (1) admits at least one critical point.

In Proposition 10, convergence of Algorithm 2 toward a critical point β̂ is assumed, and the following
assumption is made on this critical point.

Assumption 9 (Non degeneracy). The considered critical point β̂ ∈ Rp is non-degenerated: for all
j /∈ gsupp(β̂),

−∇fj(β̂) ∈ interior(∂gj(β̂j)). (3)

Assumption 9 is a generalization of qualification constraints (Hare and Lewis, 2007, Sec. 1), and is
usual in the machine learning literature (Zhao and Yu, 2006; Bach, 2008; Vaiter et al., 2015). For

1However MCP and SCAD are not α-semiconvex for all hyperparameter values.
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the `1-norm, if the entries of the design matrix X are drawn from an i.i.d normal distribution, then
Assumption 9 holds with high probability (Candes and Tao, 2005; Rudelson and Vershynin, 2008).

Equipped with the previous assumptions we show that coordinate descent achieves model identifica-
tion for this class of non-convex problems.
Proposition 10 (Model identification of CD). Suppose

1. Assumptions 1, 2, 6 and 8 hold.
2. The sequence (β(k))k≥0 generated by coordinate descent (Algorithm 2 without extrapola-

tion) converges toward a critical point β̂.

3. Assumption 9 holds for β̂.

Then, Algorithm 2 (without extrapolation) identifies the model in finitely many iterations: there exists
K > 0 such that for all k ≥ K, β(k)

Sc = β̂Sc .

In other words, for k large enough, β(k) shares the generalized support of β̂. The identification
property was proved for a proximal gradient descent algorithm in the non-convex case (Liang et al.,
2016) under the assumption that the non-smooth function g is partly smooth (Lewis, 2002). For
ourselves, Proposition 10 not rely on the partly smooth assumption to ensure identification property.
Authors are not aware of previous identification results for coordinate descent in the non-convex case.

In addition, if f and g are locally regular on the generalized support at the considered critical point,
our algorithm enjoys local acceleration when combined with Anderson extrapolation (Proposition 13).

Assumption 11 (Locally C3). For all j ∈ S , gsupp(β̂), gj is locally C3 around β̂j , and f is locally
C3 around β̂.

Assumption 11 on the function f is mild and holds for usual machine learning datafitting terms.
Assumption 11 on the functions gj , j ∈ S , is stronger: for instance, for the MCP, it implies β̂j 6= γλ
for all j ∈ S. However this assumption is standard in the literature, see Liang et al. 2016, Sec. 3.3

Assumption 12. (Local strong convexity) The Hessian of f at the considered critical point β̂ ∈ Rp,
restricted to its generalized support S , is positive definite, i.e.,∇2

S,Sf(β̂) +∇2
S,Sg(β̂) � 0.

Assumption 12 requires local strong convexity restricted to the generalized support S, which is
standard in the MCP / SCAD literature (Breheny and Huang 2011, Section 4.1) and is usual to derive
local linear rates of convergence (Liang et al., 2016, Section 3.3). For instance, for the Lasso, if the
entries of the design matrix X are drawn from a continuous distribution, then Assumption 12 holds
with probability one (Tibshirani, 2013, Lemma 4).

Proposition 13. Consider a critical point β̂ and suppose

1. Assumptions 1, 2 and 8 hold.
2. The functions f and gj , j ∈ [p] are piecewise quadratic (which is the case for the MCP

regression).
3. The sequence (β(k))k≥0 generated by Anderson accelerated coordinate descent with updates

from 1 to p and p to 1 (Algorithm 2 with extrapolation) converges to a critical point β̂.

4. Assumptions 9, 11 and 12 hold for β̂.

Then there exists K ∈ N, and a C1 function ψ : R|S| → R|S| such that, for all k ∈ N, k ≥ K:

β
(k)
j = β̂j , for all j ∈ Sc, (4)

Let T , Jψ(β̂), H , ∇2
S,Sf(β̂) + ∇2

S,Sg(β̂), ζ , (1 −
√

1− ρ(T ))/(1 +
√

1− ρ(T )) and
B , (T − Id)>(T − Id). Then ρ(T ) < 1 and the iterates of Anderson extrapolation enjoy local
accelerated convergence rate:

‖β(k−K)
S − β̂S‖B ≤

(√
κ(H) 2ζM−1

1+ζ2(M−1)

)(k−K)/M

‖β(K)
S − β̂S‖B . (5)

The proof can be found in Appendix B.5.
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Table 1: Most popular packages for sparse generalized linear models.

Name Acceleration Huge scale Nncvx Modular
glmnet (Friedman et al., 2010) 7 7 7 7 (Fortran)

scikit-learn (Pedregosa et al., 2011) 7 7 7 7 (Cython)
lightning (Blondel and Pedregosa, 2016) 7 7 7 3 (Cython)

celer (Massias et al., 2018) 3 3 7 7 (Cython)
picasso (Ge et al., 2019) 7 7 3 7 (C++)
pyGLMnet (Jas et al., 2020) 7 77 7 3 (Python)

fireworks (Rakotomamonjy et al., 2022) 7 3 3 N.A. (Python)
skglm (ours) 3 3 33 3 (Python)

Related work. Most Anderson acceleration convergence results are shown for quadratic objectives for
specific algorithms: gradient descent (Golub and Varga, 1961; Anderson, 1965), ADMM (Poon and
Liang, 2019), coordinate descent (Bertrand et al., 2020). Outside of the quadratic case, convergence
results are usually significantly weaker (Scieur et al., 2016; Sidi, 2017; Brezinski et al., 2018; Mai
and Johansson, 2019; Ouyang et al., 2020). Regarding the smooth non-convex case, Wei et al.
(2021) proposed a stochastic Anderson acceleration and proved convergence towards a critical point.
Proposition 13 generalizes Scieur et al. (2020, Prop 2.1) and Bertrand and Massias (2021, Prop. 4) to
the proximal convex and α-semi-convex cases. To our knowledge this is one of the first quantitative
results for Anderson acceleration in a non-convex setting.

2.4 Comparison with existing work

In this section we compare our contribution to existing algorithms and implementations, which are
summarized in Table 1. Huge scale refers to the fact that the algorithm can run on problems with
millions of variables. Non-convex tells if the algorithm handles non-convex penalties. Modular
indicates that it is easy to add a new model, through a different datafitting term or penalty.

The packages glmnet (Friedman et al., 2010), scikit-learn (Pedregosa et al., 2011) and
lightning (Blondel and Pedregosa, 2016) implement coordinate descent (cyclic or random). They
rely on compiled code such as Fortran or Cython, making it very difficult to implement new models2

or faster algorithms like working set3. They do not handle non-convex penalties.

More recent algorithms such as blitz (Johnson and Guestrin, 2015), celer (Massias et al., 2018),
picasso (Ge et al., 2019) or fireworks (Rakotomamonjy et al., 2022) use working set strategies.
celer and blitz are state-of-the-art algorithms for the Lasso, but their score to prioritize features
relies on duality. fireworks extends blitz to some non-convex penalties (writing as difference of
convex functions), with scorefireworks

j = dist(−∇jf(β), ∂gj(0)). Yet this rule does not consider the
subdifferential of g at the current point, but at 0, which is a coarse information. Finally, fireworks,
building upon the seminal non convex working set solver of Boisbunon et al. (2014), does not provide
accelerated convergence rates and does not come with a public implementation. picasso (Ge et al.,
2019) lacks modularity (penalties are hardcoded), and the solver is not suited for huge scale (it does
not support large sparse matrices). Deng and Lan (2019) proposed an algorithm based on inertially
accelerated coordinate descent, which fails to provide practical speedups according to Bertrand and
Massias (2021).

Contrary to these algorithms, ours is generic and relies only on the knowledge of ∇f and proxg . For
any new penalty, this information can be written in a few lines of Python code, compiled with numba
(Lam et al., 2015) for speed efficiency. We therefore improve state-of-the-art algorithms in the convex
case, and generalize to virtually any datafit and penalty, even nonconvex.

3 Experiments

Our package relying on numpy and numba (Lam et al., 2015; Harris et al., 2020) is attached in the
supplementary material. An open source, fully tested and documented version of the code can be

2https://github.com/scikit-learn/scikit-learn/pull/10745 (4 years old)
3 https://github.com/scikit-learn/scikit-learn/pull/7853 (5 years old)
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Figure 2: Lasso, duality gap. Normalized duality gap as a function of time for the Lasso on multiple
datasets, for multiple values of λ.

found at https://github.com/scikit-learn-contrib/skglm. We use datasets from libsvm4

(Fan et al. 2008, see table 2).

We compare multiple algorithms to solve popular Machine Learning and inverse problems: Lasso,
Elastic net, multitask sparse regression, MCP regression. The compared algorithms are the following:

• scikit-learn (Pedregosa et al., 2011), which implements coordinate descent in Cython,
• celer (Massias et al., 2020), which combines working sets, screening rules, coordinate

descent, and Anderson acceleration in the dual, in Cython,
• blitz (Johnson and Guestrin, 2015), which combines working sets with prox-Newton

iterations (Lee et al., 2012) in C++,
• coordinate descent (CD, Tseng and S.Yun 2009),
• skglm (Algorithm 1, ours), using M = 5 iterates for the Anderson extrapolation.

Other solvers. Experiment per experiment, there exist niche solvers (such as aggressive Gap Safe
Rules, Ndiaye et al. 2020). Since our goal is a general purpose algorithm able to deal with many
models, we do not include them in the comparison. In addition, we focus on solving a single
instance of Problem (1), rather than a regularization path (i.e., a sequence of problems for multiple
regularization strengths). As glmnet is designed to compute regularization paths, we could not
include it in the comparison. The reader can refer to Johnson and Guestrin (2015, Fig. 4) or Figure 8
in Appendix E for comparisons on single optimization problems with glmnet; glmnet and additional
algorithms are discussed in Appendix E.

How to do a fair comparison between solvers? To plot the convergence curves, we use the
benchopt5 benchmarking package (Moreau et al., 2022). In order to automate and reproduce
optimization benchmarks it treats solvers as black boxes. It launches them several times with
increasing maximum number of iterations, and stores the resulting objective values and times to reach
it. As each point on a solver curve is obtained in a different run, the curves are not monotonic, and
there may be several points corresponding to the same time. This merely reflects the variability in
solvers running time across runs; we refer to Figure 10 in Appendix E.6 for the inevitability of this
phenomenon with black box solvers.

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
5https://github.com/benchopt/benchopt
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Figure 3: Elastic net, duality gap. Normalized duality gap as a function of time for the elastic net
for multiple values of λ, ρ = 0.5.

(a) `2,1. (b) `2,0.5. (c) Block MCP.

Figure 4: Real data, brain source locations recovered by convex and non-convex penalties after
a right auditory stimulation. 4(a) shows that a convex penalty fails at identifying one source in
each hemisphere, while 4(b) and 4(c) demonstrates the capability of non-convex penalties to recover
the correct solution.

3.1 Convex problems

Lasso. In Figure 2 we compare solvers for the Lasso: (f = 1
2n ‖y −X·‖

2, gj = λ|·|). We
parametrize λ as a fraction of λmax = ‖X>y‖∞/n, smallest regularization strength for which β̂ = 0.
For large scale datasets (rcv1, news20), skglm yields performances better or similar to the state-of-
the-art algorithms blitz and celer. For huge scale datasets (kdda and url), skglm yields significant
speedups over them. The improvement over the popular scikit-learn can be of two orders of
magnitude. Thus, while dealing with many more models, our algorithm still yields state-of-the-art
speed for basic ones.

Elastic net. Our approach easily generalizes to other problems, such as the elastic net (f =
1

2n ‖y −X·‖
2, gj = λ(ρ|·| + 1−ρ

2 (·)2)). Figure 3 shows the duality gap as a function of time
for skglm (ours), sklearn, and our numba implementation of coordinate descent. The proposed
algorithm is orders of magnitude faster than scikit-learn and vanilla coordinate descent, in
particular for large datasets and low regularization parameter values (finance, λmax/1000). Note that
blitz does not implement a solver for the elastic net. Many Lasso solvers would easily handle the
elastic net, but relying on Cython/C++ code makes the implementation time-consuming. By contrast,
it takes 40 lines of code to define an `1 + `2-squared penalty with our implementation. An additional
experiment on the dual of SVM with hinge loss is in Appendix E.4.

3.2 Non-convex problems

In this subsection we propose a comparison on two non convex problems.

MCP regression. MCP regression is Problem (1) with f = 1
2n ‖y −X·‖

2, gj = MCPλ,γ for
γ > 1. As usual for this problem, we scale the columns of X to have norm

√
n. On Figure 5,

we compare our algorithm to picasso on a dense dataset (n = 1000, p = 5000); as this package
does not support large sparse design matrices, for the rcv1 dataset we use an iterative reweighted
L1 algorithm (Candes et al., 2008). Since the derivative of the MCP vanishes for values bigger than
λγ, this approach requires solving weighted Lassos with some 0 weights. Up to our knowledge, our
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Figure 5: MCP, objective value and violation of first order condition. Objective value and
violation of optimality condition of the iterates, dist(−∇f(β(k)), ∂g(β(k))), as a function of time
for the MCP for multiple values of λ (γ = 3) on a simulated dense dataset (top) and the rcv1 dataset
(normalized columns).

algorithm is the only efficient one with such a property. Our algorithm handles problems of large
size, converges to a critical point, and, due to its progressive inclusion of features, is able to reach a
sparser critical point than it competitors.

Application to neuroscience To demonstrate the usefulness of our algorithm for practitioners,
we apply it to the magneto-/electroencephalographic (M/EEG) inverse problem. It consists in
reconstructing the spatial cortical current density at the origin of M/EEG measurements made at
the surface of the scalp. Non-convex penalties (Strohmeier et al., 2015) exhibit several advantages
over convex ones (Gramfort et al., 2013): they yield sparser physiologically-plausible solutions and
mitigate the `1 amplitude bias. Here the setting is multitask: Y ∈ Rn×T and thus we use block
penalties (details in Appendix D). We use real data from the mne software (Gramfort et al., 2014);
the experiment is a right auditory stimulation, with two expected neural sources to recover in each
auditory cortex. In Figure 4, while the `2,1 penalty fails at localizing one source in each hemisphere,
the non-convex penalties recover the correct locations. This emphasizes on the critical need for fast
solvers for non-convex sparse penalties as well as our algorithm’s ability to handle the latter. In this
work we focused on optimization-based estimators to solve the inverse problem, note that one could
have resort to other techniques, such as Bayesian techniques (Ghosh and Doshi-Velez, 2017; Fang
et al., 2020).

Ablation study. To evaluate the influence of the two components of Algorithm 1, an ablation study
(Figure 6) is performed. Four algorithms are compared: with/without working sets and with/without
Anderson acceleration. Figure 6 represents the duality gap of the Lasso as a function of time for
multiple datasets and values of the regularization parameters λ (parametrized as a fraction of λmax).
First, Figure 6 shows that working sets always bring significant speedups. Then, when combined with
working set, Anderson acceleration bring significant speed-ups, especially for hard problems with
low regularization parameters. An interesting observation is that on large scale datasets (news20 and
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Figure 6: Lasso, duality gap. Normalized duality gap as a function of time for the Lasso.

finance) and for low regularization parameters (λmax/100 and λmax/1000) Anderson acceleration
without working set does not bring acceleration. This highlights the importance of combining
Anderson acceleration with working sets.

Conclusion and broader impact. In this paper, we have proposed an accelerated versatile algo-
rithm for a specific class of non-smooth non-convex problems. Based on working sets, coordinate
descent and Anderson acceleration, we have improved state of the art on convex problems, and han-
dled previously out-of-reach problems. Thorough experiments demonstrated the speed and interest
of our approach. A limitation of this work is the considered function class (α-semi-convex), which
can be seen as restrictive. One possible extension would be weakly convex functions (Davis and
Drusvyatskiy, 2019, Sec. 1). We deeply believe that the high quality code provided will benefit to
practitioners, and ease the use of non-convex penalties for real world problems, from neuroimaging to
genomics. We proposed an optimization algorithm and do not see potential negative societal impacts.
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