
Graph Reordering for Cache-Efficient Near Neighbor
Search

Benjamin Coleman∗
ECE Department
Rice University

Houston, TX 77005
benjamin.ray.coleman@gmail.com

Santiago Segarra
ECE Department
Rice University

Houston, TX 77005
segarra@rice.edu

Alex Smola
Amazon Web Services
alex@smola.org

Anshumali Shrivastava
Department of Computer Science

Rice University
Houston, TX 77005

anshumali@rice.edu

Abstract

Graph search is one of the most successful algorithmic trends in near neighbor
search. Several of the most popular and empirically successful algorithms are, at
their core, a greedy walk along a pruned near neighbor graph. However, graph
traversal applications often suffer from poor memory access patterns, and near
neighbor search is no exception to this rule. Our measurements show that popular
search indices such as the hierarchical navigable small-world graph (HNSW)
can have poor cache miss performance. To address this issue, we formulate the
graph traversal problem as a cache hit maximization task and propose multiple
graph reordering as a solution. Graph reordering is a memory layout optimization
that groups commonly-accessed nodes together in memory. We mathematically
formalize the connection between the graph layout and the cache complexity of
search. We present exhaustive experiments applying several reordering algorithms
to a leading graph-based near neighbor method based on the HNSW index. We
find that reordering improves the query time by up to 40%, we present analysis
and improvements for existing graph layout methods, and we demonstrate that the
time needed to reorder the graph is negligible compared to the time required to
construct the index.

1 Introduction

Near neighbor search is a fundamental building block within many applications in machine learning
systems. Informally, the task can be understood as follows. Given a dataset D = {x1, x2, ...xN}, we
wish to build a data structure that can be queried with any point q to obtain the k points xi ∈ D that
have the smallest distance to the query. This structure is called a near neighbor index. Near neighbor
indices are of tremendous practical importance, as they form the backbone of production models in
recommendation systems, natural language processing Mikolov et al. (2013), genomics Ondov et al.
(2016), computer vision Lowe (1999) and other applications in machine learning Shakhnarovich et al.
(2008).

Applications. The accuracy and speed of several machine learning algorithms critically depend on
the recall and latency of near neighbor search. The problem is the focus of intense research activity
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Figure 1: Breakdown of query subroutines: initialization (A), visited lists (B), node traversal (C), and
distance computation (D-E): ≈ 40% of the query time is spent accessing vectors from memory (E).
The remainder (D) is floating point math.

due to its central role in neighbor-based classification, regression and prediction with embedding
models. In a neural embedding model, objects are transformed into embeddings in Rd, where d
ranges from 100 to 1000 and N often exceeds 100 million. Prediction typically consists of finding the
k nearest embeddings. For example, Amazon’s deep semantic search engine works by embedding the
product catalog and the search query into the same high-dimensional space. The engine recommends
the products whose embeddings are nearest to the embedded search query Nigam et al. (2019).

Since the search occurs for every query, the latency and recall of the system depend on the abil-
ity to perform fast search in the high-recall regime. Similar problems exist in natural language
processing Kusner et al. (2015), information retrieval Huang et al. (2013), computer vision Frome
et al. (2013) and other application domains. Beyond machine learning, near neighbor indices are
used to match audio recordings, detect plagiarism, classify ECG signals in healthcare, and perform
copyright attribution with blockchain Jafari et al. (2021). The problem is a central bottleneck for
many applications.

Latency Challenges. Solutions to the near neighbor problem are incredibly diverse, ranging from
hardware-accelerated brute force Johnson et al. (2019) to space-partitioning trees Beygelzimer et al.
(2006). Graph algorithms have emerged as a markedly effective class of methods for high-dimensional
near neighbor search. For example, four of the top five search libraries on the well-established ANN-
benchmarks leader board use a graph index Aumüller et al. (2020). Because these libraries have
been integrated with many large-scale production systems Johnson et al. (2017); Malkov & Yashunin
(2018), they have been hand-optimized in C++ at a large engineering cost. Practical techniques for
fast graph search represent a highly active research area with clear impact.

Profiling the Query Time of HNSW. Figure 1 shows the relative time spent performing different
operations in the hierarchical navigable small-world graph (HNSW) algorithm, which we obtained
using the perf tool De Melo (2010) on the leading nmslib implementation. Approximately 40% of
the time is spent on instructions corresponding to the first dimension of the distance computation,
which is dominated by the cost of fetching the vectors from main memory. Thus, a good strategy to
reduce the query latency is to target its major bottleneck, which appears to be memory fetching.

1.1 Our Contribution

In this paper, we propose graph reordering to improve approximate near neighbor search. Graph
reordering is a cache optimization that places neighboring nodes in consecutive (or near-consecutive)
memory locations. The new memory layout can speed up traversal-based graph algorithms that are
constrained by RAM access. The mechanism commonly understood to drive performance – that of
packing multiple nodes into a cache line – does not apply to near neighbor graphs, where a single
node spans many cache lines. However, we demonstrate that hardware prefetching mechanisms make
reordering a viable optimization even in this large-node setting. Our work reveals that near neighbor
search can be significantly accelerated through graph reordering, a hiterto unexplored optimization
for this important task.

New Reordering Results. Graph reordering has not been theoretically analyzed under any formal
computational model. Beginning from first principles, we analyze the cost of breadth-first search
under the idealized cache model for several layouts and we develop an objective to find an optimal-
cost layout. We also introduce profile-guided reordering, an optimization that uses the empirical
frequency of edge traversal to inform the co-location of nodes. By including observations of query
traffic patterns through the graph, we obtain a speedup over query-agnostic algorithms. We show that
the problem reduces to weighted graph reordering, which we solve with a greedy algorithm.

Extensive Experimental Benchmark. We present a rigorous evaluation where we integrate graph
reordering into HNSW. We perform an exhaustive comparison on large embedding datasets where
we benchmark the query time and cache miss rate. Our experiments show that graph reordering
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is a viable and effective way to improve practical machine learning deployments that involve near
neighbor search. We make the following new observations:

1. Latency Improvement: Graph reordering improves the mean and 99th percentile latency by up to
40% and 20%, respectively.

2. Small Marginal Cost: The reordering time is an order of magnitude smaller than the time needed
to construct the search index.

3. Query-Enhanced Ordering: Our profile-guided method provides an additional speedup over
existing query-agnostic algorithms.

4. Theoretical Analysis: We rigorously analyze popular heuristics in the ideal cache model, showing
that objective-based methods provably attain speedups (while lightweight methods do not).

2 Background and Related Work

CPU Cache Hierarchy. Modern computers organize memory access into a series of intermediate
storage locations known as caches. When the CPU core is instructed to load data from RAM, it first
checks to see whether the data resides in the nearest (L1) cache. If there is a cache miss (i.e. the data
is not found), the processor performs a secondary search in the L2 and L3 caches, resorting to main
memory if the data is not present in any cache. Caches are organized into sets of cache lines, or small
(32 or 64 byte) blocks of memory that are always moved together. Upon a cache miss, the CPU evicts
the least recently-used line to make room for the requested line. The access times for L1, L2, L3 and
DRAM are about 1, 3, 10, and 100 nanoseconds, respectively Levinthal (2009). To ensure that data
resides in the nearest possible cache, one may repeatedly access the same data (temporal locality) or
ensure that sequentially-accessed data have nearby memory addresses (spatial locality).

Hardware and Software Prefetching. Cache lines are smaller than the size of many data objects.
To increase cache hits, modern CPUs use a prefetcher to predict future lookups and preemptively
place the corresponding lines in the L1 or L2 cache. Hardware prefetching is done by the processor
using heuristics and simple learning algorithms. Software prefetching happens when the programmer
manually inserts special prefetch instructions into the code. The two mechanisms interact in complex
ways, with both synergistic and antagonistic effects, but improving the spatial locality of memory
access is a sound principle to improve performance Lee et al. (2012).

Near Neighbor Graphs. Graph-based algorithms such as HNSW, pruned approximate near neighbor
graphs (PANNG) Iwasaki (2016), and optimized near neighbor graphs (ONNG) Iwasaki & Miyazaki
(2018) feature prominently in leader boards and production systems at web-scale companies. Apart
from recent theoretical progress Prokhorenkova & Shekhovtsov (2020), the primary focus of graph
index research has been to develop heuristics (such as diversification, pruning, and hierarchical
structures) that improve the properties of the graph, increase search accuracy, and reduce search time.
We argue that most search algorithms have essentially the same computational workload because
these heuristics produce highly similar graph structures.

Graph Structure and Graph Search. The core algorithmic components of graph search remain the
same across most popular graph indices. We begin with a graph constructed by connecting each point
in the dataset to a set of nearby points. These edges undergo diversification and pruning, where edges
are added/deleted based on method-dependent heurstics. To perform the search, we select an initial
node and walk along the edges of the graph until a neighbor is found, recording the distance between
the node and query at each step. Our crucial observation is that major search indices do not differ in
terms of node access pattern or graph properties relevant to reordering. We provide a more complete
description in the supplementary materials.

Cache Locality of Graphs. Due to their industrial importance, search index implementations have
been optimized aggressively in terms of memory access and computation. For example, the HNSW
software manual Naidan et al. (2015) describes a “flattened index” to improve the memory access
pattern and reduce memory fragmentation Boytsov & Naidan (2013). The flat layout stores nodes and
data together in a contiguous pre-allocated block of memory. By avoiding pointers, the efficient layout
avoids unnecessary implicit addressing and improves the ability of software and hardware prefetching
to improve the algorithm Malkov & Yashunin (2018). The method provides sound improvements, but
it leaves some performance on the table because it is agnostic to the graph structure. Graph reordering
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is an orthogonal improvement that uses information about the graph to further improve the layout by
re-ordering nodes within the contiguous block of memory.

Ordering with Space-Filling Curves. Another similar idea involves the use of space-filling curves
for search problems Chan (2002). A space-filling curve is the shortest line that passes through each
point in the dataset. One may use a cache efficient linear scan through the ordered data for fast
search and graph construction in low-dimensional (d ≤ 3) spaces Connor & Kumar (2010). However,
the method suffers from the curse of dimensionality and does not work well for machine learning
problems. To the best of our knowledge, our paper is the only investigation of graph reordering for
fast near neighbor queries.

3 Graph Reordering

Formally, graph reordering can be seen as constructing a labeling function P : V → {1, . . . , N} that
assigns each node v ∈ V in a graph to a unique integer index (or label) between 1 and N following a
pre-specified rule or in order to maximize some objective. Many formulations are possible, but we
typically expect P to map connected nodes to similar (nearby) labels. The function P is then used as
the memory layout for the graph, with node v assigned to memory location P (v).

Figure 2: In our experiments, the reorder-
ing algorithms required less time to run than
graph construction.

Existing Techniques for Graph Reordering. We
assess the ability of several recent methods to ac-
celerate near neighbor search. We consider the re-
verse Cuthill-McKee order (RCM) Cuthill & McKee
(1969); George (1971), gorder Wei et al. (2016), de-
gree sorting, hub sorting Zhang et al. (2017), hub
clustering Balaji & Lucia (2018), and degree-based
grouping Faldu et al. (2019). Gorder and RCM are
objective-driven methods that seek to a minimizer P
of a cost function, while the others are degree-based
heuristics.

Gorder. We discuss all layout methods in the sup-
plementary materials, but Gorder (graph-order) is the
current state of the art to accelerate analyses such as
PageRank and graph diameter Wei et al. (2016). The
Gorder layout PGO optimizes the average neighbor-
hood overlap between the connections of nearby nodes by maximizing the number of shared edges
among size-w blocks of consecutive nodes. Since nodes are penalized for having neighbors further
than w locations away, this objective is a reasonable proxy for cache efficiency.

PGO = argmax
P

∑
u,v ∈V s.t.

|P (u)−P (v)|<w

Ss(u, v) + Sn(u, v) (1)

We use the notation Ss(u, v) to count the number of directed connections between u and v, Sn(u, v)
to count the number of shared in-neighbors between u and v, and FGO(P ) for the objective score.
Two consecutive nodes improve FGO(P ) if they share a direct edge or have many common neighbors.
Maximizing the objective is NP-hard, but a greedy algorithm provides a 1/(2w)-approximate solution.

4 Theory

Here, we formalize the connection between graph layout and cache performance. We defer all proofs
to the supplementary materials.

Idealized Cache Model. Our main theoretical contribution is to analyze the cache complexity of
graph search under the idealized cache model Frigo et al. (1999) for various graph layouts. The
idealized cache model is a theoretical model of computation that counts the number of cache misses.
The model assumes a cache with B “objects” per line and T cache lines, which are evicted in the
order that minimizes the overall number of cache misses.
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Figure 3: Graph reordering scales to large datasets and complex near neighbor graphs. In our
experiments, the reordering algorithms required less time to run than graph construction. Reordering
is feasible even for large graphs with many nodes (SIFT with k = 16, middle) and for densely
connected graphs (k ≤ 120) on large datasets (GIST1M, right).

Even though the size of a graph node exceeds the size of a real cache line, we suppose that each line
contains B nodes. This is reasonable because next-line prefetchers often implement this behavior and
because auxiliary data structures, such as visited lists, represent nodes using only a few bytes. We
also assume that the cache is empty at the start of the program, and we analyze the cost to perform
one step of breadth-first search under the common “tall cache” assumption (i.e. T > B2).

It is important to note that our analysis is pessimistic in the sense that the cache might include
neighbors from previously-accessed nodes, which could reduce the cost to explore a neighborhood.
While real-world performance does benefit from this situation, our one-step clean-cache analysis
provides a lower bound on the performance.

Given a graph G = (V,E), we consider the number of cache misses, or the cost Ci, of accessing a
node vi and its neighbors. We also consider the cache efficiency CEi, or the number of cache hits
involved when accessing a node and then each of its out-neighbors in sequence.

Ci = 1 +
∑

vj∈E(vi)

j=1...deg(vi)

1{vj 6∈l(vi)}
∏
k<j

1{vj 6∈l(vk)} CEi =
∑

vj∈E(vi)

j=1...deg(vi)

1{vj∈l(vi)
⋃

k<j l(vk)}

Here, l(v) is the cache line containing v and E(v) is the set of outbound edges of v. The 1 represents
the initial cost to load vi, and the sum represents the cost to load the lines containing neighbors of vi.

Goal of Reordering. We seek to minimize the average cost of depth-first search over the graph, or
equivalently maximize the average efficiency CEDFS = 1

N

∑
vi∈V CEi. That is, we wish to find

P ? = argmax
P

CEDFS(P ).

Cache Complexity Objective. The cache efficiency score is cumbersome to work with directly.
We use the following inequalities to transform CEDFS(P ) into a form that is more amenable to
optimization and analysis.
Theorem 1. Given a graph G = (V,E), let

UB =

N∑
i=1

( i−1∑
j=bi/Bc+1

Ss(vi, vj) + Sn(vi, vj)−max


di/Be∑

j=bi/Bc+1

1{(vi,vj)∈E} − 1, 0


)

Then the cache efficiency score CEDFS(P ) obeys the following inequalities.

UB−
N∑
i=1

Triplets(vi) ≤ CEDFS(P ) ≤ UB

where Ss(vi, vj) and Sn(vi, vj) are as defined in Equation 1 and Triplets(vi) is the number of triplet
combinations of vi’s out-neighbors that fall into the same cache line.
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Note that when B ≤ 2, the upper bound and lower bound are equal (since we cannot form triplets
from B = 2 items). It is easy to show that this problem is an NP-hard instance of the maximum
weight perfect hypergraph matching problem.

Lemma 1. Given a graph G = (V,E), the problem of finding the layout with an optimal DFS cache
cost is an NP-hard instance of maximum weight perfect hypergraph matching.

Analysis of Gorder. One interesting and new observation is that the Gorder objective (Equation 1) is
similar to our upper bound on cache complexity. By bounding the size of the “extra” terms in the
upper and lower bounds, we can analyze the cost of the layout found by Gorder.2

Theorem 2. Let G = (V,E) be a graph with a maximum out-degree M , P be a layout with objective
score FGO(P ), and P ′ be the layout obtained by running Gorder plus a simple cache boundary
alignment procedure on P . P ′ satisfies the following inequalities:

CEDFS(P
′) ≥ 1

B
FGO(P )−N(B − 1)−NbM/Bc

(
B

3

)
CEDFS(P

′) ≤ FGO(P )

We use the convention
(
a
b

)
= 0 when a < b.

Using these inequalities, we can derive conditions under which Gorder is guaranteed to improve the
cache efficiency.

Theorem 3. Given two node orderings P1 and P2 on a graph with maximum out-degree M ,
CEDFS(P2) ≥ CEDFS(P1) if FGO(P2) ≥ BFGO(P1) +B(B − 1)N +NM

(
B
3

)
.

Theorem 3 guarantees a cache efficiency improvement if we increase the Gorder objective (and run a
simple alignment process). However, the objective must improve substantially for the theory to apply:
the final score should be ≥ B times the initial score, not to mention the combinatorial B term and
linear N term. To address this concern, we computed the initial and final scores after running Gorder
with B = 2 (Table 2). We found that the improvement is large enough to guarantee cache benefits on
practical tasks.

Implications for Other Methods. Lightweight algorithms cannot provably decrease the cache
complexity without a power-law assumption about the graph. For a simple counterexample, consider
a nearly-regular graph where all nodes have the same degree, except one. Degree-based sorting can
easily move this node away from its neighbors, increasing the cost. A similar argument holds for the
RCM order, since it considers only the maximum label discrepancy.

4.1 Improving the Ordering Process

Theorem 2 requires a combinatorial term to bound the deviation of CEDFS(P ) from its upper bound.
To investigate the gap between this bound and existing methods, we examine a “Corder” objective
(for cache order) which directly maximizes the lower bound. We also introduce a method based on
empirical profiling of the node access pattern, which we call “Porder” (for profile order).

Cache Order. The Corder layout is obtained as follows:

PCO = argmax
P

FGO(P )−
∑

u,v,m∈V s.t.
|P (a)−P (b)|<w
∀(a,b)∈{u,v,m}

St(u, v,m) (2)

St(u, v,m) is the number of shared parents among the triplet (u, v,m). Thanks to this additional
term, we optimize for the lower bound of Theorem 1 rather than the upper bound. We use a greedy
selection algorithm to solve the optimization problem.

Profile Order. Intuition suggests that some parts of the search index graph are visited more frequently
than others. Our Porder algorithm prioritizes important neighborhoods by considering a weighted
graph order problem. We provide pseudocode in the supplementary materials and an application-
agnostic implementation in the code.

2Plus a cache alignment procedure described in the supplementary materials.

6



Table 1: Perf stat results for cache misses
and TLB misses on SIFT100M. Other
datasets show similar results.

Original RCM Gorder

L1 (%) 19.53 17.37 14.46
L2 (%) 13.9 7.61 9.6
L3 (%) 6.5 5.1 4.0
TLB (%) 3.85 2.56 2.14

Table 2: Initial (Fi) and final (Ff )
Gorder scores with B = 2. M is the
maximum out-degree.

Dataset M N Fi Ff

SIFT1M 8 1M 6.6k 2.6M
F-MNIST 4 60k 64 102k
NYTimes 8 290k 417 736k

Table 3: Cache miss rates for node traversals and distance computations on SIFT100M (lower
is better). It should be noted that due to the 100x latency difference between cache and RAM,
small improvements to the cache miss rate can substantially speed up an algorithm. The ranking of
algorithms by cache miss rate agrees with the ranking by speedup in Figure 4.

Original Gorder RCM DegSort (in) DegSort (out) HubSort HubCluster DBG

L1 (%) 22.76 19.28 20.61 22.76 22.76 22.85 22.77 22.81
L3 (%) 13.56 8.32 8.91 13.55 13.56 13.63 13.51 13.34

Each edge is weighted proportional to its importance for near neighbor queries. In practice, we
estimate the edge weights by issuing a small number of search queries and counting the number of
times the edge is traversed in the query process. This idea may be incorporated into many existing
ordering techniques, but we consider a weighted version of Equation 1.

PPO = argmax
P

∑
u,v ∈V s.t.

|P (u)−P (v)|<w

Sws(u, v) + Swn(u, v), (3)

Here, Sws(u, v) computes the sum of weighted out-edges between u and v and Swn(u, v) computes
the sum of weighted in-edges from neighbors shared by u and v.

5 Experiments

Experiment Setup. Our experiments measure index performance using wall-clock query time with
different memory layouts.

Query Latency. We benchmark the system after a “warm start,” where assets such as the index,
query, and data are pre-loaded into RAM. To avoid the difficulties associated with timing very short
events, we record the total time needed to perform 10k queries and report the average query time.
Finally, we restrict the query program to a single core and ensure that the benchmark is the only
program running on the server. We run all of our experiments on a server with 252 GB of RAM, 28
Intel Xeon E5-2697 CPUs, and a shared 36 MB L3 cache.

Cache Misses. We measure cache miss rates using the Linux perf tool to record hardware CPU
counters for events such as data reads and cache hits. We use these counters to compute the cache
miss rate by dividing the number of data cache misses by the number of data references. We run
our most successful reordering methods (Gorder and RCM) on SIFT100M and report results for
the L1, L2, L3 and TLB caches. To validate these measurements, we also run the program through
the cachegrind virtual processor. Using cachegrind, we annotate the source code of our program to
verify that the cache miss reduction is from lines of code that execute node traversals and distance
computations.

Implementation. We extended the nmslib implementation of HNSW to support graph reordering,
with minor changes to speed up graph construction. We use the flat layout described by Naidan
et al. (2015) to avoid memory fragmentation. To ensure that we benchmark a realistic workload,
we verified that our implementation uses the same memory layout, requires the same number of
distance computations and produces the same graph as nmslib-HNSW. We implement eight reordering
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Figure 4: Effect of graph reordering on the query time vs. recall tradeoff. Reordering algorithms
above the black line have faster query time than the original ordering. Algorithms below the line
cause a slowdown. The speedup changes with the recall because the memory access pattern of beam
search changes with the buffer size.

methods, including our techniques from Section 4. We do not use graph partitioning because such
methods generate orders that are too coarse to accelerate cache access Lecuyer & Tabourier (2021).
Additional details about baseline selection and memory layout are available in the supplementary
materials and code documentation.

Datasets. We use large datasets that are representative of embedding search tasks. We perform
experiments on datasets from ANN-benchmarks as well as on 10M and 100M sized subsets of the
SIFT1B and DEEP1B benchmark tasks. Table 4 contains information about our datasets. In all of
our experiments, we request the top 100 neighbors of a query and we report the recall of the top 100
ground truth neighbors.

Hyperparameters. For construction, HNSW requires two parameters: the maximum number of
edges for each node (kc) and the size of the beam search buffer (Mc) used to find the kc neighbors
during graph construction. We set Mc = 100 and construct indices for kc ∈ {4, 8, 16, 32, 64, 96}.
From these options, we select the index with the best recall-latency trade-off (for recall > 0.95) and
use that index for our graph reordering experiments. While it is true that the best hyperparameters
change based on the recall, there is typically a clear winner for the high-recall regime. To query the
index, HNSW requires the beam search buffer size (Mq), which controls the trade-off between recall
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Table 4: Each dataset has N entries and
d features (“vector size” bytes / row).

Dataset N d vector size

GIST 1 M 960 3.8 kB
SIFT 10 - 100 M 128 128 B
DEEP 10 - 100 M 96 384 B
MNIST 60 k 784 3.1 kB

Table 5: Query time (TQ) and speedup
on SIFT10M and Yandex 1B T2I.

Algorithm TQ (Speedup %)
SIFT10M Yandex 10M

None 22.8 (0%) 16.3 (0%)
Gorder 17.9(27%) 12.8 (22%)
Porder 16.8(36%) 12.4 (24%)

and query latency. We reorder the graph and issue the same set of 10K queries for each ordering.
When we query the index, we vary the beam search buffer size Mq from 100 to 5000. We use window
size w = 5 for Gorder and use the standard hyperparameter settings suggested by the literature for
the other methods. For our Porder method, we create the weighted graph by profiling on the first 1K
queries from the test set and reporting results over 10K test queries.

6 Results

Figure 5: 99th percentile of latency (P99).
RCM (-17%) and Gorder (-30%) outperform
the original order.

Query Time. Figure 4 shows the effect of graph re-
ordering on the query time vs. recall tradeoff. We
report the R100@100 recall, or the recall of the top
100 ground truth neighbors among the top 100 re-
turned search results. For a given recall value, we
calculate the speedup as the ratio of average latency
without/with reordering, where the averages are over
10K queries and 5 runs. Finally, we measured the
99th percentile of latency (P99) for the SIFT100M
dataset in Figure 5, to ensure that our altered graph
layout does not increase the tail latency. Gorder and
RCM improve the P99 latency by at least 20% in the
high-recall regime.

New Layout Methods. We conducted a separate
study to determine whether profile-guided reordering
(Porder) can further refine the layout obtained using
existing techniques. We construct a weighted graph
by issuing 1000 queries and counting the number of
times Te that edge e is traversed by the search algorithm. The edges are weighted as 1 + Te and
used in Equation 3. We found that Porder improved over Gorder by up to 5-10% (Table 5). We also
implemented Corder as an ablation study to determine whether there is a practical performance gap
between the upper bound (Gorder objective) and lower bound (Corder objective) of Theorem 1. On
SIFT10M, we found that Corder was 4% worse than Gorder, leading us to conclude that Gorder
obtains a layout with near-optimal cache efficiency (i.e. the combinatorial term is small).

Reordering Cost and Cache Performance. Figure 3 presents the cost of reordering the graph.
Reordering time scales well with the number of nodes N and the maximum degree kc of each node.
Table 1 contains perf cache measurements and Table 3 contains cachegrind information for graph
search over the SIFT100M dataset. Because these two experiments have similar results, we conclude
that the mechanism by which Gorder and RCM improve latency is by reducing cache miss rate.

Prefetcher and Node Size Ablations. To isolate the effect of cache coherency from that of hardware
prefetching, we turned off the L1/L2 hardware prefetcher. Without L1/L2 prefetching (but with TLB
caching and L3 prefetch), we obtain speedups that are much smaller than when the prefetcher is
active (-10% on MNIST, -5% on DEEP10M and -5% on SIFT10M). We also consider two equivalent
versions of the SIFT1M dataset - one where vectors are represented as 32-bit floats (512 bytes /
vector) and one where vectors are represented as 8-bit integers (128 bytes / vector). We use the same
graph for each index and observe that larger vectors result in a smaller speedup (average of 11% vs
19%). These results support the idea that prefetching and vector size play a substantial role in our
latency improvement. See the supplementary material for detailed experiment results.
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7 Discussion

Objective-based reordering algorithms such as Gorder, Porder and RCM are the most effective
methods to accelerate near neighbor search, with a typical speedup of 10% on small datasets
(N < 1M) and speedups of up to 40% on large datasets and in the high-recall regime (Figure 4).
Our theoretical and experimental results suggest that graph reordering should become a standard
preprocessing step to improve the query time. In practice, reordering only affects the representation
of nodes in memory and does not change the recall, search algorithm, or other properties of the graph
index. Furthermore, reordering does not substantially inflate the index construction time and, using
the theory from Section 4, we argue that Gorder does no harm under typical application scenarios.

Cost of Reordering. Many studies focus on applications such as PageRank, where the graph is
processed a small number of times to obtain an output. Such applications favor lightweight (but less
effective) algorithms that obtain an end-to-end speedup. However, the production requirements of
near neighbor search are exactly the opposite: a single index may be queried millions of times over
its life cycle. Therefore, the reordering cost is justified, especially since it is an order of magnitude
smaller than HNSW construction for most datasets (Figure 3).

Benefits of Reordering. Reordering is an index-agnostic method to improve the performance of
graph-based near neighbor search. Because reordering depends on the node access pattern of beam
search, which is common to most algorithms, reordering is applicable to a wide range of practical
search tasks. It should be noted that most real-world deployments function under strict latency
requirements: a maximum search time of 20 ms is a common constraint Nigam et al. (2019). A 20%
improvement in search time allows the system to perform more sophisticated processing of the search
results, operate at a higher recall or serve a larger collection of embeddings.

What drives performance? A natural question is to ask what mechanisms drive the performance
improvements seen in our experiments. Since data vectors are larger than a single cache line,
prefetching is likely responsible for many of the cache improvements seen in Table 1. Reordering the
graph improves the spatial locality of nodes, allowing the hardware prefetcher to be more effective,
as well as auxiliary data structures, such as visited lists and priority queues. Although auxiliary
functions are only responsible for about 20% of the query time (Figure 1), they represent nodes using
only a few bytes and therefore do fit into a single cache line. These structures benefit from concurrent
loading as well as prefetching.

Limitations. It is possible that a highly-engineered implementation with software prefetching could
have similar performance to a naive implementation that uses reordering. However, we believe that
graph reordering is valuable even for a tuned implementation. Studies show that both hardware and
software prefetching work best on data that obeys the spatial locality principle Lee et al. (2012), and
software prefetching comes at a high engineering cost.

Synergy with Algorithms and Production Systems. Reordering is likely to exhibit synergy with
recent k-NN algorithms. For example, partition-based search may benefit from reordering because
recent algorithms for locality-sensitive hashing use k-NN graph cuts to form data partitions Dong et al.
(2020). Near neighbor graphs are also frequently combined with sample compression methods such as
product quantization or other codebooks Jegou et al. (2010). Recent experiments with preprocessing
transformations suggest that it is beneficial to perform the graph search on a subspace of reduced
dimension Prokhorenkova & Shekhovtsov (2020). This could amplify the effects of graph reordering
because a larger sub-graph can fit into the CPU cache for small vector sizes. Our experiments
support this hypothesis, as we observe larger speedups for SIFT and DEEP than MNIST and GIST,
which have a large per-sample storage cost. Finally, we expect our profile-guided technique to be
beneficial for near neighbor indices in production systems. It is common for production databases
to periodically re-format the contents of the database according to recent statistics about access
frequency and workload. Since reordering the index only requires a few minutes, we find it useful to
dynamically adjust the memory layout when the query distribution changes.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The “up to 40%” claim is backed up by results in
Figure 5 and Figure 4. The theory is presented in Section 4.

(b) Did you describe the limitations of your work? [Yes] This is described in the discussion
section.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We do not
foresee any negative consequences from this work. This is simply an implementation-
level improvement to a common algorithm.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We assume

an initial state of the cache, and we analyze depth-first search because it is difficult to
analyze beam search directly.

(b) Did you include complete proofs of all theoretical results? [Yes] The full proofs are in
the supplementary materials.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] In the supplementary materials.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No] We report the average of 10,000 queries. Since we report
the speedup as a percentage, it is difficult to compute error bars. We do, however,
show the 99th percentile of latency (shown in Figure 5), which is a stronger measure of
variation than the standard deviation used to report error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] This description is in the
experiments section.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite ANN-

benchmarks for the datasets.
(b) Did you mention the license of the assets? [Yes] ANN-benchmarks is released under

the MIT license.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include code, which is not yet released under any license.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13


	Introduction
	Our Contribution

	Background and Related Work
	Graph Reordering
	Theory
	Improving the Ordering Process

	Experiments
	Results
	Discussion

