
Appendix for “Stability and Generalization Analysis of Gradient
Methods for Shallow Neural Networks”

A Lemmas

In this section, we collect several lemmas useful for our analysis. The following lemma shows that
the loss function is smooth and the loss function is weakly convex. We develop a lower bound for the
eigenvalue of the Hessian matrix which is slightly different from that in [51]. Let λmin(A) denote
the smallest eigenvalue of a matrix A and ∇2f denote the Hessian matrix of a function f . We use
a ∨ b = max{a, b} for any a, b ∈ R.
Lemma A.1 (Smoothness and Curvature [51]). Let z ∈ Z . The function W 7→ ℓ(W; z) is ρ-smooth.
For any W, we have

λmin(∇2ℓ(W; z)) ≥ − b′√
m

(
∥W −W0∥2 ∨ 1

)
. (A.1)

Proof. The smoothness of the loss function was established in [51]. We only prove Eq. (A.1). The
following inequality was established in [51]

λmin(∇2ℓ(W; z)) ≥ −C2
xBϕ′′
√
m

∣∣fW(x)− y
∣∣.

We know ∣∣fW(x)− y
∣∣ ≤ ∣∣fW(x)− fW0

(x)
∣∣+ ∣∣fW0

(x)− y
∣∣

≤ CxBϕ′∥W −W0∥2 +
√
2ℓ(W0; z),

where we have used the following inequality established in [51]

|fW(x)− fW′(x)| ≤ CxBϕ′∥W −W′∥2.
It then follows that

λmin(∇2ℓ(W; z)) ≥ −C2
xBϕ′′
√
m

(
CxBϕ′∥W −W0∥2 +

√
2ℓ(W0; z)

)
. (A.2)

The stated bound then follows directly. The proof is completed.

Lemma A.2. Let W,W′ ∈ Rd×m. Then

ℓ(W; z)− ℓ(W′; z)− ⟨W −W′,∇ℓ(W′; z)⟩ ≥ − b′R√
m
∥W −W′∥22, (A.3)

where R = max{1, ∥W −W0∥2, ∥W′ −W0∥2}.

Proof. According to Taylor’s theorem, there exists α ∈ [0, 1] such that

ℓ(W; z)− ℓ(W′; z)− ⟨W −W′,∇ℓ(W′; z)⟩ = ⟨W −W′,∇2ℓ(W(α); z)(W −W′)⟩

≥ λmin(∇2ℓ(W(α)); z)∥W −W′∥22 ≥ − b′R√
m
∥W −W′∥22,

where W(α) = αW + (1− α)W′ and we have used Lemma A.1. The proof is completed.

The following lemma shows the self-bounding property of smooth and nonnegative functions.
Lemma A.3 ([57]). Assume for all z, the function w 7→ ℓ(w; z) is nonnegative and L-smooth. Then
∥∇ℓ(w; z)∥22 ≤ 2Lℓ(w; z).

The following recursive relationship on stability of GD was established in [51]. Note ϵt defined in Eq.
(A.4) is slightly different from that in [51]. Indeed, the discussions [51] derive the following lemma
in their analysis. The difference is that they further control ∥Wt −W

(i)
t ∥2 in Eq. (A.4) as follows

∥Wt −W
(i)
t ∥2 ≤ ∥Wt −W0∥2 + ∥W0 −W

(i)
t ∥2 ≤ 2

√
2ηtC0.
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Lemma A.4 ([51]). Let Assumptions 1, 2 hold. Let {Wt}t be produced by (3.1). If η ≤ 1/(2ρ), then
for any t ∈ N we have∥∥Wt+1−W

(i)
t+1

∥∥2
2
≤ 1 + p

1− 2ηϵt

∥∥Wt−W
(i)
t

∥∥2
2
+
2
(
1 + 1/p

)
η2

n2

(
∥∇ℓ(Wt; zi)∥22+∥∇ℓ(W

(i)
t ; z′i)∥22

)
,

where

ϵt =
C2

xBϕ′′
√
m

(
Bϕ′Cx(1 + ηρ)∥Wt −W

(i)
t ∥2 + 2

√
2C0

)
. (A.4)

The following lemma shows how the GD iterate would deviate from the initial point.

Lemma A.5 ([51]). Let Assumptions 1, 2 hold and assume η ≤ 1/(2ρ). Let {Wt} be produced by
Eq. (3.1). Then for any t ∈ N we have

∥Wt −W0∥2 ≤
√

2ηtLS(W0).

The following lemma shows an almost co-coercivity of the gradient operator associated with shallow
neural networks, which plays an important role for the stability analysis.

Lemma A.6 (Almost Co-coercivity of the Gradient Operator [51]). Let Assumptions 1, 2 hold. If
η ≤ 1/(2ρ), then for any t ∈ N we have

⟨Wt −W
(i)
t , ℓ(Wt; zi)−∇ℓ(W

(i)
t ; zi)⟩ ≥ 2η

(
1− ηρ

2

)
∥∇ℓ(Wt; zi)−∇ℓ(W

(i)
t ; zi)∥22

− ϵ′t

∥∥∥Wt −W
(i)
t − η

(
∇ℓ(Wt; zi)−∇ℓ(W

(i)
t ; zi)

)∥∥∥2
2
,

where

ϵ′t =
C2

xBϕ′′
√
m

(
Bϕ′Cx(1 + 2ηρ)max{∥Wt −W0∥2, ∥W(i)

t −W0∥2}+
√
2C0

)
. (A.5)

Remark 6. The above lemma can be proved in a way similar to Lemma 5 in [51] but using the
following inequality to control the eigenvalue of Hessian matrix (see, e.g, (A.2))

min
α∈[0,1]

λmin

(
∇2ℓ(W(α); z)

)
≥ −C2

xBϕ′′
√
m

min
α∈[0,1]

(
CxBϕ′∥W(α)−W0∥2 +

√
2ℓ(W0; z)

)
,

where α ∈ [0, 1] and

W(α) = αWt + (1− α)W
(i)
t − αη

(
∇ℓ(Wt; zi)−∇ℓ(W

(i)
t ; zi)

)
.

From the smoothness of ℓ, we further know that

∥W(α)−W0∥2 ≤ ∥αWt + (1− α)W
(i)
t −W0∥2 + αη∥∇ℓ(Wt; zi)−∇ℓ(W

(i)
t ; zi)∥2

≤ max{∥Wt −W0∥2, ∥W(i)
t −W0∥2}+ ηρ∥Wt −W

(i)
t ∥2

≤ max{∥Wt −W0∥2, ∥W(i)
t −W0∥2}+ ηρ∥Wt −W0∥2 + ηρ∥W0 −W

(i)
t ∥2

≤ (1 + 2ηρ)max{∥Wt −W0∥2, ∥W(i)
t −W0∥2}.

Consequently,

min
α∈[0,1]

λmin

(
∇2ℓ(W(α); z)

)
≥ −C2

xBϕ′′
√
m

(
CxBϕ′(1 + 2ηρ)max{∥Wt −W0∥2, ∥W(i)

t −W0∥2}+
√
2C0

)
.

The remaining arguments in proving Lemma A.6 is the same as proving Lemma 5 in [51]. We omit
the proof for simplicity.

As a comparison, the paper [51] uses the following inequality

min
α∈[0,1]

λmin

(
∇2ℓ(W(α); z)

)
≥ −C2

xBϕ′′
√
m

|fW(α)(x)− y|,
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and uses the following decomposition to estimate |fW(α)(x)− y|

|fW(α)(x)− y| ≤ |fw(α)(x)− f
W

(i)
t
(x)|+ |f

W
(i)
t
(x)− y|

≤ B′
ϕCx∥W(α)−W

(i)
t ∥2 + |f

W
(i)
t
(x)− y|

≤ B′
ϕCx(1 + ηρ)∥Wt −W

(i)
t ∥2 + |f

W
(i)
t
(x)− y|.

However, the above estimation does not apply to SGD because we consider the loss function over
a single datum instead of the empirical risk over the whole training data and one cannot guarantee
|f

W
(i)
t
(x)− y| ≤

√
2C0.

B Proofs on Gradient Descent

B.1 Proofs on Generalization Bounds

We first present a lemma on the uniform stability of GD, which will be used in lower bounding the
smallest eigenvalue of Hessian matrices.

Lemma B.1. Let Assumptions 1, 2 hold. Let {Wt} be produced by Eq. (3.1). If η ≤ 1/(2ρ) and Eq.
(4.1) holds, then

∥∥Wt −W
(i)
t

∥∥
2
≤

2ηeT
√
2C0ρ(ρηT + 2)

n
, ∀t ∈ [T ].

Proof. We can apply Lemma A.4 recursively and derive

∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤

2η2
(
1 + 1/p

)
n2

t∑
j=0

(
∥∇ℓ(Wj ; zi)∥22 + ∥∇ℓ(W

(i)
j ; z′i)∥22

) t∏
j̃=j+1

1 + p

1− 2ηϵj̃
.

(B.1)
Furthermore, it follows from the ρ-smoothness of ℓ and Lemma A.5 that

∥∇ℓ(Wj ; z)∥22 ≤ 2∥∇ℓ(Wj ; z)−∇ℓ(W0; z)∥22 + 2∥∇ℓ(W0; z)∥22
≤ 2ρ2∥Wj −W0∥22 + 4ρℓ(W0; z) ≤ 4ρ2ηjLS(W0) + 4ρℓ(W0; z).

In a similar way, we can show

∥∇ℓ(W
(i)
j ; z)∥22 ≤ 4ρ2ηjLS(i)(W0) + 4ρℓ(W0; z).

We can combine the above three inequalities together and derive∥∥Wt+1 −W
(i)
t+1

∥∥2
2

≤
8ρη2

(
1 + 1/p

)
n2

t∑
j=0

(
ρηjLS(W0) + ρηjLS(i)(W0) + ℓ(W0; zi) + ℓ(W0; z

′
i)
) t∏

j̃=j+1

1 + p

1− 2ηϵj̃

≤
8ρη2

(
1 + 1/p

)
n2

t∏
j̃=1

1 + p

1− 2ηϵj̃

t∑
j=0

(
ρηjLS(W0) + ρηjLS(i)(W0) + ℓ(W0; zi) + ℓ(W0; z

′
i)
)

=
4ρη2

(
1 + 1/p

)
n2

t∏
j̃=1

1 + p

1− 2ηϵj̃

(
ρη(LS(W0) + LS(i)(W0))t(t+ 1) + 2(t+ 1)(ℓ(W0; zi) + ℓ(W0; z

′
i))

)
.
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We can choose p = 1/t and use (1 + 1/t)t ≤ e to get∥∥Wt+1 −W
(i)
t+1

∥∥2
2

≤ 4ρη2e(1 + t)

n2

t∏
j̃=1

1

1− 2ηϵj̃

(
ρη(LS(W0) + LS(i)(W0))t(t+ 1) + 2(t+ 1)(ℓ(W0; zi) + ℓ(W0; z

′
i))

)

=
4ρη2e(1 + t)2

n2

(
ρηt(LS(W0) + LS(i)(W0)) + 2ℓ(W0; zi) + 2ℓ(W0; z

′
i)
) t∏

j̃=1

1

1− 2ηϵj̃

≤ 8C0ρη
2e(1 + t)2(ρηt+ 2)

n2

t∏
j̃=1

1

1− 2ηϵj̃
. (B.2)

We now prove by induction to show that∥∥Wk −W
(i)
k

∥∥
2
≤

2ηeT
√

2C0ρ(ρηT + 2)

n
, ∀k ∈ [T ]. (B.3)

Eq. (B.3) with k = 0 holds trivially. We now assume Eq. (B.3) holds for all k ≤ t and want to show
that it holds for k = t+ 1 ≤ T . Indeed, according to the induction hypothesis we know

ϵj̃ ≤ ϵ′ :=
C2

xBϕ′′
√
m

(2√2C0ρ(ρηT + 2)ηeTBϕ′Cx(1 + ηρ)

n
+ 2

√
2C0

)
∀j̃ ≤ t.

It then follows from Eq. (B.2) that

∥∥Wt+1−W
(i)
t+1

∥∥2
2
≤ 8C0ρη

2e(1 + t)2(ρηt+ 2)

n2

t∏
j̃=1

1

1− 2ηϵ′
=

8C0ρη
2e(1 + t)2(ρηt+ 2)

n2

( 1

1− 2ηϵ′

)t

.

Furthermore, Eq. (4.1) implies 2ηϵ′ ≤ 1/(t+ 1) and therefore( 1

1− 2ηϵ′

)t

≤
( 1

1− 1/(t+ 1)

)t

=
(
1 +

1

t

)t

≤ e. (B.4)

It then follows that∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤ 8C0ρη

2e2(1 + t)2(ρηt+ 2)

n2
≤ 8C0ρη

2e2T 2(ρηT + 2)

n2
.

This shows the induction hypothesis and completes the proof.

Proof of Theorem 2. According to Eq. (B.1) with p = 1/t and Eq. (B.4) we get

∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤

2e2η2
(
1 + t

)
n2

t∑
j=0

(
∥∇ℓ(Wj ; zi)∥22 + ∥∇ℓ(W

(i)
j ; z′i)∥22

)

≤
4e2η2ρ

(
1 + t

)
n2

t∑
j=0

(
ℓ(Wj ; zi) + ℓ(W

(i)
j ; z′i)

)
,

where we have used the self-bounding property of smooth functions (Lemma A.3). We take an
average over i ∈ [n] and get

1

n

n∑
i=1

E
[∥∥Wt+1 −W

(i)
t+1

∥∥2
2

]
≤

4e2η2ρ
(
1 + t

)
n3

t∑
j=0

( n∑
i=1

E[ℓ(Wj ; zi)] +

n∑
i=1

E[ℓ(W(i)
j ; z′i)]

)

=
8e2η2ρ

(
1 + t

)
n3

t∑
j=0

n∑
i=1

E[ℓ(Wj ; zi)] =
8e2η2ρ

(
1 + t

)
n2

t∑
j=0

E[LS(Wj)],

(B.5)
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where we have used E[ℓ(Wj ; zi)] = E[ℓ(W(i)
j ; z′i)] due to the symmetry between zi and z′i. Accord-

ing to Lemma 1 we further get

E[L(Wt)−LS(Wt)] ≤
4e2η2ρ2t

n2

t−1∑
j=0

E[LS(Wj)] +
(16e2η2ρ2tE[LS(Wt)]

n2

t−1∑
j=0

E[LS(Wj)]
) 1

2

It then follows from LS(Wt) ≤ 1
t

∑t−1
j=0 LS(Wj) [51] that

E[L(Wt)− LS(Wt)] ≤
4e2η2ρ2t

n2

t−1∑
j=0

E[LS(Wj)] +
4eηρ

n

t−1∑
j=0

E[LS(Wj)].

The proof is completed.

B.2 Proofs on Optimization Error Bounds

Before giving the proof on optimization error bounds, we first prove Lemma 3 on a bound of the GD
iterates.

Proof of Lemma 3. According to Theorem 2, we know

E[L(wt)− LS(wt)] ≤
(4e2η2ρ2t

n2
+

4eηρ

n

) t−1∑
j=0

E[LS(Wj)]. (B.6)

The following inequality was established in [51] for any W

1

t

t−1∑
s=0

LS(Ws)+
∥W −Wt∥22

ηt
≤ LS(W)+

∥W −W0∥22
ηt

+
b√
mt

t−1∑
s=0

(
1∨∥W−Ws∥32

)
. (B.7)

We take expectation over both sides and choose W = W∗
1

ηT

to get (note we do not have E[1∨∥W−
Ws∥32] ≤ 1 ∨ E[∥W − Ws∥32]. However, Eq. (B.8) still holds if one check the analysis in [51].
Indeed, they upper bounded a sum of two terms by the maximum and one can exchange the sum and
expectation. We omit the details for simplicity)

1

t

t−1∑
s=0

E[LS(Ws)] +
E[∥W∗

1
ηT

−Wt∥22]

ηt
≤ E[LS(W

∗
1

ηT
)]+

E[∥W∗
1

ηT

−W0∥22]

ηt
+

b√
mt

t−1∑
s=0

(
1 ∨ E[∥W∗

1
ηT

−Ws∥32]
)
. (B.8)

According to Eq. (B.6) we further get

1

t

t−1∑
s=0

E[L(Ws)] +
E[∥W∗

1
ηT

−Wt∥22]

ηt
≤

(4e2η2ρ2t
n2

+
4eηρ

n

) t−1∑
j=0

E[LS(Wj)]

+ E[L(W∗
1

ηT
)] +

E[∥W∗
1

ηT

−W0∥22]

ηt
+

b√
mt

t−1∑
s=0

(
1 ∨ E[∥W∗

1
ηT

−Ws∥32]
)
.

Since E[L(Ws)] ≥ L(W∗
1

ηT

) we further get

E[∥W∗
1

ηT

−Wt∥22]

ηt
≤

(4e2η2ρ2t
n2

+
4eηρ

n

) t−1∑
j=0

E[LS(Wj)]

+
E[∥W∗

1
ηT

−W0∥22]

ηt
+

b√
mt

t−1∑
s=0

(
1 ∨ E[∥W∗

1
ηT

−Ws∥32]
)
.
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We can further use Lemma A.5 to derive

E[∥W∗
1

ηT
−Wt∥22] ≤

(4e2η3ρ2t2
n2

+
4eη2tρ

n

) t−1∑
j=0

E[LS(Wj)] + E[∥W∗
1

ηT
−W0∥22]

+
bη
(√

2ηTC0 + E[∥W∗
1

ηT

−W0∥2]
)

√
m

t−1∑
s=0

(
1 ∨ E[∥W∗

1
ηT

−Ws∥22]
)
.

Let ∆ = maxs∈[T ] E[∥W∗
1

ηT

−Ws∥22] ∨ 1. The above inequality actually implies

∆ ≤
(4e2ρ2η3T 2

n2
+
4eη2Tρ

n

) T−1∑
j=0

E[LS(Wj)]+∥W∗
1

ηT
−W0∥22+

bηT∆
(√

2ηTC0 + E[∥W∗
1

ηT

−W0∥2]
)

√
m

.

According to the assumption m ≥ 4b2(ηT )2
(√

2ηTC0 + E[∥W∗
1

ηT

−W0∥2]
)2

, we further get

∆ ≤
(4e2ρ2η3T 2

n2
+

4eη2Tρ

n

) T−1∑
j=0

E[LS(Wj)] + ∥W∗
1

ηT
−W0∥22 +

∆

2

and therefore

∆ ≤
(8e2ρ2η3T 2

n2
+

8eη2Tρ

n

) T−1∑
j=0

E[LS(Wj)] + 2∥W∗
1

ηT
−W0∥22.

The proof is completed.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. According to Eq. (B.7) with W = W∗
1

ηT

we have

1

T

T−1∑
s=0

LS(Ws) ≤ LS(W
∗
1

ηT
) +

∥W∗
1

ηT

−W0∥22
ηT

+
b√
mT

T−1∑
s=0

(
1 ∨ ∥W∗

1
ηT

−Ws∥32
)

≤ LS(W
∗
1

ηT
) +

∥W∗
1

ηT

−W0∥22
ηT

+

b
(
∥W∗

1
ηT

−W0∥2 + max
s∈[T ]

∥W0 −Ws∥2
)

√
mT

T−1∑
s=0

(
1 ∨ ∥W∗

1
ηT

−Ws∥22
)

≤ LS(W
∗
1

ηT
) +

∥W∗
1

ηT

−W0∥22
ηT

+
b
(
∥W∗

1
ηT

−W0∥2 +
√
2ηTC0

)
√
mT

T−1∑
s=0

(
1 ∨ ∥W∗

1
ηT

−Ws∥22
)
,

(B.9)

where we have used Lemma A.5 in the last step. Since {LS(wt)} is monotonically decreasing [51],
we derive

E[LS(WT )] ≤ E[LS(W
∗
1

ηT
)] +

∥W∗
1

ηT

−W0∥22
ηT

+
b
(
∥W∗

1
ηT

−W0∥2 +
√
2ηTC0

)
√
mT

T−1∑
s=0

(
1 ∨ E[∥W∗

1
ηT

−Ws∥22]
)
.

We then apply Lemma 3 to get the stated bound. The proof is completed.

Both bounds in Theorem 2 and Lemma 3 depend on the term
∑T−1

s=0 E
[
LS(Ws)

]
, for which we

provide a bound in the following lemma.
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Lemma B.2. Let Assumptions 1, 2 hold. Let {Wt} be produced by Eq. (3.1) with η ≤ 1/(2ρ). If Eq.
(4.1), (4.2), (4.3), (4.5) hold, then

T−1∑
s=0

E
[
LS(Ws)

]
≤ 2TL(W∗

1
ηT

) +
2∥W∗

1
ηT

−W0∥22
η

+
4bT

(
∥W∗

1
ηT

−W0∥2 +
√
2ηTC0

)
∥W∗

1
ηT

−W0∥22
√
m

.

Proof. Taking expectation over both sides of Eq. (B.9) we derive

T−1∑
s=0

E
[
LS(Ws)

]
≤ TL(W∗

1
ηT

) +
∥W∗

1
ηT

−W0∥22
η

+
b
(
∥W∗

1
ηT

−W0∥2 +
√
2ηTC0

)
√
m

T−1∑
s=0

(
1 ∨ E[∥W∗

1
ηT

−Ws∥22]
)
.

It then follows from Lemma 3 that

T−1∑
s=0

E
[
LS(Ws)

]
≤ TL(W∗

1
ηT

) +
∥W∗

1
ηT

−W0∥22
η

+

bT
(
∥W∗

1
ηT

−W0∥2 +
√
2ηTC0

)
√
m

((8e2ρ2η3T 2

n2
+
8eη2Tρ

n

) T−1∑
j=0

E[LS(Wj)]+2∥W∗
1

ηT
−W0∥22

)
.

By Eq. (4.5), we have

T−1∑
s=0

E
[
LS(Ws)

]
≤ TL(W∗

1
ηT

) +
∥W∗

1
ηT

−W0∥22
η

+
1

2

T−1∑
s=0

E
[
LS(Ws)

]
+

2bT
(
∥W∗

1
ηT

−W0∥2 +
√
2ηTC0

)
√
m

∥W∗
1

ηT
−W0∥22.

The stated bound follows directly. The proof is completed.

Combined with Assumption 3, Lemma B.2 implies (if m ≳ η3T 3)

T−1∑
s=0

E
[
LS(Ws)

]
= O(TL(W∗

1
ηT

) +
1

η
∥W∗

1
ηT

−W0∥22) = O(TL(W∗) + T (Tη)−α).

If L(W∗) = 0, we have
∑T−1

s=0 E
[
LS(Ws)

]
= O(T (Tη)−α), which explains why we can get

improved bounds in a low noise case.

B.3 Proofs on Excess Risks Bounds

Proof of Theorem 5. We have the following error decomposition

E[L(WT )]− L(W∗) =
(
E[L(WT )]− E[LS(WT )]

)
+(

E[LS(WT )]−L(W∗
1

ηT
)− 1

ηT
∥W∗

1
ηT

−W0∥22
)
+
(
L(W∗

1
ηT

)+
1

ηT
∥W∗

1
ηT

−W0∥22−L(W∗)
)
.

(B.10)

Theorem 2 implies

E[L(WT )− LS(WT )] ≤
(4e2η2ρ2T

n2
+

4eηρ

n

) T−1∑
s=0

E
[
LS(Ws)

]
.
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We can plug the above generalization bounds, the optimization bounds in Theorem 4 and the definition
of Λ 1

ηT
back into Eq. (B.10), and derive

E[L(WT )]− L(W∗) ≤
(4e2η2ρ2T

n2
+

4eηρ

n

) T−1∑
s=0

E
[
LS(Ws)

]
+

bRT√
m

(
∥W∗

1
ηT

−W0∥2 +
√
2ηTC0

)
+ Λ 1

ηT
. (B.11)

According to the definition of Λ 1
ηT

, we know

∥W∗
1

ηT
−W0∥2 ≤

√
ηTΛ 1

ηT
. (B.12)

and therefore RT defined in Lemma 3 satisfies

RT = O
(η3T 2

n2
+

η2T

n

) T−1∑
j=0

E[LS(Wj)] + 2ηTΛ 1
ηT

.

According to Lemma B.2, we know
T−1∑
s=0

E
[
LS(Ws)

]
= O(TL(W∗

1
ηT

)) +O
(1
η
+

T
√
ηT√
m

)
∥W∗

1
ηT

−W0∥22

= O(TL(W∗
1

ηT
)) +O

(∥W∗
1

ηT

−W0∥22
η

)
.

It then follows that

RT = O
(η3T 3

n2
+

η2T 2

n

)
L(W∗

1
ηT

) +O
(η2T 2

n2
+

ηT

n

)
∥W∗

1
ηT

−W0∥22 + 2ηTΛ 1
ηT

.

We can plug the above bounds on RT and
∑T−1

s=0 E
[
LS(Ws)

]
back into Eq. (B.11), which implies

E[L(WT )]− L(W∗) = O
(η2T

n2
+

η

n

)(
TL(W∗

1
ηT

) +
∥W∗

1
ηT

−W0∥22
η

)
+

O
(√ηT√

m

)((η3T 3

n2
+

η2T 2

n

)
L(W∗

1
ηT

) +
(η2T 2

n2
+

ηT

n

)
∥W∗

1
ηT

−W0∥22 + ηTΛ 1
ηT

)
+ Λ 1

ηT
.

Since ηT = O(n), the above bound further translates to

E[L(WT )]− L(W∗) = O
(ηTL(W∗

1
ηT

)

n
+

∥W∗
1

ηT

−W0∥22
n

)
+

O
(√ηT√

m

)(η2T 2L(W∗
1

ηT

)

n
+

ηT∥W∗
1

ηT

−W0∥22
n

)
+O(Λ 1

ηT
).

Since m ≳ (ηT )3 we further have

E[L(WT )]− L(W∗) = O
(ηTL(W∗

1
ηT

)

n
+

∥W∗
1

ηT

−W0∥22
n

+ Λ 1
ηT

)
.

The stated bound then follows from L(W∗
1

ηT

) + 1
ηT ∥W

∗
1

ηT

−W0∥22 = L(W∗) + Λ 1
ηT

. The proof
is completed.

Proof of Corollary 6. According to Theorem 5 and Assumption 3, we know

E[L(WT )]− L(W∗) = O
(ηTL(W∗)

n
+

1

ηαTα

)
.

We first prove Part (a). For the choice ηT ≍ n
1

α+1 , we have
ηTL(W∗)

n
≍ n− α

1+α and
1

ηαTα
≍ n− α

1+α .

Part (b) follows directly from the choice Tη ≍ n. Note these choices of ηT satisfy ηT = O(n). The
proof is completed.
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C Proofs on Stochastic Gradient Descent

C.1 A Crude Bound on SGD Iterates

We first provide a crude bound on the SGD iterates, which would be useful for our analysis.
Lemma C.1 (Iterate Bound). Let Assumptions 1, 2 hold. Let {Wt}t be produced by SGD. If
η ≤ 1/(2ρ) and m ≥ 64C0(b

′)2(Tη)3, then for any t ∈ [T ] we have

∥Wt −W0∥2 ≤ 2
√
TηC0.

Proof. According to Eq. (3.2) we have the following inequality for any W,

∥Wt+1 −W∥22 =
∥∥Wt − η∇ℓ(Wt; zit)−W

∥∥2
2

≤ ∥Wt −W∥22 + η2∥∇ℓ(Wt; zit)∥22 + 2η⟨W −Wt,∇ℓ(Wt; zit)⟩. (C.1)

We now prove by induction to show the following inequality for all t ∈ [T ]

∥Wt −W0∥22 ≤ 4TηC0. (C.2)

It is clear that Eq. (C.2) holds for t = 0. We now assume Eq. (C.2) holds for all t ≤ j and want to
prove it holds for t = j + 1 ≤ T . According to Lemma A.2 and the induction hypothesis we have
the following inequality for all t ≤ j

⟨W0 −Wt,∇ℓ(Wt; zit)⟩ ≤ ℓ(W0; zit)− ℓ(Wt; zit) +
b′
√
4TηC0√
m

∥W0 −Wt∥22.

We can combine the above inequality and Eq. (C.1) with W = W0, which gives the following
inequality for any t ≤ j

∥Wt+1 −W0∥22

≤ ∥Wt −W0∥22 + η2∥∇ℓ(Wt; zit)∥22 + 2η
(
ℓ(W0; zit)− ℓ(Wt; zit)

)
+

2ηb′
√
4TηC0√
m

∥W0 −Wt∥22

≤ ∥Wt −W0∥22 + 2ρη2ℓ(Wt; zit) + 2η
(
ℓ(W0; zit)− ℓ(Wt; zit)

)
+

2ηb′
√
4TηC0√
m

∥W0 −Wt∥22

≤ ∥Wt −W0∥22 + 2ηℓ(W0; zit) +
2ηb′

√
4TηC0√
m

∥W0 −Wt∥22,

where we have used the self-bounding property and the assumption η ≤ 1/ρ. We can take a
summation of the above inequality and derive

∥Wj+1 −W0∥22 ≤ 2η

j∑
t=0

ℓ(W0; zit) +
2ηb′

√
4TηC0√
m

j∑
t=0

∥W0 −Wt∥22

≤ 2ηTC0 +
2ηb′

√
4TηC0√
m

T (4TηC0) ≤ 4ηTC0,

where we have used the assumption m ≥ 64C0(b
′)2(Tη)3. This shows Eq. (C.2) with t = j + 1.

The proof is completed.

C.2 Proofs on Generalization Bounds

Proof of Theorem 7. We first prove the stability of SGD. We consider two cases. If it ̸= i, then
according to the SGD update (3.2), we know

∥Wt+1 −W
(i)
t+1∥22 =

∥∥(Wt − η∇ℓ(Wt; zit)
)
−

(
W

(i)
t − η∇ℓ(W

(i)
t ; zit)

)∥∥2
2

= ∥Wt −W
(i)
t ∥22 + η2

∥∥∇ℓ(Wt; zit)− ℓ(W
(i)
t ; zit)

∥∥2
2
− 2η

〈
Wt −W

(i)
t ,∇ℓ(Wt; zit)− ℓ(W

(i)
t ; zit)

〉
.

According to Lemma A.6, we further have∥∥(Wt − η∇ℓ(Wt; zit)
)
−
(
W

(i)
t − η∇ℓ(W

(i)
t ; zit)

)∥∥2
2
≤ ∥Wt −W

(i)
t ∥22+

η2(2ηρ−3)
∥∥∇ℓ(Wt; zit)−ℓ(W

(i)
t ; z

(i)
it
)
∥∥2
2
+2ηϵ′t

∥∥(Wt−η∇ℓ(Wt; zit)
)
−
(
W

(i)
t −η∇ℓ(W

(i)
t ; zit)

)∥∥2
2
,

23



where ϵ′t is defined in Eq. (A.5). It then follows from η ≤ 1/(2ρ) that∥∥(Wt − η∇ℓ(Wt; zit)
)
−
(
W

(i)
t − η∇ℓ(W

(i)
t ; zit)

)∥∥2
2
≤ 1

1− 2ηϵ′t
∥Wt −W

(i)
t ∥22. (C.3)

If it ̸= i, we can use (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 to derive

∥Wt+1 −W
(i)
t+1∥22 =

∥∥(Wt − η∇ℓ(Wt; zi)
)
−

(
W

(i)
t − η∇ℓ(W

(i)
t ; z′i)

)∥∥2
2

≤ (1 + p)∥Wt −W
(i)
t ∥22 + (1 + 1/p)η2

∥∥∇ℓ(Wt; zi)−∇ℓ(W
(i)
t ; z′i)

∥∥2
2

≤ (1 + p)∥Wt −W
(i)
t ∥22 + 2(1 + 1/p)η2

(
∥∇ℓ(Wt; zi)∥22 + ∥∇ℓ(W

(i)
t ; z′i)∥22

)
≤ (1 + p)∥Wt −W

(i)
t ∥22 + 4ρ(1 + 1/p)η2

(
ℓ(Wt; zi) + ℓ(W

(i)
t ; z′i)

)
,

where we have used the self-bounding property. We can combine the above two cases to derive

Eit

[
∥Wt+1−W

(i)
t+1∥22

]
≤

( 1

1− 2ηϵ′t
+
p

n

)
∥Wt−W

(i)
t ∥22+

4ρ(1 + 1/p)η2

n

(
ℓ(Wt; zi)+ℓ(W

(i)
t ; z′i)

)
.

We can apply the above inequality recursively and derive

E
[
∥Wt+1 −W

(i)
t+1∥22

]
≤ 4ρ(1 + 1/p)η2

n

t∑
j=0

(
ℓ(Wj ; zi) + ℓ(W

(i)
j ; z′i)

) t∏
j̃=j+1

( 1

1− 2ηϵ′
j̃

+
p

n

)

≤ 4ρ(1 + 1/p)η2

n

t∏
j=1

( 1

1− 2ηϵ′j
+

p

n

) t∑
j=0

E
[
ℓ(Wj ; zi) + ℓ(W

(i)
j ; z′i)

]
≤ 8ρ(1 + t/n)η2

n

t∏
j=1

( 1

1− 2ηϵ′j
+

1

t

) t∑
j=0

E
[
ℓ(Wj ; zi)

]
,

where we have used the symmetry between zi and z′i and p = n/t. Since ∥Wj −W0∥2 ≤ R′
T and

∥W(i)
j −W0∥2 ≤ R′

T , we know

ϵ′s ≤
C2

xBϕ′′
√
m

(
Bϕ′Cx(1 + 2ηρ)R′

T +
√

2C0

)
≤ (1 + 2ηρ)b′R′

T√
m

.

Furthermore, Eq. (4.6) implies 2ηϵ′s ≤ 1/(t+ 1) and therefore

t∏
j=1

( 1

1− 2ηjϵ′j
+

1

t

)
≤

( 1

1− 1/(t+ 1)
+

1

t

)t

≤
(
1 +

2

t

)t

≤ e2.

It then follows that

E
[
∥Wt+1 −W

(i)
t+1∥22

]
≤ 8e2ρ(1 + t/n)η2

n

t∑
j=0

E[ℓ(Wj ; zi)].

We take an average over i ∈ [n] and get

1

n

n∑
i=1

E
[
∥Wt+1 −W

(i)
t+1∥22

]
≤ 8e2ρ(1 + t/n)η2

n2

t∑
j=0

n∑
i=1

E[ℓ(Wj ; zi)]

=
8e2ρ(1 + t/n)η2

n

t∑
j=0

E[LS(Wj)].

Now we prove the generalization bounds for SGD. According to Lemma 1, we have

E[L(Wt)− LS(Wt)] ≤
ρ

2n

n∑
i=1

E[∥Wt −W
(i)
t ∥22] +

(2ρE[LS(Wt)]

n

n∑
i=1

E[∥Wt −W
(i)
t ∥22]

) 1
2

.
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It then follows from (4.7) that

E[L(Wt)− LS(Wt)] ≤
4e2ρ2(1 + t/n)η2

n

t∑
j=0

E[LS(Wj)]

+ 4eρη
( (1 + t/n)E[LS(Wt)]

n

t∑
j=0

E[LS(Wj)]
) 1

2

.

The proof is completed.

The iterate bound in Lemma C.1 is a bit crude. In the following lemma, we show this bound can be
improved if we consider bounds in expectation. Recall ∆t := maxj=0,...,t E[∥Wj −W∗

1
ηT

∥22] for

any t ∈ N. If tη2 = O(1) and t = O(n), Lemma C.2 shows ∆t = O(∥W0 −W∗
1

ηT

∥22) which is

significantly better than the bound O(ηt) in Lemma C.1. This allows us to get excess risk bounds
under a relaxed overparameterization. Similar to the case with GD, this upper bound depends on the
training errors of SGD iterates.
Lemma C.2. Let Assumptions 1, 2 hold. Let {Wt}t be produced by SGD with η ≤ 1/(2ρ). If Eq.
(4.6) and Eq. (4.2) hold, then

∆t+1 ≤ 2∥W0 −W∗
1

ηT
∥22+

4ρη2
(
1 +

4e2ηρ
∑t

j=0(1 + j/n)

n
+

4e(t+ 1)
1
2 (1 + t/n)

1
2

√
n

) t∑
j=0

E[LS(Wj)].

Proof of Lemma C.2. We take expectation w.r.t. it over both sides of Eq. (C.1) and get

Eit [∥Wt+1 −W∗
1

ηT
∥22] ≤ ∥Wt −W∗

1
ηT

∥22 + η2Eit [∥∇ℓ(Wt; zit)∥22] + 2η⟨W∗
1

ηT
−Wt,∇LS(Wt)⟩

≤ ∥Wt −W∗
1

ηT
∥22 + 2ρη2Eit [ℓ(Wt; zit)] + 2η

(
LS(W

∗
1

ηT
)− LS(Wt)

)
+

2ηb′R′
T√

m
∥W∗

1
ηT

−Wt∥22,

(C.4)

where the last step is due to Lemma A.2 and Lemma C.1. Taking expectation over both sides of Eq.
(C.4), we derive

E[∥Wt+1 −W∗
1

ηT
∥22] ≤ E[∥Wt −W∗

1
ηT

∥22] + 2ρη2E[LS(Wt)]+

2ηE
[
LS(W

∗
1

ηT
)− LS(Wt)

]
+

2ηb′R′
T√

m
E[∥W∗

1
ηT

−Wt∥22]. (C.5)

This together with Theorem 7 implies

E[∥Wt+1 −W∗
1

ηT
∥22] ≤ E[∥Wt −W∗

1
ηT

∥22] + 2ρη2E[LS(Wt)] + 2ηE
[
LS(W

∗
1

ηT
)− L(Wt)

]
+

2ηb′R′
T√

m
E[∥W∗

1
ηT

−Wt∥22] +
8e2ρ2(1 + t/n)η3

n

t∑
j=0

E[LS(Wj)]

+ 8eρη2
( (1 + t/n)E[LS(Wt)]

n

t∑
j=0

E[LS(Wj)]
) 1

2

.

The assumption E
[
L(Wt)

]
≥ L(W∗

1
ηT

) further implies

E[∥Wt+1 −W∗
1

ηT
∥22] ≤ E[∥Wt −W∗

1
ηT

∥22] + 2ρη2E[LS(Wt)] +
2ηb′R′

T√
m

E[∥W∗
1

ηT
−Wt∥22]

+
8e2ρ2(1 + t/n)η3

n

t∑
j=0

E[LS(Wj)] + 8eρη2
( (1 + t/n)E[LS(Wt)]

n

t∑
j=0

E[LS(Wj)]
) 1

2

.

25



We take a summation of the above inequality and derive

E[∥Wt+1−W∗
1

ηT
∥22] ≤ ∥W0−W∗

1
ηT

∥22+2ρη2
t∑

j=0

E[LS(Wj)]+
2ηb′R′

T√
m

t∑
j=0

E[∥W∗
1

ηT
−Wj∥22]

+
8e2ρ2

∑t
j=0(1 + j/n)η3

n

t∑
j=0

E[LS(Wj)]+8eρη2
t∑

j=0

( (1 + j/n)E[LS(Wj)]

n

t∑
j=0

E[LS(Wj)]
) 1

2

.

According to the concavity of x 7→
√
x, we further get

E[∥Wt+1−W∗
1

ηT
∥22] ≤ ∥W0−W∗

1
ηT

∥22+2ρη2
t∑

j=0

E[LS(Wj)]+
2ηb′R′

T√
m

t∑
j=0

E[∥W∗
1

ηT
−Wj∥22]

+
8e2ρ2

∑t
j=0(1 + j/n)η3

n

t∑
j=0

E[LS(Wj)]+8eρη2
( (t+ 1)

∑t
j=0(1 + j/n)E[LS(Wj)]

n

t∑
j=0

E[LS(Wj)]
) 1

2

.

It then follows that

E[∥Wt+1 −W∗
1

ηT
∥22] ≤ ∥W0 −W∗

1
ηT

∥22 +
2ηb′R′

T√
m

t∑
j=0

E[∥W∗
1

ηT
−Wj∥22]

+
(
2ρη2 +

8e2ρ2
∑t

j=0(1 + j/n)η3

n
+

8eρη2(t+ 1)
1
2 (1 + t/n)

1
2

√
n

) t∑
j=0

E[LS(Wj)].

Let ∆t = maxj=0,...,t E[∥Wj −W∗
1

ηT

∥22]. Then the above inequality actually implies (note it holds
for any t)

∆t+1 ≤ ∥W0 −W∗
1

ηT
∥22 +

2(t+ 1)ηb′R′
T∆t+1√

m

+
(
2ρη2 +

8e2ρ2
∑t

j=0(1 + j/n)η3

n
+

8eρη2(t+ 1)
1
2 (1 + t/n)

1
2

√
n

) t∑
j=0

E[LS(Wj)]

≤ ∥W0 −W∗
1

ηT
∥22 +

∆t+1

2
+
(
2ρη2 +

8e2ρ2
∑t

j=0(1 + j/n)η3

n
+

8eρη2(t+ 1)
1
2 (1 + t/n)

1
2

√
n

) t∑
j=0

E[LS(Wj)],

where we have used 4(t+ 1)ηb′R′
T ≤

√
m. It then follows that

∆t+1 ≤ 2∥W0−W∗
1

ηT
∥22+4ρη2

(
1+

4e2ηρ
∑t

j=0(1 + j/n)

n
+
4e(t+ 1)

1
2 (1 + t/n)

1
2

√
n

) t∑
j=0

E[LS(Wj)].

The proof is completed.

Proof of Theorem 8. According to (C.5) and Lemma C.2, we know

2ηE
[
LS(Wt)−LS(W

∗
1

ηT
)
]
≤ E[∥Wt−W∗

1
ηT

∥22]−E[∥Wt+1−W∗
1

ηT
∥22]+2ρη2E[LS(Wt)]+

2ηb′R′
T∆T√
m

.

We take a summation of the above inequality and get the stated bound. The proof is completed.

C.3 Proofs on Excess Risk Bounds

Before proving the excess risk bounds, we first develop a useful lemma to control the term∑T−1
t=0 E[LS(Wt)], which appears in our generalization bounds.

Lemma C.3. Let Assumptions 1, 2 hold. Let {Wt} be produced by (3.2) with η ≤ 1/(2ρ). If Eq.
(4.6), Eq. (4.2) hold and

m ≥ 4
(
8b′Tρη2R′

T

)2(
1 +

4e2ηρT (1 + T/n)

n
+

4eT
1
2 (1 + T/n)

1
2

√
n

)2

, (C.6)
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then we have
T−1∑
t=0

E[LS(Wt)] ≤ 4TL(W∗
1

ηT
) + 2

(1
η
+

4b′TR′
T√

m

)
∥W0 −W∗

1
ηT

∥22. (C.7)

Proof. According to Eq. (C.4), we know

2η(1−ρη)E[LS(Wt)] ≤ 2ηL(W∗
1

ηT
)+E[∥Wt−W∗

1
ηT

∥22]−E[∥Wt+1−W∗
1

ηT
∥22]+

2ηb′R′
T√

m
E[∥W∗

1
ηT

−Wt∥22].

Since η ≤ 1/(2ρ), we get

ηE[LS(Wt)] ≤ 2ηL(W∗
1

ηT
)+E[∥Wt−W∗

1
ηT

∥22]−E[∥Wt+1−W∗
1

ηT
∥22]+

2ηb′R′
TE[∥W∗

1
ηT

−Wt∥22]
√
m

.

(C.8)
We take a summation of the above inequality and get

T−1∑
t=0

E[LS(Wt)] ≤ 2TL(W∗
1

ηT
) +

E[∥W0 −W∗
1

ηT

∥22]

η
+

2b′R′
T√

m

T−1∑
t=0

E[∥W∗
1

ηT
−Wt∥22].

According to Lemma C.2 we further get
T−1∑
t=0

E[LS(Wt)] ≤ 2TL(W∗
1

ηT
) +

(1
η
+

4b′TR′
T√

m

)
∥W0 −W∗

1
ηT

∥22+

8b′Tρη2R′
T√

m

(
1 +

4e2ηρT (1 + T/n)

n
+

4eT
1
2 (1 + T/n)

1
2

√
n

) T∑
t=0

E[LS(Wt)].

By Eq. (C.6), we further get
T−1∑
t=0

E[LS(Wt)] ≤ 2TL(W∗
1

ηT
) +

(1
η
+

4b′TR′
T√

m

)
∥W0 −W∗

1
ηT

∥22 +
1

2

T∑
t=0

E[LS(Wt)].

This shows the stated bound. The proof is completed.

Now we prove the excess generalization bounds for SGD.

Proof of Theorem 9. By Theorem 8, we have

2η

T−1∑
t=0

E
[
LS(Wt)−LS(W

∗
1

ηT
)
]
≤ E[∥W0 −W∗

1
ηT

∥22] + 2ρη2
T−1∑
t=0

E[LS(Wt)] +
2Tηb′R′

T∆T√
m

,

where ∆T := maxj=0,...,T E[∥Wj −W∗
1

ηT

∥22]. According to Theorem 7, we know

T−1∑
t=0

E[L(Wt)− LS(Wt)]

≤
T−1∑
t=0

(
4e2ρ2(1 + t/n)η2

n

t∑
j=0

E[LS(Wj)] + 4eρη
( (1 + t/n)E[LS(Wt)]

n

t∑
j=0

E[LS(Wj)]
) 1

2

)

≤ 4e2ρ2(T + T 2/n)η2

n

T−1∑
t=0

E[LS(Wt)] +
4eρη

√
T (1 +

√
T/

√
n)√

n

T−1∑
t=0

E[LS(Wt)],

where we have used the concavity of x 7→
√
x. We can combine the above two inequalities together

and get

2η

T−1∑
t=0

E
[
L(Wt)−LS(W

∗
1

ηT
)
]
≤ E[∥W0 −W∗

1
ηT

∥22] + 2ρη2
T−1∑
t=0

E[LS(Wt)] +
2Tηb′R′

T∆T√
m

+ 2η
(4e2ρ2(T + T 2/n)η2

n
+

4eρη
√
T (1 +

√
T/

√
n)√

n

) T−1∑
t=0

E[LS(Wt)].
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It then follows from the assumption m ≥ (4Tηb′R′
T )

2 that

η

T−1∑
t=0

E
[
L(Wt)− LS(W

∗
1

ηT
)
]
≤ 1

2
E[∥W0 −W∗

1
ηT

∥22] +
∆T

4

+O
(
η2 +

(T + T 2/n)η3

n
+

η2
√
T (1 +

√
T/

√
n)√

n

) T−1∑
t=0

E[LS(Wt)].

According to Lemma C.2, we know

∆T ≤ 2∥W0 −W∗
1

ηT
∥22 +O

((
η2 +

η3T (1 + T/n)

n
+

η2T
1
2 (1 + T/n)

1
2

√
n

) T−1∑
j=0

E[LS(Wj)]

)
.

We can combine the above two inequalities together to derive

η

T−1∑
t=0

E
[
L(Wt)− LS(W

∗
1

ηT
)
]
≤ E[∥W0 −W∗

1
ηT
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(
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(T + T 2/n)η3

n
+

η2
√
T (1 +

√
T/

√
n)√

n

) T−1∑
t=0

E[LS(Wt)].

It then follows Assumption 3 that

η

T−1∑
t=0

E[L(Wt)− L(W∗)] = η

T−1∑
t=0

(
E[L(Wt)− L(W∗

1
ηT

)− 1

ηT
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1
ηT

∥22]
)

+ η
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(
E[L(W∗

1
ηT

) +
1

ηT
E[∥W0 −W∗

1
ηT

∥22 − L(W∗)]
)

= O
(
η2 +

(T + T 2/n)η3

n
+

η2
√
T (1 +

√
T/

√
n)√

n

) T−1∑
t=0

E[LS(Wt)] + (Tη)Λ 1
ηT

.

We can use Lemma C.3 to control
∑T−1

t=0 E[LS(Wt)] and get

η

T−1∑
t=0

E[L(Wt)− L(W∗)] = (Tη)Λ 1
ηT

+

O
(
η2+

(T + T 2/n)η3

n
+

η2
√
T (1 +

√
T/

√
n)√

n

)(
TL(W∗

1
ηT

)+
(1
η
+

TR′
T√
m

)
∥W0−W∗

1
ηT

∥22
)
.

It then follows that

1

T

T−1∑
t=0

E[L(Wt)− L(W∗)] = Λ 1
ηT

+

O
(
η +

(T + T 2/n)η2

n
+

η
√
T (1 +

√
T/

√
n)√

n

)(
L(W∗

1
ηT

) +
( 1

Tη
+

R′
T√
m

)
∥W0 −W∗

1
ηT

∥22
)
.

Since ∥W0 −W∗
1

ηT

∥22 ≤ (ηT )Λ 1
ηT

, we further get

1

T

T−1∑
t=0

E[L(Wt)− L(W∗)] = Λ 1
ηT

+

O
(
η +

(T + T 2/n)η2

n
+

η
√
T (1 +

√
T/

√
n)√

n

)(
L(W∗

1
ηT

) +
( 1

Tη
+

R′
T√
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)
(ηT )Λ 1
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)
.

The stated bound follows from m ≥ (4Tηb′R′
T )

2, T = O(n) and L(W∗
1

ηT

) ≤ L(W∗) + Λ 1
ηT

. The
proof is completed.
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Proof of Corollary 10. According to Assumption 3 and Theorem 9, we know

1

T

T−1∑
t=0

E[L(Wt)− L(W∗)] = O
(
(Tη)−α + ηL(W∗)

)
.

We first prove Part (a). Since η ≍ T− α
1+α and T ≍ n, we know

(Tη)−α = O(n− α
1+α ) and η = O(n− α

1+α ).

If L(W∗) = 0, we know

1

T

T−1∑
t=0

E[L(Wt)− L(W∗)] = O
(
(Tη)−α

)
.

In this case, we can choose T ≍ n and η ≍ 1 to get (Tη)−α = O(n−α). The proof is completed.
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