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3 Proof. Recall that the joint distribution of x, y, z for client ¢ is:

4 We have:

5 Notice that:

6 Therefore:
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A.2 Lemma2

Proof. We need to prove:

Ep, (z.y) [KL[p(2]|2) |7 (2[y)]] > Ep, () [KL[pi(2|y) |7 (2[y)]] (17)
SEyp, (24,2 [log p(2]z) —logr(2]y)] > Ey, (4,2 [log pi(z]y) — logr(z[y)] (18)
SEp, (0,y.0)[logp(z[7)] > Ep,(y.2) [log pi(2]y)] (19)

(since £y, (5,4, [logr(2|y)] = Ep, (y,2) [log r(2]y)]) (20)
SEpiy) [Epi (o, 108 p(22)]] > Ep,(y) [Ep, 21y log pi(2]y)]] 1)
(22)

Therefore, we only need to prove that E,,, , .|, [log p(z|x)] > E,, (21, [log pi(2]y)] Vy.

This is equivalent to:

/ / pi(z, zly) log p(z|z)dedz > / pi(zly) log pi(zly)d= 23)
& [ [ pial)plelo) ogp(elodods > [ pitelo)tog (el 24)
& [ Epamplelo) ogp(el)ds > [ il logpi(ely)ds e3)

Notice that the function f(a) = aloga,a > 0 is a convex function since f”(a) = £ > 0 Va > 0.
Hence, due to Jensen’s Inequality we have:

Em(:c\y)[]?(2|$) logp(z|x)] > blogb (26)

where b = E,,, (21, [p(2|2)] = pi(2y).

Therefore, E,, (4, [p(2]|2) log p(2|7)] > pi(z|y)log pi(z|y). Then, inequality 25 holds, and we
conclude our proof. O

B Details on the (¢! objective

As mentioned in the main paper, we use a Gaussian distribution for both p(z|x) and r(z|y), so that
the KL term can be computed analytically.

Let w; be the parameter of the (probabilistic) representation network. Given an input g (of a
datapoint (xg, yo)), the network output the mean and standard deviation of the Gaussian distribution
p(z]xo) (both from the final layer of the network), denoted (i, (zo) and o, (). This means that

p(2|w0) = N (25 b, (20), 03, (20))-

Also as pointed out in the paper, for a classification problem (where there is a finite number of the
labels), we set 7(z|y) = N (z; uy, 05), where 4, 0, (y = 1..0) are the variational parameters to be
optimized. Therefore, for the datapoint x¢, yo, we have 7(z[yo) = N (2; fiy,, 0y )-

Note that when z is a K -dimensional vector, (i, (20), Tuw, (Z0), fty, and oy, are all K-dimensional.

The KL term in /M1 can be computed analytically as:

01201(*%0) + (o, (w0) — ,uyo)2 _ 1
2

2
20!10

log oy, — log 0w, (Yo) + 27

If K > 1 (i.e., z is high dimensional), the calculations in Eq. 27 are element-wise, and the result are
summed across the dimension K at the end.

As this computation is deterministic with respect to w; and u,, oy (y € 1..C), the gradient w.r.t.
these parameters can be computed straight-forwardly.
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C Experiments

C.1 Hyper-parameters:

As mentioned in the main text, we use random search to tune the hyper-parameters of our method,
namely a“M7 and o2%. Specifically, the tuned value for those parameters are:

RotatedMNIST

e FedL2R: o2% = 0.1
o FedCML: oM = (.3
* FedSR: o?% = 0.1,aM! = 0.3

PACS

e FedL2R: oX28 = 0.01
e FedCMIL: o“M! = .01
* FedSR: o2 = 0.01,a“MT = 0.001

OfficeHome

o FedL2R: of2F = 0.05
e FedCMI: o“M! = 0.0005
* FedSR: a2 = 0.05, a“M! = 0.0005

DomainNet

e FedL2R: o%?% = 0.01
» FedCML: o“M! = 0.005
* FedSR: a2 = 0.01, a“M! = 0.0005

C.2 Visualization of the Representation space

We also visualize the representation space of our method and observe that it aligns the representation
much better than the conventional FL baseline FedAVG (which does not actively attempt to align
the representation distributions). Specifically, Figure 1 show the t-SNE [1] visualization of the
representation of FedSR and FedAVG in the RotatedMNIST experiment, with M, (the target
domain) and M 5 (one of the source domains). We can clearly see that both the marginal and the
conditional distributions of the representation are aligned better between the two domains for FedSR.
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Figure 1: Visualization using t-SNE of the representation space of our method FedSR and the
baselines FedAVG. For each method, the left subfigure corresponds to one source domain M5 and
the right one corresponds to the target domain M. Each color represents a digit class.
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