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Abstract

We show the universality of depth-2 group convolutional neural networks (GC-
NNs) in a unified and constructive manner based on the ridgelet theory. Despite
widespread use in applications, the approximation property of (G)CNNs has not
been well investigated. The universality of (G)CNNs has been shown since the
late 2010s. Yet, our understanding on how (G)CNNs represent functions is incom-
plete because the past universality theorems have been shown in a case-by-case
manner by manually/carefully assigning the network parameters depending on the
variety of convolution layers, and in an indirect manner by converting/modifying
the (G)CNNs into other universal approximators such as invariant polynomials
and fully-connected networks. In this study, we formulate a versatile depth-2 con-
tinuous GCNN Srγs as a nonlinear mapping between group representations, and
directly obtain an analysis operator, called the ridgelet trasform, that maps a given
function f to the network parameter γ so that Srγs “ f . The proposed GCNN
covers typical GCNNs such as the cyclic convolution on multi-channel images, net-
works on permutation-invariant inputs (Deep Sets), and Epnq-equivariant networks.
The closed-form expression of the ridgelet transform can describe how the network
parameters are organized to represent a function. While it has been known only
for fully-connected networks, this study is the first to obtain the ridgelet transform
for GCNNs. By discretizing the closed-form expression, we can systematically
generate a constructive proof of the cc-universality of finite GCNNs. In other words,
our universality proofs are more unified and constructive than previous proofs.

1 Introduction

In the research field of geometric deep learning [1], group convolutional neural networks (GCNNs)
have been developed to capture the inductive bias behind a variety of datasets such as sets and
point clouds [2, 3], graphs [4, 5], manifolds, groups, and homogeneous spaces [6–8, 4]. Despite
the rapid growth of diversity, the approximation property of CNNs is less investigated than that of
fully-connected neural networks (FNNs). To this date, several authors have shown the universality of
(G)CNNs. That is, they can approximate some class of continuous maps with any precision [9–16].
These studies are still limited because the proofs are shown (1) in a case-by-case manner by manually
assigning the parameters for a network to approximate a given function f , which means that once the
network architecture is modified, then we need to reassign the parameters from scratch, and (2) in an
indirect manner by converting/modifying the (G)CNNs into other universal approximators such as
invariant polynomials and FNNs, which means that we know only indirectly about (G)CNNs.

The approximation property of FNNs has been investigated in the 1990s, with gradually increasing
the resolution of proofs from abstract to concrete, starting from purely existential proofs based on
the Hahn-Banach theorem [17] and the Stone-Weierstrass theorem [18], indirect proofs based on the
Fourier transform [19, 20], the Radon transform [21, 22], B-splines [23, 24], to more constructive
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proofs based on the integral representation [25], ridge functions [26], and the ridgelet transform
[27–29]. For deep-ReLU-FNNs, further approximation properties have been investigated [30–32] in
the 2010s. In this context, (G)CNN studies are at the stage of case-by-case and indirect proofs. (See
§ 6.1 for more details).

In this study, we show the universality of depth-2 GCNNs by devising a general notion of group
convolution and developing the ridgelet transform for GCNNs—an analysis operator that maps a
given function f to the weight parameter γ in a single hidden layer of a neural network. Consequently,
our universality proof is more unified and constructive because our GCNN covers a wide range of
typical GCNNs, and the ridgelet transform can describe how to assign the network parameters.

In the following, we describe the formulation of GCNNs to overview our main contributions.

A Typical Convolution Layer for Images. Given an m1 ˆ m2-dimensional nin-channel input
image x P Rm1ˆm2ˆnin , a typical convolution layer with w1 ˆ w2-dimensional nin ˆ nout-channel
filter a P Rw1ˆw2ˆninˆnout and nout-channel bias b P Rnout followed by an elementwise activation
function σ : R Ñ R and the aggregation with output coefficients c P Rnout is given by

Sra, b, cspxqpi, jq “

nout
ÿ

ℓ“1

cℓσ

˜

nin
ÿ

k“1

w1
ÿ

p“1

w2
ÿ

q“1

akℓpqx
k
i`p,j`q ´ bℓ

¸

(1)

for each pixel at pi, jq P rm1 ´ w1 ` 1s ˆ rm2 ´ w2 ` 1s.

For technical reasons, we assume that the output channels (indexed by ℓ P rnouts) are aggregated
soon after the activation function, which may be slightly different from an ordinary formulation of
CNNs, but we can understand this as a part of the subsequent layer.

In the standard formulation of GCNNs, a multi-channel image is understood as a vector-valued
function on a group G or a homogeneous space G{H , such as a product group G “ Zm1

ˆ Zm2
of

cyclic groups Zmi
:“ Z{miZ pi “ 1, 2q. (More geometrically, Cohen and Welling [33] phrased it

as ‘a section of a fiber bundle’). The convolution in the pixel directions pi, jq is reformulated as a
group convolution with respect to the product group, and the inner product in the channel direction k
is understood as the convolution with respect to the trivial action of G on a ‘fiber’ Rnin .

The Integral Representation Srγs of Group Convolution Layer. Let G be an arbitrary group,
σ : R Ñ R be an arbitrary nonlinear function, X be an arbitrary Hilbert space of feature vector x
and filter a, and γ : X ˆ R Ñ C be an arbitrary function, called the parameter distribution. We
formulate a group convolution layer in an integral form, called the integral representation, as

Srγspxqpgq :“

ż

XˆR
γpa, bqσ

`

pa ˚ xqpgq ´ b
˘

dadb, x P X , g P G. (2)

This is an infinite-dimensional reparametrization of a depth-2 GCNN; namely, each function x ÞÑ

σppa ˚ xqpgq ´ bq represents a single convolutional neuron, or a feature map of input x parametrized
by pa, bq, the integration over pa, bq means that all the neurons are assigned, and a single function
γ—the parameter distribution—parameterizes the assignment of each parameters pa, bq. Hence, Srγs

can be understood as a continuous neural network. We note that, however, if we put γ as a finite sum
of Dirac’s measures such as γn :“

řn
ℓ“1 c

ℓδpaℓ,bℓq, then the integral representation can also represent
a finite model

Srγnspxqpgq “

n
ÿ

ℓ“1

cℓσppaℓ ˚ xqpgq ´ bℓq, x P X , g P G. (3)

In summary, Srγs is a mathematical model of shallow neural networks with any width ranging
from finite to continuous. In particular, the sparsity/low-rankness of parameters are reflected as the
localization/concentration of parameter distribution γ.

An advantage to use the integral representation is the linearization trick. Whereas a finite network
Srγns is nonlinear in the original parameters pa, bq, the integral representation Srγs is linear in
the parameter distribution γ. It is first emerged in the 1990s to investigate the expressive power of
infinitely-wide shallow FNNs [19–22, 25, 27–29]; and it is as well common in today’s deep learning
theory, for example, to investigate the learning dynamics of SGD such as neural tangent kernel (NTK)
[34–36], lazy learning [37], lottery tickets [38], mean field theory [39–43], and Langevin dynamics
[44].
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The Ridgelet Transform Rrf ; ρspa, bq is a right inverse (or pseudo-inverse) operator of the integral
representation operator S. As an outcome of this study, we have obtained its closed-form expression:

Rrf ; ρspa, bq :“

ż

X
fpxqpeqρpxa, xyX ´ bqdadb, pa, bq P X ˆ R, (4)

where f : X Ñ CG is a target vector-valued nonlinear function to be approximated, called a feature
map, e P G is the identity element, and ρ : R Ñ C is an auxiliary function, called the ridgelet
function. Provided that f is group equivariant, then under mild regularity assumptions, it satisfies the
reconstruction formula

SrRrf ; ρss “ ppσ, ρqqf, (5)

where pp¨, ¨qq denote a scalar product of σ and ρ. Therefore, as long as the product ppσ, ρqq is neither 0
nor 8, we can normalize ρ to satisfy ppσ, ρqq “ 1 so that SrRrf ; ρss “ f .

In other words, R and S are analysis and synthesis operators, and thus play the same roles as the
Fourier (F ) and inverse Fourier (F´1) transforms, respectively. Particularly, the reconstruction
formula SrRrf ; ρss “ ppσ, ρqqf corresponds to the Fourier inversion formula F´1rF rf ss “ f .

An advantage of the ridgelet transform is the closed-form expression. Despite the common belief
that neural network parameters are a blackbox, the closed-form expression can clearly describe
how the network parameters are organized. Previous studies on the CNN universality have also
provided several construction algorithms of parameters, but these are only particular solutions for
a CNN to represent a target function f , and not necessary related to, for example, deep learning
solutions. For FNNs, on the other hand, Sonoda et al. [45] have shown that any parameter distribution
γ satisfying Srγs “ f can always be represented as (not always single but) a linear combination of
ridgelet transforms, and they [46] have shown that finite networks trained by regularized empirical
risk minimization (RERM) converges to a certain unique ridgelet transform. (We note that NTK and
the Gibbs distribution can also describe the parameter distribution, but NTK is limited to the kernel
regime, and the Gibbs distribution is given only implicitly.) As an application, Savarese et al. [47]
and their followers [48–50] have established the representer theorems for ReLU-FNNs by using the
ridgelet transform. Although the parallel results for CNNs have not yet been published, we anticipate
that the ridgelet transform could facilitate our understanding of deep learning solutions.

Challenges and Contributions. The closed-form expression of the ridgelet transform has been
known only for FNNs, which was discovered in the 1990s independently by Murata [27], Candès [28]
and Rubin [29]. (We refer to [51–53] for ridgelet analysis in the 2000s, and [54–56] for more recent
results.) One of the difficulties to obtain the ridgelet transform for CNNs is that there is no unique way
to formulate an “integral representation of CNNs”. We note that some authors claim the “equivalence
of CNNs and FNNs” (see e.g. [13]), but it is somewhat misleading because such an equivalence
holds only when both CNNs and FNNs are very carefully designed. While FNNs are defined on
the Euclidean space Rm, GCNNs are defined on a more abstract space X . For example, since the
convolution on the Euclidean space can be written using Töplitz matrices, one could consider a
formulation such as

ş

RkˆmˆRk γpA, bqσpAx ´ bqdAdb where the parameter A is an k ˆ m-matrix.
However, this only leads to another ridgelet transform that covers less symmetries G. In fact, it is a
version of the so-called k-plane ridgelet transform developed in the 2000s [51].

To circumvent this difficulty, we formulate GCNNs as general as possible by dealing with the feature
space X , group G, and representation T in a coordinate-free manner. Eventually, we have shown the
reconstruction formula for a wide range of GCNNs (as displayed in § 5), with a relatively simple
proof. This study is the first to obtain the ridgelet transform for a general class of GCNNs. As an
application, we show the cc-universality of GCNNs for a general class of group equivalent continuous
vector-valued functions in a unified and constructive manner.

2 Notation and Basic Terminologies

Notation. For any integer n ą 0, rns denotes the set t1, . . . , nu. For any sets G and K, KG denotes
the collection tG Ñ Ku of all mappings from G to K. For any topological space X , CpXq and
CcpXq denote the collections of all continuous functions on X , and continuous functions on X with
compact support, respectively. We note that when X is compact, then CpXq “ CcpXq. For any
measure space X and number p P r1,8s, LppXq denotes the space of p-integrable functions on X .
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2.1 Fourier Analysis on Rd

We refer to [57, 58, 54] for more details on Fourier transform and tempered distributions (S 1).

Schwartz Distributions. For any integer d ą 0, SpRdq and S 1pRdq denote the classes of Schwartz
test functions (or rapidly decreasing functions) and tempered distributions on Rd, respectively.
Namely, S 1 is the topological dual of S. In this study, S 1pRq and SpRq are assigned as classes of
activation and ridgelet functions, respectively. We note that S 1pRq includes truncated power functions
σpbq “ bk` “ maxtb, 0uk such as step function for k “ 0 and ReLU for k “ 1.

Fourier Transform. The Fourier transform on the Euclidean space Rd and its inversion formula
has been defined on (at least) three different function classes: L1pRdq, L2pRdq and S 1pRdq. When
f P L1pRdq and pf P L1pRdq, the inversion formula holds “at every continuous point x of f”, which
is a pointwise equation. When f P L2pRdq, the inversion formula holds “in L2”, which is not a
pointwise equation because the equation “f “ g in L2” is defined as “fpxq “ gpxq a.e.”. Similarly,
when f P S 1pRmq, the inversion formula holds “in S 1”. We use the third definition for computing the
Fourier transform of activation functions σ P S 1pRq such as ReLU and tanh.

2.2 Group Representation

Let G be a group, let X be a vector space over a field K, and let GLpX q be the general linear group
on X . A group representation T of the group G on the vector space X is a group homomorphism
from G to GLpX q, that is, a map T : G Ñ GLpX q; g ÞÑ Tg satisfying Tgh “ TgTh for all g, h P G.
When G is a topological group, we further assume that the action G ˆ X Ñ X ; pg, xq ÞÑ Tgrxs be
continuous. Here, X is called the representation space. We refer to [59] for more details on group
representation.

Regular Representation. Let X be the vector space of all functions on G, i.e., X “ KG. The (left)
regular representation L is a group representation defined on X as

Lgrxsphq :“ xpg´1hq, g, h P G, x P X “ KG. (6)

In particular, when G is a locally compact Haussdorf (LCH) group, then it has a (left) invariant
measure µ, and we can define the collection L2pGq of all square integrable functions on G with
respect to the canonical inner product xx, yyL2pGq :“

ş

G
xpgqypgqdµpgq for any measurable functions

x, y : G Ñ C. It is known that the regular representation on X “ L2pGq is a unitary representation.

Dual Representation. For any group representation T : G Ñ GLpX q, the dual representation
T˚ : G Ñ GLpX 1q is a group representation defined on the dual vector space X 1 as the transpose of
Tg´1 , that is, T˚

g “ TJ
g´1 . When X is a Hilbert space with inner product x¨, ¨yX , then it satisfies the

following relation:

xTgrxs, yyX “ xx, T˚
g´1rysyX , g P G, x, y P X . (7)

Matrix Element. For any group representation T : G Ñ GLpX q, the matrix element (or the matrix
coefficient) of T is a bilinear functional fa,x on G defined by

fa,xpgq :“ arTgrxss, g P G, x P X , a P X 1 (8)

where x is a vector in X and a P X 1 is a continuous linear functional on X . When X is a Hilbert
space, then (identifying X 1 with X ) it can be written as

fa,xpgq “ xTgrxs, ayX , g P G, a, x P X . (9)

In the next section, we use this quantity as the generalized form of the group convolution.

2.3 Universality

The notion of universality in machine learning can be rephrased as the density in mathematics, and
thus it has several definitions. (See, e.g., [60, 61]). In this study, we show the so-called cc-univesality,
one of the standard universalities in the machine learning theory.
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cc-Universality. Let X be a topological space, and let NN be a collection of functions (e.g., neural
networks) on X . The cc-univesality of NN is defined as the density of NN in CpXq endowed with
the topology of compact convergence, that is, for any compact subset K Ă X , continuous function
f P CpKq, and all ε ą 0, there exists a function g P NN such that

›

›f ´ g|K
›

›

CpKq
:“ sup

xPK
|fpxq ´ gpxq| ă ε, (10)

where g|K denotes the restriction of g to K.

3 Functions on Abstract Hilbert Space X

We introduce an extended group convolution on X , a uniform norm and the group-equivariance for
functions on X , an induced measure and an induced Fourier transform on X , and a projection to Xm.

3.1 pG,T q-Convolution ˚T : X ˆ X Ñ CG

Definition 1. Let G be a group, let X be a Hilbert space with inner product x¨, ¨yX over a field K,
and let T : G Ñ GLpX q be a representation of G on X . For any a, x P X and g P G, we define the
pG,T q-convolution as

pa ˚T xqpgq :“ xx, T˚
g rasyX “ xTg´1rxs, ayX . (11)

We remark (1) that this is simply a paraphrase of the matrix element of a group representation (see the
previous section), and (2) that this is not necessarily a binary operation because X ‰ CG in general.
Nevertheless, we call it a convolution simply because it covers a wide range of ‘group convolutions’
in today’s GCNN literature.
Example 1. An orthodox group convolution is reproduced when T is the regular representation (of a
LCH group G) on X “ L2pGq, i.e., T˚

g rasphq “ apg´1hq. In fact,

xx, T˚
g rasyL2pGq “

ż

G

xphqapg´1hqdµphq “

ż

G

xphqraph´1gqdµphq “ px ˚G raqpgq, (12)

where rapgq :“ apg´1q is an involution.
Example 2. The cyclic convolution for an n-channel image x “ pxk

ijq P Rm1ˆm2ˆn is understood
as the case when G “ Zm1

ˆ Zm2
, X “ Rm1ˆm2ˆn, and T˚

pp,qq
raspi, j, kq “ aki´p,j´q , then

xx, T˚
pp,qq

rasyRm1ˆm2ˆn “
ÿ

i,j,k

xk
ija

k
i´p,j´q. (13)

While the post-activation feature σppa ˚ xqpgq ´ bq is a function on G, the input feature x can be an
arbitrary abstract vector, which is more general than typical GCNN formulations where feature x is
supposed to be a vector-valued function on G or G{H . This is an advantage for a more geometric
understanding of CNNs, since the theory becomes free from the specification of x.

3.2 Continuous pG,T q-Equivariant Vector-Valued Function f : X Ñ CpGq

Definition 2. We say a vector-valued function f : X Ñ CG is pG,T q-equivariant when

fpTgrxsqphq “ Lgrfpxqsphq “ fpxqpg´1hq, x P X , g, h P G. (14)

Here, we restrict the definition for a special case of the regular representation L. This is simply due
to the fact that our GCNN satisfies this case.
Definition 3. Let G be a topological group. For any vector-valued function f : X Ñ CG, put

}f}CpX ;CpGqq :“ }f}CpX qÑCpGq :“ sup
xPX

ˇ

ˇ sup
gPG

|fpxqpgq|
ˇ

ˇ. (15)

By CequipX ;CpGqq, we denote the normed vector space of all continuous pG,T q-equivariant CpGq-
valued functions on X equipped with the uniform norm } ¨ }CpX ;CpGqq.

We note that the topology of uniform norm } ¨ }CpX ;CpGqq is stronger than the topology of compact
convergence, which is employed in the cc-universality argument. In fact, CequipX ;CpGqq need not
be complete (or Banach) to show the cc-universality.
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3.3 Induced Lebesgue Measure λ and Induced Fourier Transform p̈ on Subspace Xm

Let Xm denote an m-dimensional subspace of X , and let teiuiPrms be an orthonormal basis of Xm.

Induced Lebesgue Measure on Xm. We induce the Lebesgue measure λ on Xm by pushing
forward the Lebesgue measure dx on Rm via an isometric linear embedding ϕ : Rm Ñ Xm. For
example, take a linear embedding ϕpxq :“

ř

iPrms xiei. Then, it preserves the length, and we can
induce the Lebesgue measure λ on Xm as the push forward measure λ “ ϕ7dx so that the volume of
a hypercube Q “ t

ř

iPrms ciei | ci P rai, bisu in Xm is calculated as λpQq “
ś

iPrms |bi ´ ai|, and
the integration of a measurable function f : Xm Ñ C over a measurable set E Ă Xm is calculated as

ż

E

fpxqdλpxq “

ż

Rm

1E

˜

m
ÿ

i“1

xiei

¸

f

˜

m
ÿ

i“1

xiei

¸

m
ź

i“1

dxi “

ż

ϕ´1pEq

f ˝ ϕpxqdx. (16)

As far as there is no risk of confusion, we denote dx instead of dλpxq.

Induced Fourier Transform on Xm. Using λ, we induce the Fourier transform on Rm as below:
For any function f : Xm Ñ C,

pfpyq :“

ż

Xm

fpxqe´ixx,yyXmdλpxq, fpxq
‹
“

1

p2πqm

ż

Xm

pfpyqeixx,yyXmdλpyq. (17)

Here, the equality ‹
“ holds in at least three different senses (see the comments in § 2.1).

We remark (1) that once the subspace Xm is fixed, the induced Fourier transform is unique up to
the orthogonal transformation of the basis teiuiPrms, and (2) that the induced Fourier transform “on
X ” should not be confused with the Fourier transform “on group G”. Especially, this cannot map a
convolution x ˚T a, an element in CG, to a point product such as “px ¨ pa”.

3.4 Projection P : X Ñ Xm and Extension Operator P˚

In order to induce the Lebesgue measure λ, we assume that the dimension of Xm to be finite. As a
side effect of this assumption, the image TGrXms :“ tTgrxs | g P G, x P Xmu can extend toward the
outside of Xm; that is, Xm is not necessarily G-invariant (TGrXms Ă Xm). To avoid an “undefined
error” such as to input x outside of Xm for a function f defined only on Xm, we introduce projection
P and extension P˚ as below. When dimX ă 8, we can omit P by putting Xm “ X (so P “ Id),
because by the definition of the group representation, always TGrX s “ X .

Let XK
m denote the orthogonal complement of Xm in X . Let P : X Ñ Xm denote the orthogonal

projection onto Xm. For any function f : Xm Ñ CG, put
P˚fpzqpgq :“ fpP pzqqpgq, z P X , g P G. (18)

This extends f (on a subspace Xm) to the entire space X as a constant function on XK
m; that is,

P˚fpx ‘ yq “ fpx ‘ 0q for each x ‘ y P Xm ‘ XK
m.

4 Main Results

We introduce the pG,T q-convolutional neural networks and the corresponding ridgelet transform, and
present the reconstruction formula for continuous GCNNs and the cc-universality for finite GCNNs.

Throughout this section, we fix a representation T : G Ñ GLpX q of a group G on a (potentially
infinite-dimensional) Hilbert space X over a field K endowed with an inner product x¨, ¨yX , and fix
an m-dimensional closed subspace Xm of X equipped with an induced Lebesgue measure λ. Let
k :“ dimR K denote the real dimension of K, that is, k “ 1 for K “ R and k “ 2 for K “ C. Let e
denote the identity element of G.

4.1 Integral Representation of pG,T q-Convolutional Neural Network

Definition 4. For any functions γ : Xm ˆ K Ñ C and σ : K Ñ C, we define the integral
representation of pG,T q-convolutional neural network as a vector-valued function X Ñ CG,

Srγspxqpgq :“

ż

XmˆK
γpa, bqσppa ˚T xqpgq ´ bqdλpaqdb, x P X , g P G. (19)
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Here, we call γ a parameter distribution, and σ an activation function. If there is no risk of confusion,
we abbreviate dλpaq as da.

It is easy to see that a pG,T q-CNN is pG,T q-equivariant. In fact, for every g, h P G,

SrγspTgrxsqphq “

ż

XmˆK
γpa, bqσpxTpg´1hq´1rxs, ayX ´ bqdadb “ Srγspxqpg´1hq. (20)

In addition, at the identity element g “ e, it is reduced to a FNN:

Srγspxqpeq “

ż

XmˆK
γpa, bqσpxx, ayX ´ bqdadb, x P X (21)

and it satisfies a projection property:

SrγspP rxsqpeq “ Srγspxqpeq, x P X . (22)

4.2 Ridgelet Transform and Scalar Product of Activation Function

Definition 5. For any functions f : Xm Ñ CG and ρ : K Ñ C, we define the ridgelet transform as

Rrf ; ρspa, bq :“

ż

Xm

fpxqpeqρpxx, ayX ´ bqdx, pa, bq P Xm ˆ K. (23)

Here e denotes the identity element of G.

Definition 6. For any tempered distribution σ P S 1pKq and function ρ P SpKq, put a scalar product
as

ppσ, ρqq :“ p2πqm´k

ż

K
σ7pωqρ7pωq|ω|´mdω. (24)

Here, ¨7 denotes the Fourier transform on K, which is identified with the Fourier transform on Rk

with k “ dimR K. We note that σ7 is defined in the sense of tempered distributions.

The derivations of the ridgelet transform and the scalar product are clarified in the proof of the
reconstruction formula. Some readers may notice that the ridgelet transform for GCNN is formally the
same as the one for FNNs, and may wonder why inner product xx, ayX instead of group convolution
pa ˚T xqpgq. Indeed, this is a consequence of two facts (1) that a group convolution at the identity e
is reduced to an inner product: pa ˚T xqpeq “ xx, ayX , and (2) that when f is pG,T q-equivariant,
then the value fpxqpgq at each g P G is determined by translating the value fpxqpeq at the identity.

4.3 Reconstruction Formula, or the Universality of Continuous GCNNs

We state the first half of our main results. For f : Xm Ñ CG, we write fepxq :“ fpxqpeq for short.

Theorem 1 (Main Theorem 1/2). Given a function f : Xm Ñ CG, assume (A1) that P˚f : X Ñ CG

is pG,T q-equivariant, i.e.,

P˚fpTgrzsqphq “ fpzqpg´1hq, for every z P X and g, h P G; (25)

and (A2) that f satisfies at least one of the following conditions: (A2a) both fe and pfe are absolute-
integrable, i.e., fe, pfe P L1pXmq, (A2b) fe is square-integrable, i.e., fe P L2pXmq, or (A2c) fe is a
tempered distribution, i.e., fe P S 1pXmq. Then, the following reconstruction formula holds:

SrRrf ; ρsspxqpgq “

ż

XmˆK
Rrf ; ρspa, bqσppa ˚T xqpgq ´ bqdadb

‹
“ ppσ, ρqqfpxqpgq, (26)

where the equality ‹
“ holds at every continuous point xc of f for (A2a), in L2 for (A2b), and in S 1 for

(A2c), respectively.

The proof is given in Appendix A.1.
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4.4 cc-Universality of Finite GCNNs

Finally, we state the second half of our main results. Let NN be the collection of finite GCNNs, that is,

NN :“
ď

nPN

#

fnpxqpgq “

n
ÿ

i“1

ciσppai ˚T xqpgq ´ biq

ˇ

ˇ

ˇ

ˇ

ˇ

pai, bi, ciq P Xm ˆ K ˆ C, i P rns

+

. (27)

Since the reconstruction formula Srγf s “ f with γf “ Rrf ; ρs holds for an arbitrary function f ,
we can construct a sequence tfnunPN of finite pG,T q-CNNs that converges to an arbitrary target
function f , namely

fn Ñ f as n Ñ 8, (28)
by discretizing the continuous network Srγf s and distribution γf into finite sums

fnpxqpgq :“ Srγnspxqpgq “

n
ÿ

i“1

ciσppai ˚T xqpgq ´ biq with γn :“
n

ÿ

i“1

ciδpai,biq (29)

in a ‘nice’ manner so that γn Ñ γf “ Rrf ; ρs as n Ñ 8. This is the primitive idea behind the
constructive proof of the following cc-universality of finite pG,T q-CNNs based on ridgelet analysis.

To state a regularity assumption on the activation function σ, we introduce the forward difference
operator ∆n

θ with difference θ ą 0, defined as

∆1
θrσsptq :“ σpt ` θq ´ σptq, ∆n`1

θ rσsptq :“ ∆1
θ ˝ ∆n

θ rσsptq. (30)
Theorem 2 (Main Theorem 2/2). For an activation function σ P S 1pKq, assume (A3) that there exist
n P N and θ ą 0 such that ∆n

θ rσs is bounded and Lipschitz continuous. Then, NN is cc-universal;
that is, for any continuous pG,T q-equivariant CpGq-valued function f P CequipXm;CpGqq, and
for any compact sets K Ă Xm and L Ă G, there exists a sequence tfnunPN Ă NN of finite GCNNs
satisfying

}f ´ fn}CpK;CpLqq “ sup
xPK

sup
gPL

|fpxqpgq ´ fnpxqpgq| Ñ 0, n Ñ 8. (31)

The proof is given in Appendix A.2. Here, f P CequipXm;CpGqq means that P˚f is pG,T q-
equivariant.

5 Examples

We display the ridgelet transforms and reconstruction formulas for a few typical GCNNs. Besides, we
calculated in Examples 5 and 8 the ridgelet transforms of a differential filter, which is often reported
to be acquired as a feature map in the first layer of deep CNNs for image recognition [62, 63].

5.1 Finite Periodic Convolution Layer

Example 3 (For 1-dimensional periodic signals). The periodic convolution corresponds to the case
when K “ R, G “ Zm – rms “ t0, 1, . . . ,m ´ 1u, X “ L2pGq – Rm equipped with the inner
product xx, yy :“ 1

m

ř

iPrms xiyi, and Tirxspjq :“ xj´i thus pa ˚T xqpiq “ 1
m

ř

jPrms ajxi`j .
Therefore, the ridgelet transform and the reconstruction formula are given by

Rrf ; ρspa, bq “

ż

Rm

fpxqp0qρ
´

1
m

ř

iPrmsaixi ´ b
¯

dx,

SrRrf ; ρsspxqpiq “

ż

RmˆR
Rrf ; ρspa, bqσ

´

1
m

ř

jPrmsajxi`j ´ b
¯

dadb “ ppσ, ρqqfpxqpiq.

Example 4 (For 2-dimensional multi-channel periodic images). A 2-dimensional n-channel image is
identified with a vector-valued function x : Z2

m Ñ Rn, thus X – Rm2
ˆn. Let xk

ij denote the pi, jq-th
component in the k-th channel of x P X . Let G “ Z2

m, and put Tpp,qqrxskij :“ xk
i´p,j´q. Therefore,

the ridgelet transform and the reconstruction formula are given by

Rrf ; ρspa, bq “

ż

Rm2n

fpxqp0,0qρ
´

1
m2n

ř

kPrns

ř

i,jPrmsa
k
ijx

k
ij ´ b

¯

dx.

SrRrf ; ρsspxqij “

ż

Rm2nˆR
Rrf ; ρspa, bqσ

´

1
m2n

ř

kPrns

ř

p,qPrmsa
k
pqx

k
p`i,q`j ´ b

¯

dadb “ ppσ, ρqqfpxqij .
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Example 5 (Difference operator (with cutoff function)). A difference operator on x : rms Ñ

R is given by x “
ř

iPrms xiδi ÞÑ fpxq “
ř

iPrmspxi`1 ´ xiqδi, which is pG,T q-equivariant:
fpT˚

k rxsqpiq “ T˚
k rxsi`1 ´ T˚

k rxsi “ xi`1´k ´ xi´k “ fpxqpi ´ kq. Since fpxqp0q “ x1 ´ x0,

R rf |K ; ρs pa, bq “

ż

Rm

px1 ´ x0q1Kpxqρ
´

1
m

ř

iPrmsaixi ´ b
¯

dx.

We note since x ÞÑ x1 ´ x0 is not integrable in Rm, we restrict f to a compact set K Ă Rm, and
impose the indicator function 1K as an auxiliary cutoff function.

5.2 (Deep Sets) Permutation Equivariant Maps on A Finite Set

Example 6. Let X “ Rm, G ď Sm and Tgrxs “ pxg´1p1q, xg´1p2q, . . . , xg´1pmqq. Thus xa, xyX “
1
m

ř

iPrms aixi, and pa ˚T xqpgq “ 1
m

ř

pPrms apxgppq. So,

Rrf ; ρspa, bq “

ż

Rm

fpxqpeqρ
´

1
m

ř

iPrmsaixi ´ b
¯

dx,

SrRrf ; ρsspxqpgq “

ż

RmˆR
Rrf ; ρspa, bqσ

´

1
m

ř

pPrmsapxgppq ´ b
¯

dadb “ ppσ, ρqqfpxqpgq.

5.3 Continuous Periodic Convolution Layer

Example 7. Let G “ T :“ R{2πZ – teiθ | θ P r´π, πsu be the 1-dimensional torus group, which
is one of the most basic continuous group. As a consequence of the Fourier series expansion, L2pTq

is spanned by teinθ | n P Nu. Hence, we can take X to be an m-dimensional subspace X :“

t
ř

|n|ăm xne
inθ | x´n “ xn P Ru equipped with an inner product xx, yyX :“

ş

T xpθqypθqdθ. We
note that the constraint xn “ x´n implies

ř

|n|ăm xne
inθ “

ř

|n|ăm xn cospnθq and thus any signal
x P X is a bandlimited real-valued continuous signal with each coefficient xn being the n-th frequency
spectrum. Put Tαrxspθq :“ xpθ ´αq, then pa ˚xqpαq “

ş

T apθqxpα´ θqdθ “
ř

|n|ăm anxne
inα “

ř

|n|ăm anxn cospnαq (by the convolution theorem and the constraint). Therefore,

Rrf ; ρspa, bq :“

ż

Rm

fpxqp0qρ
´

ř

|n|ămanxn ´ b
¯

dx,

SrRrf ; ρsspxqpθq “

ż

RmˆR
Rrf ; ρspa, bqσ

´

ř

|n|ămanxn cospnθq ´ b
¯

dadb “ ppσ, ρqqfpxqpθq.

Example 8 (Differential operator (with convergence factor)). A differential operator d
dθ is calculated

as x “
ř

|n|ăm xne
inθ ÞÑ fpxq “

ř

|n|ăm nxne
inθ. Since x ÞÑ fpxqp0q “

ř

|n|ăm nxn is
not integrable on Rm, we impose a convergence factor ϕt as follows. ftpxqpθq :“ fpxqϕtpxq “
d
dθxpθqϕtpxq “

ř

|n|ăm nxnϕtpxqeinθ. Here, pϕtqtą0 Ă SpX q is a family of convergence factors
that satisfies (1) the first moment

ş

X |x|X |ϕtpxq|dx exists at every t, (2) ϕt Ñ 1 in the weak sense
as t Ñ 8, and (3) (continuous and) pG,T q-equivariant. For example, we can take a Gaussian
ϕtpxq “ expp´|x|2X {4tq. Hence,

Rrft; ρspa, bq “

ż

Rm

ÿ

|n|ăm

nxnϕtpxqρ
´

ř

|n|ămanxn ´ b
¯

dx.

5.4 Euclidean group Epnq equivariant map

Example 9. The Euclidean group Epnq is a semidirect product Rn ¸ Opnq of the translational group
Rn and the orthogonal group Opnq, which acts on Rn as pU, sq ¨ t :“ Ut ` s for any t P Rn and
pU, sq P Opnq ˆ Rn. So, put X Ă L2pRnq and TpU,sqrxsptq :“ xpU´1pt ´ sqq. Then,

Rrf ; ρspa, bq :“

ż

X
fpxqpI, 0qρ

ˆ
ż

Rn

aptqxptqdt ´ b

˙

dx

SrRrf ; ρsspxqpU, tq “

ż

XˆR
Rrf ; ρspa, bqσ

ˆ
ż

Rn

apU´1pt ´ sqqxpsqds ´ b

˙

dadb “ fpxqpU, tq
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We note that a more memory efficient representation for L2pRnq and/or a more general representation
such as L2pSOp2qq and L2pEp3qq, have been developed in the context of steerable CNNs [33, 64].

6 Discussion

6.1 Related Works on (G)CNN Universality

Non-Group CNN. Zhou [9, 10] is the earliest to show the cc-universality of deep ReLU (non-
group) CNNs. In [10], he presented (Theorem 1) the cc-universality in CpRd;Rq in the limit of
depth J Ñ 8, and (Theorem 2) an approximation error rate with respect to J . The CNN is carefully
designed so that increasing depth also increases width, which is not covered in our GCNN.

Finite Group CNN. Maron et al. [12], Sannai et al. [65], Keriven and Peyré [66], Ravanbakhsh
[67] and Petersen and Voigtlaender [13] presented the cc-(or Lp-)universality results of finite-group
CNNs. Maron et al. [12] is often cited as one of the earliest publications, where the input space
is X “ Rnk

ˆa (a-channel k-th order n-dimensional tensors), the output space is X 1 “ Rnl
ˆb

(b-channel l-th order n-dimensional tensors), the group G is a subgroup of a symmetric group Sn,
and the group action (or representation) T is the left-translation (or left-regular representation). In
this setup, they presented the cc-universality of deep-ReLU-GCNNs in the space of continuous
G-equivariant functions CequipX ;X 1q. The proofs are indirect because they are based on invariant
polynomials or MLPs. The finite group cases are essentially covered as Example 6 (Deep Sets).

Lie Group CNN. Yarotsky [11] carefully designed deep GCNNs with Lie groups acting on infinite-
dimensional input/output spaces, and show a version of universality in the space of continuous
G-equivariant functions CequipL

2pG;Rdq;L2pG;Rd1

qq. To be precise, G is either a compact group,
translation group Rd, or 2-dimensional roto-translation group SEp2q, and the input/output spaces X
and X 1 are square-integrable functions on G. The proposed networks are not covered in our GCNNs,
but several infinite group cases are covered in Examples 7 and 9.

Remarkably, Kumagai and Sannai [14], Kumagai et al. [15] introduced an integral representation that
covers LCH groups, and showed the universality. The proposed integral representation is based on
the Haar measure, thus slightly different from ours. The proofs are indirect because the network is
converted to an MLP.

6.2 Review of Assumptions

Group G. We only assume G to be a topological group, to deal with continuous functions on G.
Thus, a quite large class of groups are covered, for example, all the finite groups such as Zn and Sn,
compact groups such as SOpnq and Upnq, and non-compact groups such as Rn and Epnq as well.

Representation Space X . Unlike previous studies, it does not need to be a function space such
as CpGq and L2pG{Hq, but it only needs to be an abstract Hilbert space, which is one of the
major advantages for geometric understanding of GCNNs. On the other hand, we introduce an
auxiliary finite-dimensional subspace Xm (and projection P ), to use the Fourier inversion formula
on the finite-dimensional Euclidean space Rm in the proof. We conjecture that the extension to an
infinite-dimensional setting would be a routine for some specialists in functional analysis.

Group Representation T . It does not need to be unitary, irreducible, nor square-integrable, since
the proof is based only on a few basic properties of the linear group representation.

Network Architecture. The ridgelet theory supports a wide class of activation functions, namely,
the tempered distributions (S 1). The extension to deep GCNNs remains an important open question.
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A Proofs

Additional Notation In the proofs, we use two symbols p̈and ¨7 for the Fourier transforms in x P X
and b P K, respectively. For example,

pfpξq :“

ż

X
fpxqe´ixξ,xyX dx, ξ P X

ρ7pωq :“

ż

K
ρpbqe´iωbdb, ω P K

γ7pa, ωq “

ż

K
γpa, bqe´iωbdb, pa, ωq P X ˆ K.

With a slight abuse of notation, when σ is a tempered distribution (i.e., σ P S 1pKq), then σ7 is
understood as the Fourier transform of distributions. Namely, σ7 is another tempered distribution
satisfying

ş

K σ7pωqϕpωqdω “
ş

K σpωqϕ7pωqdω for any test function ϕ P SpKq.

For any integer d ą 0 and vector v P Rd, |v| denotes the Euclidean norm, and xvy :“
a

1 ` |v|2.
For any positive number t ą 0, △t{2 and x△yt denote fractional differential operators defined as
Fourier multipliers: for any ϕ P S 1pRdq,

△t{2rϕspvq :“
1

p2πqd

ż

Rd

|u|t pϕpuqeiu¨vdu, (32)

x△yt{2rϕspvq :“
1

p2πqd

ż

Rd

p1 ` |u|2qt{2 pϕpuqeiu¨vdu. (33)

In particular when t “ 2, △t{2 coincides with the ordinary Laplacian on Rd.

A.1 Theorem 1

Proof. In the following, we fix a representation T : G Ñ GLpX q of a group G on a (potentially
infinite-dimensional) Hilbert space X over a field K equipped with inner product x¨, ¨yX , which
is a G-invariant vector space: TGrX s “ X , and a finite-dimensional closed subspace Xm Ă X
equipped with the Lebesgue measure λ. Let XK

m be the orthogonal complement of Xm in X , i.e.,
x ‘ y P Xm ‘ XK

m “ X , and let P : X Ñ Xm denote the orthogonal projection onto Xm. Let
m :“ dimR Xm denotes the real dimension of Xm, and let k :“ dimR K denotes the real dimension
of K, which is either 1 or 2.

Without loss of generality, we can assume (A’) that γpa, ‚q ˚ σ P SpKq for a.e. a P Xm, and
(A”) that γ7σ7 P L1pXm ˆ Kq, which will be eventually justified because later in (38), we set
γ7pa, ωq “ pfpωaqρ7pωq.

Step 1 (Fourier expression). Using an identity: For any function ϕ P SpKq and b P K, ϕpbq “
1

p2πqk

ş

K ϕ7pωqeibωdω, namely the Fourier inversion formula, we can turn S into a Fourier expression:

Srγspxqpgq “
1

p2πqk

ż

Xm

ż

K
γpa, bqσpxTg´1rxs, ayX ´ bqdbda (34)

“
1

p2πqk

ż

Xm

ż

K
γ7pa, ωqσ7pωq exp

`

iωxTg´1rxs, ayX
˘

dωda. (35)

By the assumption (A’), the first equation holds at every point b “ pa˚T xqpgq, and by the assumption
(A”), the Fourier expression is uniformly absolutely convergent:

ż

XmˆK
|γ7pa, ωqσ7pωq exppiωpa ˚ xqpgqq|dadω “ }γ7σ7}L1pXmˆKq ă 8, (36)

for all px, gq P X ˆ G. Hence, we can change the order of integration freely.
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Step 2 (Reconstruction). By changing the variables as pa, ωq “ pξ{ω, ωq with dadω “

|ω|´mdξdω, we have

Srγspxqpgq “
1

p2πqk

ż

XmˆK
γ7pξ{ω, ωqσ7pωq exp

`

ixTg´1rxs, ξyX
˘

|ω|´mdωdξ. (37)

Hence, using a given f satisfying the assumptions (A1) and (A2), and some function ρ P SpKq,
suppose that γf,ρ satisfies the following separation-of-variables form:

γ7

f,ρpξ{ω, ωq “ pfpξqpeqρ7pωq. (38)

Then,

Srγf,ρspxqpgq “
1

p2πqk

ż

XmˆK
pfpξqpeqρ7pωqσ7pωq exp

`

ixTg´1rxs, ξyX
˘

|ω|´mdωdξ (39)

“

ˆ

p2πqm´k

ż

K
σ7pωqρ7pωq|ω|´mdω

˙

ˆ

ˆ

1

p2πqm

ż

Xm

pfpξqpeq exp
`

ixTg´1rxs, ξyX
˘

dξ

˙

(40)

‹
“ ppσ, ρqqfpPTg´1rxsqpeq (41)
“ ppσ, ρqqfpxqpgq. (42)

where we put

ppσ, ρqq :“ p2πqm´k

ż

K
σ7pωqρ7pωq|ω|´mdω. (43)

Here, the equality ‹
“ holds at every continuous point xc of f for (A2a), in L2 for (A2b), and in S 1 for

(A2c), respectively.

Step 3 (Ridgelet transform). Since we put

γ7

f,ρpa, ωq “ pfpωaqpeqρ7pωq, (44)

it is calculated as

γf,ρpa, bq “
1

p2πqk

ż

K
pfpωaqpeqρ7pωqeiωbdω (45)

“
1

p2πqk

ż

KˆXm

fpxqpeqρ7pωqeiωpb´xa,xyX qdωdx (46)

“

ż

Xm

fpxqpeqρpxa, xyX ´ bqdx, (47)

which is the definition of the ridgelet transform for GCNN.

A.2 Theorem 2

Proof. Fix arbitrary compact sets K Ă Xm and L Ă G, positive number ε ą 0, and function
f P CequipK;CpGqq. An n-term finite pG,T q-CNN is given by

fnpxqpgq :“
n

ÿ

i“1

ciσ ppai ˚T xqpgq ´ biq , x P Xm, g P G (48)

with parameters pai, bi, ciq P XmˆKˆC. Observe that any finite pG,T q-CNN is pG,T q-equivariant,
that is,

fnpTgrxsqphq “

n
ÿ

i“1

ciσ
`

xTpg´1hq´1x, aiyX ´ bi
˘

“ fnpxqpg´1hq. (49)
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Put K :“ tTg´1rxs | x P K, g P Lu, which is compact because T is continuous, and put fepxq :“

fpxqpeq, which is compactly supported, i.e., fe P CpKq Ă CpKq. By Theorem 3, there exist a finite
number N P N and an N -term C-valued fully-connected network FN pxq “

řN
i“1 ciσpxai, xyX ´ biq

satisfying }FN ´ fe}CpKq
ă ε. Put fN pxqpgq :“ FN pTg´1rxsq. Then, it is a pG,T q-CNN because

fN pxqpgq “

N
ÿ

i“1

ciσ
`

xTg´1 , aiyX ´ bi
˘

“

N
ÿ

i“1

ciσ ppai ˚T xqpgq ´ biq , (50)

and it is an ε-neighbour of f because

}fN ´ f}CpK;CpLqq “ sup
xPK

sup
gPL

|fN pxqpgq ´ fpxqpgq| (51)

“ sup
xPK

sup
gPL

|FN pTg´1rxsq ´ fepTg´1rxsq| (52)

“ sup
gPL

sup
x1PK

|FN px1q ´ fepx1q|, x1 “ Tg´1rxs (53)

ă ε, (54)

which concludes the assertion.

Theorem 3 (cc-universality of scalar-valued finite fully-connected NNs on Rm). Suppose that

1. X “ Xm “ Rm,

2. f P CpX ;Cq (not vector-valued CpX ;CGq but scalar-valued), and

3. there exists k ě 0 and θ ą 0 such that ∆k
θ rσs P L8pRq and Lipschitz continuous.

Then, the finite neural networks of the form fnpxq “
řn

i“1 ciσpai ¨ x ´ biq are cc-universal, that
is, for any compact set K Ă Rm, positive number ε ą 0, and continuous function f P CpKq, there
exists a finite network fn such that }f ´ fn}CpKq ă ε.

Proof. Since
řn

i“1 ci∆
k
θ rσspai ¨ x ´ biq is rewritten as another finite model

řn1

i“1 c
1
iσpa1

i ¨ x ´ b1
iq,

it suffice to consider the case k “ 0. In the following, we assume that σp“ ∆0
θrσsq is bounded and

Lipschitz continuous.

Step 1 (f „ fc). By the density of C8
c pRmq in CpKq with respect to the uniform norm, we can

take a compactly-supported smooth function fc P C8
c pRmq satisfying }f ´ fc}CpKq ă ε{3. Since fc

is sufficiently smooth and integrable, there exists a compactly-supported smooth function ρ P C8
c pRq

such that

SrRrfc; ρsspxq “ fcpxq at every point x P Rm. (55)

For example, take a compactly-supported smooth function ρ0 P C8
c pKq, write k “ dimR Kp“

1 or 2q, and put ρpbq :“ △m{2
b rρ0spbq “ p2πq´k

ş

K |ω|mρ7
0pωqeib¨ωdω. Then, ppσ, ρqq “

p2πqm´k
ş

K σ7pωqρ7pωq|ω|´mdω “ p2πqm´k
ş

K σ7pωqρ7
0pωqdω “ p2πqm

ş

K σpbqρ0pbqdb “

xσ, ρ0yL2pKq, which is an ordinary functional inner product, and it is easy to find a ρ0 satisfy-
ing xσ, ρ0yL2pKq ‰ 0. By normalizing ρ1 :“ ρ{ppσ, ρqq, we can find the ρ1. We refer to Sonoda and
Murata [54] and Sonoda et al. [45] for more details on the scalar product ppσ, ρqq.

Step 2 (Rrfc; ρs). To show a discretization fn of the reconstruction formula converges to fc in
CpKq, it is convenient to regard the integration

ş

RmˆRr¨ ¨ ¨ sdadb in S as the Bochner integral, and
the integrand γpa, bqσpa ¨ x ´ bq as a vector-valued function from Rm ˆ R to CpKq.

Since fc is C8-smooth, Rrfc; ρspa, bq is bounded and decays rapidly in a, and thus Rrfc; ρsσpa ¨

x ´ bq is Bochner integrable, that is,
ż

RmˆR
sup
xPK

ˇ

ˇRrfc; ρspa, bqσpa ¨ x ´ bq
ˇ

ˇdadb ă 8. (56)
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To see this, the decay property is estimated as follows. For any positive numbers s, t ą 1,

|Rrfc; ρspa, bq| “
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R
pfcpωaqρ7pωqeiωbdω

ˇ

ˇ

ˇ

ˇ

ˇ

“
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R
xωaysxωay´sxbytxby´t

pfcpωaqρ7pωqeiωbdω

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ż

R
xωays pfcpωaqxωy´sρ7pωqx△ωyteiωbdω

ˇ

ˇ

ˇ

ˇ

ˇ

xay´sxby´t, (57)

which asserts the integrability as below
ż

RmˆR
sup
xPK

|Rrfc; ρspa, bqσpa ¨ x ´ bq|dadb À

ż

RmˆR
xay´sxby´tdadb ă 8. (58)

Step 3 (fc „ fQ „ fn). Next, take a compact domain (m ` 1-dimensional hypercube) Q :“
tpa, bq P Rm ˆ R | |ai| ď δ{2, |b| ď δ{2u, and put a band-limited function

fQpxq :“

ż

Q

Rrfc; ρspa, bqσpa ¨ x ´ bqdadb, (59)

so that }fc ´ fQ}CpKq ă ε{3 (by letting δ sufficiently large). Then, let Q “
Ů

iPIn
Qni be a

decomposition of the domain Q into the union of disjoint family of |In| “ nm`1 cubes with
volume volpQnq “ pδ{nqm`1 and the longest diagonal dn “

?
m ` 1δ{n. From each cube, take

a point pani, bniq P Qni as a center of gravity, that is, so that cni “
ş

Qni
Rrfc; ρspa, bqdadb “

Rrfc; ρspani, bniq volpQnq, and put wni :“ Rrfc; ρspani, bniq, then put a finite network as

fnpxq :“
ÿ

iPIn

cniσpani ¨ x ´ bniq. (60)

Step 4 (fQ „ fn). We show fn Ñ fQ in CpKq. First, the integrands converge to the limit at
almost every pa, bq P Qni as

sup
xPK

ˇ

ˇ

ˇ
Rrfc; ρspa, bqσpa ¨ x ´ bq ´ wniσpani ¨ x ´ bniq

ˇ

ˇ

ˇ
(61)

ď sup
xPK

ˇ

ˇ

ˇ
Rrfc; ρspa, bq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
σpa ¨ x ´ bq ´ σpani ¨ x ´ bniq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
Rrfc; ρspani, bniq ´ Rrfc; ρspa, bq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
σpani ¨ x ´ bniq

ˇ

ˇ

ˇ
(62)

ď }Rrfc; ρs}8 Lippσq sup
xPK

ˇ

ˇ

ˇ
pa ´ aniq ¨ x ´ pb ´ bniq

ˇ

ˇ

ˇ

` LippRrfc; ρsq

ˇ

ˇ

ˇ
pa ´ ani, b ´ bniq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
}σ}L8pRq “ Opδ{nq Ñ 0 n Ñ 8. (63)

Besides, the integrands are uniformly bounded as

sup
xPK

ˇ

ˇ

ˇ
wniσpani ¨ x ´ bniq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
Rrfc; ρspa, bq

ˇ

ˇ

ˇ
}σ}L8pRq, for a.e. pa, bq P Qni. (64)

Therefore, by the dominated convergence theorem for the Bochner integral, we have

}fQ ´ fn}CpKq “ sup
xPK

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPIn

ż

Qni

Rrfc; ρspa, bqσpa ¨ x ´ bqdadb ´
ÿ

iPIn

cniσpani ¨ x ´ bniq

ˇ

ˇ

ˇ

ˇ

ˇ

(65)

ď
ÿ

iPIn

ż

Qni

sup
xPK

ˇ

ˇ

ˇ
Rrfc; ρspa, bqσpa ¨ x ´ bq ´ wniσpani ¨ x ´ bniq

ˇ

ˇ

ˇ
dadb (66)

Ñ 0, n Ñ 8. (67)
Hence by letting n sufficiently large, we have }fn ´ fQ}CpKq ă ε{3.

To sum up, we have shonw the cc-universality:
}f ´ fn}CpKq ď }f ´ fc}CpKq ` }fc ´ fQ}CpKq ` }fQ ´ fn}CpKq ă ε. (68)
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Notes. In the proof, we employed a naive discretization based on the regular grids in Q. However,
since we know the closed-form expression of the ridgelet transform, we can discretize it more
effectively. For example, a better discretization scheme is investigated in the so-called Maurey-Jones-
Barron (MJB) theory and the dimension independent Barron’s bound ([see, e.g., 68]).
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