
Beyond L1: Faster and Better Sparse Models with
skglm

Quentin Bertrand
Mila & UdeM, Canada

quentin.bertrand@mila.quebec

Quentin Klopfenstein
Luxembourg Centre for Systems Biomedicine

University of Luxembourg
Esch-sur-Alzette, Luxembourg

Pierre-Antoine Bannier
Independent Researcher

Gauthier Gidel
Mila & UdeM, Canada

Canada CIFAR AI Chair

Mathurin Massias
Univ. Lyon, Inria, CNRS, ENS de Lyon,
UCB Lyon 1, LIP UMR 5668, F-69342

Lyon, France

Abstract

We propose a new fast algorithm to estimate any sparse generalized linear model
with convex or non-convex separable penalties. Our algorithm is able to solve
problems with millions of samples and features in seconds, by relying on coor-
dinate descent, working sets and Anderson acceleration. It handles previously
unaddressed models, and is extensively shown to improve state-of-art algorithms.
We release skglm, a flexible, scikit-learn compatible package, which easily
handles customized datafits and penalties.

1 Introduction

Sparse generalized linear models play a central role in modern machine learning and signal processing.
The Lasso (Tibshirani, 1996) and its derivatives (Zou and Hastie, 2005; Ng, 2004; Candes et al., 2008;
Simon et al., 2013) have found numerous successful applications to large scale tasks in genomics
(Ghosh and Chinnaiyan, 2005), vision (Mairal, 2010), or neurosciences (Strohmeier et al., 2016). This
impact was made possible by two key factors: efficient algorithms and software implementations.

State-of-the-art algorithms for “smooth + non-smooth separable” problems predominantly rely on
coordinate descent (CD, Tseng and S.Yun 2009; Nesterov 2012), which, when it can be applied,
is more efficient than full gradient methods (Richtárik and Takáč, 2014, Sec. 6.1). Coordinate
descent can even be improved with Nesterov-like acceleration, to obtain improved convergence rates
(Lin et al., 2014; Fercoq and Richtárik, 2015). However, these better rates may fail to reflect in
practical accelerations. On the contrary, Bertrand and Massias (2021) relied on Anderson acceleration
(Anderson, 1965) to provide both better rates and practical acceleration for coordinate descent.

Even with efficient algorithms such as coordinate descent, the practical use of sparsity hits a com-
putational barrier for problems with more than millions of features (Le Morvan and Vert, 2018).
Multiple techniques have been proposed to make coordinate descent scale to huge problems. Notably,
algorithms can be accelerated by reducing the number of variables to optimize over, using screening
rules or working sets. Screening rules discard features from the problem in advance (El Ghaoui
et al. 2010; Bonnefoy et al. 2015) or dynamically (Fercoq et al., 2015; Ndiaye et al., 2017). On the
other side, working sets (Johnson and Guestrin, 2015; Massias et al., 2018) iteratively solve larger
subproblems and progressively include variables identified as relevant.

For the Lasso and a few convex models, coordinate descent has been broadly disseminated to
practitioners in off-the-shelf packages such as glmnet (Friedman et al., 2007) or scikit-learn

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Lasso MCP, γ = 3 `1/2 `2/3

0

1

F
1-

sc
or

e

10−2 10−1 100

λ/λmax

0

1

R
M

S
E

Figure 1: Regularization paths computed with our algorithm. Non-convex sparse penalties
behave better than the L1 norm. Due to their lower bias, they achieve perfect support recovery, lower
prediction error and their optimal regularization strength λ in estimation (top) and prediction (bottom)
correspond.

(Pedregosa et al., 2011). More recently, celer, a state-of-the-art convex working set algorithm
(Massias et al., 2020) allowed for successful applications of the Lasso in large scale problems in
medicine (Reidenbach et al., 2021; Kim et al., 2021) or seismology (Muir and Zhan, 2021).

Yet the Lasso is limited: non-convex sparse models enjoy better theoretical and empirical properties
(Breheny and Huang, 2011; Soubies et al., 2015). As illustrated in Figure 1, they yield sparser
solutions than convex penalties and mitigate the intrinsic Lasso bias. Yet, they have not so often
been applied to huge scale applications. This is mostly an algorithmic barrier: while coordinate
descent can be applied to non-convex penalties (Breheny and Huang, 2011; Mazumder et al., 2011;
Bolte et al., 2014), screening rules and working sets are heavily dependent on convexity or quadratic
datafits (Rakotomamonjy et al., 2019, 2022).

In this work, we solve this issue by designing a state-of-the-art generic algorithm to solve a wide
range of sparse generalized linear models. The contributions are the following:

• We propose a non-convex converging working set algorithm relying on Anderson accelerated
coordinate descent. For a specific class of non-convex penalties, we show:
(a) Convergence of the proposed working set algorithm (Proposition 5).
(b) Support identification of coordinate descent (Proposition 10).
(c) Local convergence rates for the Anderson extrapolation (Proposition 13).

• We provide an extensive experimental comparison and we show state-of-the-art improve-
ments on a wide range of convex and non-convex problems. In addition we release an
efficient and modular python implementation, with a scikit-learn API, for practitioners
to apply non-convex penalties to large scale problems.

2 Framework and proposed algorithm

2.1 Problem setting

In this paper, we consider problems of the form:

β̂ ∈ argmin
β∈Rp

Φ(β) , F (Xβ)︸ ︷︷ ︸
,f(β)

+

p∑
j=1

gj(βj) , (1)

where F is smooth, and the functions gj are proper and lower semicontinuous but not necessarily
convex, whose proximal operator can be computed exactly. We write g =

∑
j gj . Instances of

Problem (1) include convex estimators: the Lasso, the elastic net, the sparse logistic regression,
the dual of SVM with hinge loss. They also include non-convex penalties: `0.5 and `2/3 penalties
(Foucart and Lai, 2009), the minimax concave penalty (MCP, Zhang 2010) or SCAD (Zhang, 2010),
both with regression and classification losses. Formally, the assumptions are the following.

2

Assumption 1. f : Rp → R is convex and differentiable and for all j ∈ [p], the restriction of∇jf
to the j-th coordinate is Lj-Lipschitz: for all (x, h) ∈ Rp × R, |∇jf(x+ hej)−∇jf(x)| ≤ Lj |h|.

Assumption 2. For any j ∈ [p], gj : R→ R is proper, closed, and lower bounded.

Following Attouch and Bolte 2009; Bolte et al. 2014 we focus on finding a critical point of Φ.

Definition 3. Using the Fréchet subdifferential (Kruger, 2003), a critical point x ∈ Rp is a point
which satisfies −∇f(x) ∈ ∂g(x).

Assumptions 1 and 2 are usual, and, under boundedness of the iterates, ensure convergence of
forward-backward and coordinate descent algorithms to a critical point (Attouch et al. 2013, Thm
5.1, Bolte et al. 2014, Thm. 3.1). In addition, our work focuses on the case where gj’s present
non-differentiability points, leading to the following extended notion of sparsity.

Definition 4 (Generalized support). The generalized support of β ∈ Rp is the set of indices j ∈ [p]
such that gj is differentiable at βj: gsupp(β) = {j ∈ [p] : ∂gj(βj) is a singleton}.

Penalties such as `1, `q (0 < q < 1), MCP or SCAD are only not differentiable at 0, and this
corresponds to the usual notion of sparsity. But Definition 4 goes beyond sparsity and extends to
estimators such as SVM, where gj = ι[0,C] and the generalized support is the complement of the
support vectors’ set {j ∈ [p] : βj = 0 or βj = C}. The generalized support of a critical point is
usually of cardinality much smaller than p, and its knowledge makes the problem easier and faster to
solve. Our working set algorithm exploits this structure in order to converge faster.

2.2 Proposed algorithm

The proposed algorithm exploits two main ideas:

• A working set strategy, able to handle a large class of convex and non-convex penalties
(Algorithm 1).

• An Anderson accelerated coordinate descent for non-convex problems (Algorithm 2). The
building blocks of Algorithm 2, coordinate descent (CD, Algorithm 3) and Anderson extrap-
olation (Anderson, Algorithm 4), can be found in Appendix A.

To avoid wasting computation on features outside the generalized support, working set algorithms
iteratively select a subset of coordinates deemed important (the working set), and solve Prob-
lem (1) restricted to them. The key question is thus the notion of important features. Stem-
ming from Definition 3, we rank features by their violation of the optimality condition: score∂j =
dist(−∇jf(β), ∂gj(β)) . For example, the MCP Fréchet subdifferential at 0 is ∂gj(0) = [−λ, λ],
and the proposed score reads

score∂j =

{
max{0, |∇jf(β)| − λ} if βj = 0 ,

|∇jf(β) +∇gj(βj)| otherwise .
(2)

To control the working set growth, we use score∂j to rank the features. Then, with nk =

max(nk−1, 2 | gsupp(β(t))|) we take the nk largest of them in the working set, while retaining
features currently in the working set. This growth quickly rises to the unknown size of the generalized
support while avoiding overshooting, as backed up by recent theory in Ndiaye and Takeuchi (2021).

Proposition 5. LetWt be the t-th working set. Suppose that Algorithm 2 converges toward a critical
point, and for all t ≥ 0,Wt ⊂ Wt+1, then the iterates of Algorithm 1 converge towards a critical
point of Problem (1).

3

Algorithm 1 skglm (proposed)
input : X,β ∈ Rp, nout ∈ N,

nin ∈ N,ws_size ∈ N, ε > 0
1 for t = 1, . . . , nout do
2 score =

(
dist (−∇jf(β), ∂gj(βj))

)
j∈[p]

3 ws_size = max(ws_size, 2× | gsupp(β)|)
// ws_size features with largest

scores
4 ws = arg_topK(score,K = ws_size)
5 if maxj∈[p] dist (−∇jf(β), ∂gj(βj)) ≤ ε

then stop
6 else // accelerated CD on working set
7 β ← inner_solver(X,β,ws, nin, ε)
8 return β

Algorithm 2 inner_solver

input :X,β(0) ∈ Rp,ws ⊂ [p], nin, ε, M = 5
1 for k = 1, . . . , nin do
2 β(k) ← CD(X,β(k−1), Xβ,ws) // Algo. (3)
3 if kmodM = 0 then

// Algo. (4), O(M2|ws|+M3)

4 βextr
ws ← Anderson(β

(k−M)
ws , . . . , β

(M)
ws)

// test objective O(n|ws|)
5 if Φ(βextr

ws) < Φ(β
(k)
ws) then

6 β
(k)
ws ← βextr

ws ;Xβ ← Xwsβ
extr
ws

7 if maxj∈ws dist (−∇jf(β), ∂gj(βj)) ≤ ε
then stop

8 return β(k)

Proof of Proposition 5 can be found in Appendix B.1. The second key ingredient to our algorithm is to
use state-of-the-art Anderson accelerated coordinate descent for non-convex problems. In Section 2.3
we show that coordinate descent yields finite time support identification for a large class of non-
convex problems (Proposition 10), which leads to acceleration (Proposition 13). As experiments
demonstrate in Section 3, this rate allows our algorithm to surpass state-of-the-art solvers.

2.3 Anderson accelerated coordinate descent analysis for α-semi-convex penalties

We now turn to our main technical contributions: we show that Algorithm 2 achieves finite time
support identification (Proposition 10) of the generalized support (Definition 4) for specific class of
non-smooth non-convex penalties (Assumption 6), which includes the MCP (Proposition 7). Based
on Proposition 10, we are able to derive convergence rates for Anderson acceleration (Proposition 13).

We study our inner solver (Algorithm 2); for convenience we still refer to β and X for their counter-
parts restricted to the working set. The following assumptions are required.
Assumption 6 (α-semi-convex). For all j ∈ [p] gj/Lj is α-semi-convex, i.e., gj/Lj + α‖·‖2/2 is
convex, with α < 1.

Note that in statistics, the admissible value range of hyperparameters for MCP and SCAD are datafit-
dependent, (see Breheny and Huang 2011, Sec. 2.1, normalized columns and γ > 1 = 1/ ‖X:j‖ =
1/Lj or Soubies et al. 2015, Eq. 4.2) and yields α-semi-convexity for MCP and SCAD1.

Proposition 7 (α-semi-convexity of MCP). Let MCPλ,γ(x) ,

{
λ|x| − x2

2γ , if |x| ≤ γλ ,
1
2γλ

2 , if |x| > γλ .

If γ > 1/Lj , then MCPλ,γ /Lj is α-semi-convex with α = 1
2 (1 + 1

γLj
) (i.e., Assumption 6 holds).

Note that Assumption 6 does not hold for the `q-penalties (0 < q < 1), for which we propose an
alternative in Appendix C.
Assumption 8 (Existence). Problem (1) admits at least one critical point.

In Proposition 10, convergence of Algorithm 2 toward a critical point β̂ is assumed, and the following
assumption is made on this critical point.

Assumption 9 (Non degeneracy). The considered critical point β̂ ∈ Rp is non-degenerated: for all
j /∈ gsupp(β̂),

−∇fj(β̂) ∈ interior(∂gj(β̂j)). (3)

Assumption 9 is a generalization of qualification constraints (Hare and Lewis, 2007, Sec. 1), and is
usual in the machine learning literature (Zhao and Yu, 2006; Bach, 2008; Vaiter et al., 2015). For

1However MCP and SCAD are not α-semiconvex for all hyperparameter values.

4

the `1-norm, if the entries of the design matrix X are drawn from an i.i.d normal distribution, then
Assumption 9 holds with high probability (Candes and Tao, 2005; Rudelson and Vershynin, 2008).

Equipped with the previous assumptions we show that coordinate descent achieves model identifica-
tion for this class of non-convex problems.
Proposition 10 (Model identification of CD). Suppose

1. Assumptions 1, 2, 6 and 8 hold.
2. The sequence (β(k))k≥0 generated by coordinate descent (Algorithm 2 without extrapola-

tion) converges toward a critical point β̂.

3. Assumption 9 holds for β̂.

Then, Algorithm 2 (without extrapolation) identifies the model in finitely many iterations: there exists
K > 0 such that for all k ≥ K, β(k)

Sc = β̂Sc .

In other words, for k large enough, β(k) shares the generalized support of β̂. The identification
property was proved for a proximal gradient descent algorithm in the non-convex case (Liang et al.,
2016) under the assumption that the non-smooth function g is partly smooth (Lewis, 2002). For
ourselves, Proposition 10 not rely on the partly smooth assumption to ensure identification property.
Authors are not aware of previous identification results for coordinate descent in the non-convex case.

In addition, if f and g are locally regular on the generalized support at the considered critical point,
our algorithm enjoys local acceleration when combined with Anderson extrapolation (Proposition 13).

Assumption 11 (Locally C3). For all j ∈ S , gsupp(β̂), gj is locally C3 around β̂j , and f is locally
C3 around β̂.

Assumption 11 on the function f is mild and holds for usual machine learning datafitting terms.
Assumption 11 on the functions gj , j ∈ S , is stronger: for instance, for the MCP, it implies β̂j 6= γλ
for all j ∈ S. However this assumption is standard in the literature, see Liang et al. 2016, Sec. 3.3

Assumption 12. (Local strong convexity) The Hessian of f at the considered critical point β̂ ∈ Rp,
restricted to its generalized support S , is positive definite, i.e.,∇2

S,Sf(β̂) +∇2
S,Sg(β̂) � 0.

Assumption 12 requires local strong convexity restricted to the generalized support S, which is
standard in the MCP / SCAD literature (Breheny and Huang 2011, Section 4.1) and is usual to derive
local linear rates of convergence (Liang et al., 2016, Section 3.3). For instance, for the Lasso, if the
entries of the design matrix X are drawn from a continuous distribution, then Assumption 12 holds
with probability one (Tibshirani, 2013, Lemma 4).

Proposition 13. Consider a critical point β̂ and suppose

1. Assumptions 1, 2 and 8 hold.
2. The functions f and gj , j ∈ [p] are piecewise quadratic (which is the case for the MCP

regression).
3. The sequence (β(k))k≥0 generated by Anderson accelerated coordinate descent with updates

from 1 to p and p to 1 (Algorithm 2 with extrapolation) converges to a critical point β̂.

4. Assumptions 9, 11 and 12 hold for β̂.

Then there exists K ∈ N, and a C1 function ψ : R|S| → R|S| such that, for all k ∈ N, k ≥ K:

β
(k)
j = β̂j , for all j ∈ Sc, (4)

Let T , Jψ(β̂), H , ∇2
S,Sf(β̂) + ∇2

S,Sg(β̂), ζ , (1 −
√

1− ρ(T))/(1 +
√

1− ρ(T)) and
B , (T − Id)>(T − Id). Then ρ(T) < 1 and the iterates of Anderson extrapolation enjoy local
accelerated convergence rate:

‖β(k−K)
S − β̂S‖B ≤

(√
κ(H) 2ζM−1

1+ζ2(M−1)

)(k−K)/M

‖β(K)
S − β̂S‖B . (5)

The proof can be found in Appendix B.5.

5

Table 1: Most popular packages for sparse generalized linear models.

Name Acceleration Huge scale Nncvx Modular
glmnet (Friedman et al., 2010) 7 7 7 7 (Fortran)

scikit-learn (Pedregosa et al., 2011) 7 7 7 7 (Cython)
lightning (Blondel and Pedregosa, 2016) 7 7 7 3 (Cython)

celer (Massias et al., 2018) 3 3 7 7 (Cython)
picasso (Ge et al., 2019) 7 7 3 7 (C++)
pyGLMnet (Jas et al., 2020) 7 77 7 3 (Python)

fireworks (Rakotomamonjy et al., 2022) 7 3 3 N.A. (Python)
skglm (ours) 3 3 33 3 (Python)

Related work. Most Anderson acceleration convergence results are shown for quadratic objectives for
specific algorithms: gradient descent (Golub and Varga, 1961; Anderson, 1965), ADMM (Poon and
Liang, 2019), coordinate descent (Bertrand et al., 2020). Outside of the quadratic case, convergence
results are usually significantly weaker (Scieur et al., 2016; Sidi, 2017; Brezinski et al., 2018; Mai
and Johansson, 2019; Ouyang et al., 2020). Regarding the smooth non-convex case, Wei et al.
(2021) proposed a stochastic Anderson acceleration and proved convergence towards a critical point.
Proposition 13 generalizes Scieur et al. (2020, Prop 2.1) and Bertrand and Massias (2021, Prop. 4) to
the proximal convex and α-semi-convex cases. To our knowledge this is one of the first quantitative
results for Anderson acceleration in a non-convex setting.

2.4 Comparison with existing work

In this section we compare our contribution to existing algorithms and implementations, which are
summarized in Table 1. Huge scale refers to the fact that the algorithm can run on problems with
millions of variables. Non-convex tells if the algorithm handles non-convex penalties. Modular
indicates that it is easy to add a new model, through a different datafitting term or penalty.

The packages glmnet (Friedman et al., 2010), scikit-learn (Pedregosa et al., 2011) and
lightning (Blondel and Pedregosa, 2016) implement coordinate descent (cyclic or random). They
rely on compiled code such as Fortran or Cython, making it very difficult to implement new models2

or faster algorithms like working set3. They do not handle non-convex penalties.

More recent algorithms such as blitz (Johnson and Guestrin, 2015), celer (Massias et al., 2018),
picasso (Ge et al., 2019) or fireworks (Rakotomamonjy et al., 2022) use working set strategies.
celer and blitz are state-of-the-art algorithms for the Lasso, but their score to prioritize features
relies on duality. fireworks extends blitz to some non-convex penalties (writing as difference of
convex functions), with scorefireworks

j = dist(−∇jf(β), ∂gj(0)). Yet this rule does not consider the
subdifferential of g at the current point, but at 0, which is a coarse information. Finally, fireworks,
building upon the seminal non convex working set solver of Boisbunon et al. (2014), does not provide
accelerated convergence rates and does not come with a public implementation. picasso (Ge et al.,
2019) lacks modularity (penalties are hardcoded), and the solver is not suited for huge scale (it does
not support large sparse matrices). Deng and Lan (2019) proposed an algorithm based on inertially
accelerated coordinate descent, which fails to provide practical speedups according to Bertrand and
Massias (2021).

Contrary to these algorithms, ours is generic and relies only on the knowledge of ∇f and proxg . For
any new penalty, this information can be written in a few lines of Python code, compiled with numba
(Lam et al., 2015) for speed efficiency. We therefore improve state-of-the-art algorithms in the convex
case, and generalize to virtually any datafit and penalty, even nonconvex.

3 Experiments

Our package relying on numpy and numba (Lam et al., 2015; Harris et al., 2020) is attached in the
supplementary material. An open source, fully tested and documented version of the code can be

2https://github.com/scikit-learn/scikit-learn/pull/10745 (4 years old)
3 https://github.com/scikit-learn/scikit-learn/pull/7853 (5 years old)

6

https://github.com/scikit-learn/scikit-learn/pull/10745
https://github.com/scikit-learn/scikit-learn/pull/7853

blitz celer skglm (ours) sklearn

0.0 0.5 1.0

100

10−7

ne
w

s2
0

λmax/10

0.0 2.5 5.0

λmax/100

0 20

λmax/1000

0 20

100

10−7

kd
da

0 50 100 0 200 400

0 100 200
Time (s)

100

10−7

ur
l

0 500 1000
Time (s)

0 2000
Time (s)

Figure 2: Lasso, duality gap. Normalized duality gap as a function of time for the Lasso on multiple
datasets, for multiple values of λ.

found at https://github.com/scikit-learn-contrib/skglm. We use datasets from libsvm4

(Fan et al. 2008, see table 2).

We compare multiple algorithms to solve popular Machine Learning and inverse problems: Lasso,
Elastic net, multitask sparse regression, MCP regression. The compared algorithms are the following:

• scikit-learn (Pedregosa et al., 2011), which implements coordinate descent in Cython,
• celer (Massias et al., 2020), which combines working sets, screening rules, coordinate

descent, and Anderson acceleration in the dual, in Cython,
• blitz (Johnson and Guestrin, 2015), which combines working sets with prox-Newton

iterations (Lee et al., 2012) in C++,
• coordinate descent (CD, Tseng and S.Yun 2009),
• skglm (Algorithm 1, ours), using M = 5 iterates for the Anderson extrapolation.

Other solvers. Experiment per experiment, there exist niche solvers (such as aggressive Gap Safe
Rules, Ndiaye et al. 2020). Since our goal is a general purpose algorithm able to deal with many
models, we do not include them in the comparison. In addition, we focus on solving a single
instance of Problem (1), rather than a regularization path (i.e., a sequence of problems for multiple
regularization strengths). As glmnet is designed to compute regularization paths, we could not
include it in the comparison. The reader can refer to Johnson and Guestrin (2015, Fig. 4) or Figure 8
in Appendix E for comparisons on single optimization problems with glmnet; glmnet and additional
algorithms are discussed in Appendix E.

How to do a fair comparison between solvers? To plot the convergence curves, we use the
benchopt5 benchmarking package (Moreau et al., 2022). In order to automate and reproduce
optimization benchmarks it treats solvers as black boxes. It launches them several times with
increasing maximum number of iterations, and stores the resulting objective values and times to reach
it. As each point on a solver curve is obtained in a different run, the curves are not monotonic, and
there may be several points corresponding to the same time. This merely reflects the variability in
solvers running time across runs; we refer to Figure 10 in Appendix E.6 for the inevitability of this
phenomenon with black box solvers.

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
5https://github.com/benchopt/benchopt

7

https://github.com/scikit-learn-contrib/skglm
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/benchopt/benchopt

skglm (ours) coordinate descent sklearn

0 50
Time (s)

100

10−8

fin
an

ce

λmax/10

0 100
Time (s)

λmax/100

0 200 400
Time (s)

λmax/1000

Figure 3: Elastic net, duality gap. Normalized duality gap as a function of time for the elastic net
for multiple values of λ, ρ = 0.5.

(a) `2,1. (b) `2,0.5. (c) Block MCP.

Figure 4: Real data, brain source locations recovered by convex and non-convex penalties after
a right auditory stimulation. 4(a) shows that a convex penalty fails at identifying one source in
each hemisphere, while 4(b) and 4(c) demonstrates the capability of non-convex penalties to recover
the correct solution.

3.1 Convex problems

Lasso. In Figure 2 we compare solvers for the Lasso: (f = 1
2n ‖y −X·‖

2, gj = λ|·|). We
parametrize λ as a fraction of λmax = ‖X>y‖∞/n, smallest regularization strength for which β̂ = 0.
For large scale datasets (rcv1, news20), skglm yields performances better or similar to the state-of-
the-art algorithms blitz and celer. For huge scale datasets (kdda and url), skglm yields significant
speedups over them. The improvement over the popular scikit-learn can be of two orders of
magnitude. Thus, while dealing with many more models, our algorithm still yields state-of-the-art
speed for basic ones.

Elastic net. Our approach easily generalizes to other problems, such as the elastic net (f =
1

2n ‖y −X·‖
2, gj = λ(ρ|·| + 1−ρ

2 (·)2)). Figure 3 shows the duality gap as a function of time
for skglm (ours), sklearn, and our numba implementation of coordinate descent. The proposed
algorithm is orders of magnitude faster than scikit-learn and vanilla coordinate descent, in
particular for large datasets and low regularization parameter values (finance, λmax/1000). Note that
blitz does not implement a solver for the elastic net. Many Lasso solvers would easily handle the
elastic net, but relying on Cython/C++ code makes the implementation time-consuming. By contrast,
it takes 40 lines of code to define an `1 + `2-squared penalty with our implementation. An additional
experiment on the dual of SVM with hinge loss is in Appendix E.4.

3.2 Non-convex problems

In this subsection we propose a comparison on two non convex problems.

MCP regression. MCP regression is Problem (1) with f = 1
2n ‖y −X·‖

2, gj = MCPλ,γ for
γ > 1. As usual for this problem, we scale the columns of X to have norm

√
n. On Figure 5,

we compare our algorithm to picasso on a dense dataset (n = 1000, p = 5000); as this package
does not support large sparse design matrices, for the rcv1 dataset we use an iterative reweighted
L1 algorithm (Candes et al., 2008). Since the derivative of the MCP vanishes for values bigger than
λγ, this approach requires solving weighted Lassos with some 0 weights. Up to our knowledge, our

8

coordinate descent picasso skglm (ours)

500

1000
ob

je
ct

iv
e

λmax/10

0

1000
λmax/100

0

1000
λmax/1000

0 1 2
Time (s)

10−6

op
t.

co
nd

.

0 5
Time (s)

10−6

0 2
Time (s)

10−6

coordinate descent iterative reweighted L1 skglm (ours)

0.25

0.50

ob
je

ct
iv

e

λmax/10

0.25

0.50
λmax/100

0.0

0.5
λmax/1000

0.0 0.2 0.4
Time (s)

10−8

op
t.

co
nd

.

0 10 20
Time (s)

10−8

0 100
Time (s)

10−6

Figure 5: MCP, objective value and violation of first order condition. Objective value and
violation of optimality condition of the iterates, dist(−∇f(β(k)), ∂g(β(k))), as a function of time
for the MCP for multiple values of λ (γ = 3) on a simulated dense dataset (top) and the rcv1 dataset
(normalized columns).

algorithm is the only efficient one with such a property. Our algorithm handles problems of large
size, converges to a critical point, and, due to its progressive inclusion of features, is able to reach a
sparser critical point than it competitors.

Application to neuroscience To demonstrate the usefulness of our algorithm for practitioners,
we apply it to the magneto-/electroencephalographic (M/EEG) inverse problem. It consists in
reconstructing the spatial cortical current density at the origin of M/EEG measurements made at
the surface of the scalp. Non-convex penalties (Strohmeier et al., 2015) exhibit several advantages
over convex ones (Gramfort et al., 2013): they yield sparser physiologically-plausible solutions and
mitigate the `1 amplitude bias. Here the setting is multitask: Y ∈ Rn×T and thus we use block
penalties (details in Appendix D). We use real data from the mne software (Gramfort et al., 2014);
the experiment is a right auditory stimulation, with two expected neural sources to recover in each
auditory cortex. In Figure 4, while the `2,1 penalty fails at localizing one source in each hemisphere,
the non-convex penalties recover the correct locations. This emphasizes on the critical need for fast
solvers for non-convex sparse penalties as well as our algorithm’s ability to handle the latter. In this
work we focused on optimization-based estimators to solve the inverse problem, note that one could
have resort to other techniques, such as Bayesian techniques (Ghosh and Doshi-Velez, 2017; Fang
et al., 2020).

Ablation study. To evaluate the influence of the two components of Algorithm 1, an ablation study
(Figure 6) is performed. Four algorithms are compared: with/without working sets and with/without
Anderson acceleration. Figure 6 represents the duality gap of the Lasso as a function of time for
multiple datasets and values of the regularization parameters λ (parametrized as a fraction of λmax).
First, Figure 6 shows that working sets always bring significant speedups. Then, when combined with
working set, Anderson acceleration bring significant speed-ups, especially for hard problems with
low regularization parameters. An interesting observation is that on large scale datasets (news20 and

9

CD - Working sets and Acceleration

CD - Working sets

CD - Acceleration

CD

0.0 0.2

100

10−10

rc
v1

λmax/10

0 1 2

λmax/100

0 5 10

λmax/1000

0 5 10

100

10−10

ne
w

s2
0

0 20 40 0 20 40

0 20 40
Time (s)

100

10−10

fin
an

ce

0 20
Time (s)

0 20 40
Time (s)

Figure 6: Lasso, duality gap. Normalized duality gap as a function of time for the Lasso.

finance) and for low regularization parameters (λmax/100 and λmax/1000) Anderson acceleration
without working set does not bring acceleration. This highlights the importance of combining
Anderson acceleration with working sets.

Conclusion and broader impact. In this paper, we have proposed an accelerated versatile algo-
rithm for a specific class of non-smooth non-convex problems. Based on working sets, coordinate
descent and Anderson acceleration, we have improved state of the art on convex problems, and han-
dled previously out-of-reach problems. Thorough experiments demonstrated the speed and interest
of our approach. A limitation of this work is the considered function class (α-semi-convex), which
can be seen as restrictive. One possible extension would be weakly convex functions (Davis and
Drusvyatskiy, 2019, Sec. 1). We deeply believe that the high quality code provided will benefit to
practitioners, and ease the use of non-convex penalties for real world problems, from neuroimaging to
genomics. We proposed an optimization algorithm and do not see potential negative societal impacts.

Acknowledgements

The experiments were ran on the CBP cluster of ENS de Lyon (Quemener and Corvellec, 2013). QB
would like to thank Samsung Electronics Co., Ldt. for funding this research. GG is supported by an
IVADO grant.

10

References
D. G. Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM, 12(4):

547–560, 1965.

H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth functions
involving analytic features. Mathematical Programming, 116(1):5–16, 2009.

H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel
methods. Mathematical Programming, 137(1):91–129, 2013.

F. Bach. Consistency of the group Lasso and multiple kernel learning. J. Mach. Learn. Res., 9:
1179–1225, 2008.

Q. Bertrand and M. Massias. Anderson acceleration of coordinate descent. In AISTATS, 2021.

Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon. Implicit differentia-
tion of lasso-type models for hyperparameter optimization. ICML, 2020.

M. Blondel and F. Pedregosa. Lightning: large-scale linear classification, regression and ranking in
python, 2016.

A. Boisbunon, R. Flamary, and A. Rakotomamonjy. Active set strategy for high-dimensional non-
convex sparse optimization problems. In 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1517–1521. IEEE, 2014.

J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex
and nonsmooth problems. Mathematical Programming, 146(1):459–494, 2014.

A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval. Dynamic screening: accelerating first-order
algorithms for the Lasso and Group-Lasso. IEEE Trans. Signal Process., 63(19):20, 2015.

S. Boyd, N. Parikh, and E. Chu. Distributed optimization and statistical learning via the alternating
direction method of multipliers. Now Publishers Inc, 2011.

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression, with
applications to biological feature selection. The annals of applied statistics, 5(1):232, 2011.

C. Brezinski, M. Redivo-Zaglia, and Y. Saad. Shanks sequence transformations and anderson
acceleration. SIAM Review, 60(3):646–669, 2018.

E. J. Candes and T. Tao. Decoding by linear programming. IEEE transactions on information theory,
51(12):4203–4215, 2005.

E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted `1 minimization.
Journal of Fourier analysis and applications, 14(5):877–905, 2008.

D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex functions.
SIAM Journal on Optimization, 29(1):207–239, 2019.

Q. Deng and C. Lan. Efficiency of coordinate descent methods for structured nonconvex optimization.
arXiv preprint arXiv:1909.00918, 2019.

L. El Ghaoui, V. Viallon, and T. Rabbani. Safe feature elimination for the lasso and sparse supervised
learning problems. arXiv preprint arXiv:1009.4219, 2010.

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. Liblinear: A library for large linear
classification. JMLR, 9:1871–1874, 2008.

S. Fang, S. Zhe, K.-C. Lee, K. Zhang, and J. Neville. Online bayesian sparse learning with spike
and slab priors. In 2020 IEEE International Conference on Data Mining (ICDM), pages 142–151.
IEEE, 2020.

O. Fercoq and P. Richtárik. Accelerated, parallel, and proximal coordinate descent. SIAM Journal on
Optimization, 25(4):1997–2023, 2015.

11

O. Fercoq, A. Gramfort, and J. Salmon. Mind the duality gap: safer rules for the lasso. In ICML,
pages 333–342. PMLR, 2015.

S. Foucart and M.-J. Lai. Sparsest solutions of underdetermined linear systems via `q-minimization
for 0 < q ≤ 1. Applied and Computational Harmonic Analysis, 26(3):395–407, 2009.

J. Friedman, T. J. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization. Ann. Appl.
Stat., 1(2):302–332, 2007.

J. Friedman, T. J. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. J. Stat. Softw., 33(1):1, 2010.

J. Ge, X. Li, H. Jiang, H. Liu, T. Zhang, M. Wang, and T. Zhao. Picasso: A sparse learning library
for high dimensional data analysis in r and python. The Journal of Machine Learning Research, 20
(1):1692–1696, 2019.

D. Ghosh and A. M. Chinnaiyan. Classification and selection of biomarkers in genomic data using
lasso. Journal of Biomedicine and Biotechnology, 2005(2):147, 2005.

S. Ghosh and F. Doshi-Velez. Model selection in bayesian neural networks via horseshoe priors.
arXiv preprint arXiv:1705.10388, 2017.

G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, successive overrelaxation iterative
methods, and second order richardson iterative methods. Numerische Mathematik, 3(1):147–156,
1961.

A. Gramfort, D. Strohmeier, J. Haueisen, M. S. Hämäläinen, and M. Kowalski. Time-frequency mixed-
norm estimates: Sparse M/EEG imaging with non-stationary source activations. NeuroImage, 70:
410–422, 2013.

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen, and
M. S. Hämäläinen. MNE software for processing MEG and EEG data. NeuroImage, 86:446 – 460,
2014.

W. L. Hare and A. S. Lewis. Identifying active manifolds. Algorithmic Operations Research, 2(2):
75–75, 2007.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, et al. Array programming with numpy. arXiv preprint
arXiv:2006.10256, 2020.

M. Jas, T. Achakulvisut, A. Idrizović, D. Acuna, M. Antalek, V. Marques, T. Odland, R. Garg,
M. Agrawal, Y. Umegaki, P. Foley, H. Fernandes, D. Harris, B. Li, O. Pieters, S. Otterson, G. De
Toni, C. Rodgers, E. Dyer, M. Hamalainen, K. Kording, and P. Ramkumar. Pyglmnet: Python
implementation of elastic-net regularized generalized linear models. Journal of Open Source
Software, 5(47):1959, 2020.

T. B. Johnson and C. Guestrin. Blitz: A principled meta-algorithm for scaling sparse optimization. In
ICML, volume 37, pages 1171–1179, 2015.

Y. J. Kim, N. Brackbill, E. Batty, J. Lee, C. Mitelut, W. Tong, EJ Chichilnisky, and L. Paninski.
Nonlinear decoding of natural images from large-scale primate retinal ganglion recordings. Neural
Computation, 33(7):1719–1750, 2021.

Q. Klopfenstein, Q. Bertrand, A. Gramfort, J. Salmon, and S. Vaiter. Model identification and local
linear convergence of coordinate descent. arXiv preprint arXiv:2010.11825, 2020.

A. Y. Kruger. On Fréchet subdifferentials. Journal of Mathematical Sciences, 116(3):3325–3358,
2003.

S. K. Lam, A. Pitrou, and S. Seibert. Numba: A llvm-based python jit compiler. In Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in HPC, pages 1–6, 2015.

M. Le Morvan and J.-P. Vert. WHInter: A working set algorithm for high-dimensional sparse second
order interaction models. In ICML, pages 3635–3644. PMLR, 2018.

12

J. D. Lee, Y. Sun, and M. Saunders. Proximal Newton-type methods for convex optimization.
Advances in Neural Information Processing Systems, 25:827–835, 2012.

A. S. Lewis. Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization, 13(3):
702–725, 2002.

J. Liang, J. Fadili, and G. Peyré. A multi-step inertial forward-backward splitting method for
non-convex optimization. Advances in Neural Information Processing Systems, 29:4035–4043,
2016.

Q. Lin, Z. Lu, and L. Xiao. An accelerated proximal coordinate gradient method. In NeurIPS, pages
3059–3067. 2014.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

V. V. Mai and M. Johansson. Anderson acceleration of proximal gradient methods. In ICML. 2019.

J. Mairal. Sparse coding for machine learning, image processing and computer vision. PhD thesis,
École normale supérieure de Cachan, 2010.

M. Massias, A. Gramfort, and J. Salmon. Celer: a fast solver for the lasso with dual extrapolation.
2018.

M. Massias, S. Vaiter, A. Gramfort, and J. Salmon. Dual extrapolation for sparse generalized linear
models. J. Mach. Learn. Res., 2020.

R. Mazumder, J. H. Friedman, and T. Hastie. Sparsenet: Coordinate descent with nonconvex penalties.
Journal of the American Statistical Association, 106(495):1125–1138, 2011.

T. Moreau, M. Massias, A. Gramfort, P. Ablin, B. Charlier, P.-A. Bannier, M. Dagréou, T. Dupré
la Tour, G. Durif, C. F. Dantas, Q. Klopfenstein, et al. Benchopt: Reproducible, efficient and
collaborative optimization benchmarks. arXiv preprint arXiv:2206.13424, 2022.

J. B. Muir and Z. Zhan. Seismic wavefield reconstruction using a pre-conditioned wavelet–curvelet
compressive sensing approach. Geophysical Journal International, 227(1):303–315, 2021.

E. Ndiaye and I. Takeuchi. Continuation path with linear convergence rate. arXiv preprint
arXiv:2112.05104, 2021.

E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon. Gap safe screening rules for sparsity enforcing
penalties. J. Mach. Learn. Res., 18(128):1–33, 2017.

E. Ndiaye, O. Fercoq, and J. Salmon. Screening rules and its complexity for active set identification.
Journal of Convex Analysis, 2020.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

A. Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In ICML, page 78,
2004.

J. Nutini. Greed is good: greedy optimization methods for large-scale structured problems. PhD
thesis, University of British Columbia, 2018.

J. Nutini, M. W. Schmidt, I. H. Laradji, M. P. Friedlander, and H. A. Koepke. Coordinate descent
converges faster with the Gauss-Southwell rule than random selection. In ICML, pages 1632–1641,
2015.

W. Ouyang, Y. Peng, Y. Yao, J. Zhang, and B. Deng. Anderson acceleration for nonconvex ADMM
based on Douglas-Rachford splitting. In Computer Graphics Forum, volume 39, pages 221–239.
Wiley Online Library, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. JMLR, 12:2825–2830, 2011.

13

C. Poon and J. Liang. Trajectory of alternating direction method of multipliers and adaptive accelera-
tion. In NeurIPS, pages 7357–7365, 2019.

E. Quemener and M. Corvellec. Sidus—the solution for extreme deduplication of an operating
system. Linux Journal, 2013(235):3, 2013.

A. Rakotomamonjy, G. Gasso, and J. Salmon. Screening rules for lasso with non-convex sparse
regularizers. In ICML, pages 5341–5350, 2019.

A. Rakotomamonjy, R. Flamary, G. Gasso, and J. Salmon. Provably convergent working set algorithm
for non-convex regularized regression. In AISTATS, 2022.

D. A. Reidenbach, A. Lal, L. Slim, O. Mosafi, and J. Israeli. Gepsi: A python library to simulate
gwas phenotype data. bioRxiv, 2021.

P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Mathematical Programming, 144(1-2):1–38, 2014.

M. Rudelson and R. Vershynin. On sparse reconstruction from fourier and gaussian measurements.
Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of
Mathematical Sciences, 61(8):1025–1045, 2008.

D. Scieur, A. d’Aspremont, and F. Bach. Regularized nonlinear acceleration. In Advances In Neural
Information Processing Systems, pages 712–720, 2016.

D. Scieur, A. d’Aspremont, and F. Bach. Regularized nonlinear acceleration. Mathematical Program-
ming, 179(1):47–83, 2020.

A. Sidi. Vector extrapolation methods with applications. SIAM, 2017.

N. Simon, J. Friedman, T. J. Hastie, and R. Tibshirani. A sparse-group lasso. J. Comput. Graph.
Statist., 22(2):231–245, 2013.

E. Soubies, L. Blanc-Féraud, and G. Aubert. A continuous exact `0 penalty (cel0) for least squares
regularized problem. SIAM Journal on Imaging Sciences, 8(3):1607–1639, 2015.

D. Strohmeier, A. Gramfort, and J. Haueisen. MEG/EEG source imaging with a non-convex penalty in
the time-frequency domain. In Pattern Recognition in Neuroimaging, 2015 International Workshop
on, 2015.

D. Strohmeier, Y. Bekhti, J. Haueisen, and A. Gramfort. The iterative reweighted mixed-norm
estimate for spatio-temporal MEG/EEG source reconstruction. IEEE transactions on medical
imaging, 35(10):2218–2228, 2016.

R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol.,
58(1):267–288, 1996.

R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani. Strong rules
for discarding predictors in lasso-type problems. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 74(2):245–266, 2012.

R. J. Tibshirani. The lasso problem and uniqueness. Electronic Journal of statistics, 7:1456–1490,
2013.

P. Tseng and S.Yun. A coordinate gradient descent method for nonsmooth separable minimization.
Mathematical Programming, 117(1):387–423, 2009.

S. Vaiter, G. Peyré, and J. Fadili. Low complexity regularization of linear inverse problems. In
Sampling Theory, a Renaissance, pages 103–153. Springer, 2015.

F. Wei, C. Bao, and Y. Liu. Stochastic Anderson mixing for nonconvex stochastic optimization.
Advances in Neural Information Processing Systems, 34, 2021.

F. Wen, L. Chu, P. Liu, and R. Qiu. A survey on nonconvex regularization-based sparse and low-rank
recovery in signal processing, statistics, and machine learning. IEEE Access, 6:69883–69906,
2018.

14

C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
statistics, 38(2):894–942, 2010.

P. Zhao and B. Yu. On model selection consistency of lasso. J. Mach. Learn. Res., 7:2541–2563,
2006.

H. Zou and T. J. Hastie. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser.
B Stat. Methodol., 67(2):301–320, 2005.

15

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See limitations paragraph
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Proposi-
tions 10, 13 and 14.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In particular we

acknowledge the python ecosystem.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

