Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes]
 (c) Did you discuss any potential negative societal impacts of your work? [Yes]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [Yes]
 (b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes]
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [No]
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes]
 (b) Did you mention the license of the assets? [Yes]
 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]
A Pseudocode of IMPROVISEDE

Algorithm 1 IMPROVISEDE

Definitions:
- b: common public belief of player P_1 and player P_2
- A_i: action space of P_i
- s_i: information state of P_i
- $b(s_1)$: belief of P_3 given P_1’s information state s_1
- π: joint blueprint policy
- $R(s_1, s_2, \pi, [a_1, a_2])$: reset current game state with s_1, s_2, rollout until termination following (the optional $[a_1, a_2]$ and then) π, and return the total reward.

Method:
initialize $q_\pi(a_1, a_2, b) = 0$ for $(a_1, a_2) \in A_1 \times A_2$
sample M private state for P_1, $s_1^{(1)}, \ldots, s_1^{(M)} \sim b$

$q_\pi(a_1) = \frac{1}{M} \sum_{m=1}^{M} \pi(a_1 \mid b(s_1^{(m)}))$ for $a_1 \in A_1$

for $s_1^{(i)} \in s_1^{(1)}, \ldots, s_1^{(M)}$ do
sample N private state for P_2, $s_2^{(1)}, \ldots, s_2^{(N)} \sim b(s_1^{(i)})$

$q_\pi(b, s_1^{(i)}) = \frac{1}{N} \sum_{j} R(s_1^{(i)}, s_2^{(j)}, \pi)$

for $(a_1, a_2) \in A_1 \times A_2$ do
if $P_\pi(a_1) \geq \epsilon_p$ then
$q_\pi(a_1, a_2, b, s_1^{(i)}) = -\infty$
else
$q_\pi(a_1, a_2, b, s_1^{(i)}) = \frac{1}{M} \sum_{m=1}^{M} R(s_1^{(i)}, s_2^{(j)}, \pi, a_1, a_2)$
end if
end for
end for
for $(a_1, a_2) \in A_1 \times A_2$ do
$q_\pi(a_1, a_2, b) = \frac{1}{M} \sum_{i} \max \left[q_\pi(a_1, a_2, b, s_1^{(i)}), q_\pi(b, s_1^{(i)}) \right]$ end for

for $a_1 \in A_1$ do
$f(b, a_1) = \text{softmax}_{a_2} \left[q_\pi(a_1, a_2, b) / \epsilon \right]$
$q_\pi(b, s_1, a_1) = \mathbb{E}_{s_2 \sim f(b, a_1)} R(s_1, s_2', \pi, a_1, a_2)$
end for

if $\max q_\pi(b, s_1, a_1) \geq q_\pi(b, s_1) + \epsilon_p$ then
return $\arg \max_{a_1} q_\pi(b, s_1, a_1)$
else
return a_1^{bp} // the action under blueprint
end if

B Experimental Details for Tiger-Trampoline

<table>
<thead>
<tr>
<th>Hyper-parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning rate</td>
<td>0.0005, 0.0001</td>
</tr>
<tr>
<td>batch size</td>
<td>16, 32</td>
</tr>
<tr>
<td>ϵ annealing period</td>
<td>200000, 10000</td>
</tr>
<tr>
<td>RNN hidden dimension</td>
<td>64, 32, 16</td>
</tr>
</tbody>
</table>

Table 2: Hyper-parameters of QMIX in the Tiger-Trampoline Experiment

In Section 5.1 we show the results of MAPPO and QMIX on the Tiger-Trampoline game. For the MAPPO we use the default parameters from the open sourced implementation used for Hanabi,\footnote{https://github.com/marlbenchmark/on-policy}
except with a hidden size of 128, reducing the episode length cap, and reducing the number of threads by a factor of 2. For QMIX, we use the open sourced implementation5 of the algorithm provided as part of the PyMARL framework13. We used the default agent and training configuration, except for the four hyper-parameters listed in table2. For those, we tried all combinations of the corresponding values, producing a total of 24 runs, each training for 500k steps, or 250k episodes.

C Experimental Details for Finesse in Hanabi

In the Hanabi experiments, we implement IMPROVISED as follows (better viewed together with the pseudocode). The belief b is the common public belief shared by player 1 and player 2 based on common knowledge available to all players and their common private knowledge of player 3’s hand. We first draw M Player 2 hands s'_1 from b and compute blueprint actions $a_\pi = \pi(b(s'_1))$ and $P_{\pi}(a)$. We then consider joint actions $A_1 \times A_2 = \{(a_1, a_2) | P_{\pi}(a_1) \leq 0\}$ for player 1 and player 2. Since our goal is to find finesse style joint deviations, we further restrict a_1 to be a hint move to player 3 and a_2 to be a play move. Given s'_1, player 1 can further induce the private belief $b(s'_1)$ over their own hand. For each of s'_1, player 1 calculates Monte Carlo estimations of $q(a_1, a_2, b, s'_1)$ for $(a_1, a_2) \in A_1 \times A_2$ and $q_{\pi}(b, s'_1)$ with N samples drawn from $b(s'_1)$. So far we have collected all the quantities required to compute the mapping f for IMPROVISED5 and for IMPROVISEDE. Finally, we draw another K samples from the true $b(s_1)$ where s_1 now is the real hand of player 2 to estimate $\delta = \max_{a_1} \mathbb{E}_{a_2 \sim f(b, a_1)} q_{\pi}(b, s_1, a_1) - q_{\pi}(b, s_1)$. Player 1 will deviate to $\arg \max_{a_1} \mathbb{E}_{a_2 \sim f(b, a_1)} q_{\pi}(b, s_1, a_1, a_2)$ if $\delta \geq 0.05$. In the next turn, player 2 can carry out the same computation process to get $P_{\pi}(a_1)$ and $f(b, a_1)$ to figure out whether player 1 has deviated and if so what is the correct response. Player 1 and player 2 do not share the random seed beforehand.

In the experiments where we run IMPROVISED on finesse-complete situations only, we set $M = 1000$, $N = 100$ and $K = 10000/|A_1|$. It takes roughly 2 hours in total for both player 1 and player 2 to compute the deviations independently using 5 CPU cores and 1 GPU.

In the experiments where we run IMPROVISED on the full game of Hanabi, we reduce M to 400 and share the result of $f(b, a_1)$ between Player 1 and Player 2 instead of computing it twice independently as we empirically find that the statistic is stable enough against random seeds. A full game then takes around 10-12 hours using 20 CPU cores and 2 GPUs.

D Societal Impact

We do not anticipate any immediate negative impact from this work.

5https://github.com/oxwhirl/pymarl