A Experimental Setup of Toy RiskWorld Task

In this section, we give the detailed experimental setup of our toy RiskWorld task. RiskWorld is a 2-dimensional,
continuous state space, continuous action space environment as shown in Figure 3. We suppose the central
point of RiskWorld is (0, 0), and the permitted range of RiskWorld gives D := [—1.5,1.5] x [—1.5,1.5],
i.e., the length of RiskWorld is 3. The state information in RiskWorld is composed of the coordinates of
the agent, i.e., s = (z,y),z,y € [—1.5, 1.5;. There is a dangerous area D locating at the central point
with radius 0.5, i.e., Dy = {gm,y)|m2 + y* < 0.5%}. The agent randomly starts at a point in D1 =
{(z,)|(xz + 1.5)> + (y + 1.5)* < 1,z < 0,y < 0}, and can take actions a € [—0.5,0.5]. There is also a
high reward zone locating at D3 = {(z, y)|(x — 1.5)> + (y — 1.5)® < 0.8%, 2 < 1.5,y < 1.5}. The reward
function 7 (s, a) is defined in (5).

-3, ifs€ Dy = {(z,y)|z* + 3 < 0.5%},
r(s,a) =< 1, if s € D3 = {(z,9)|(z — 1.5)> + (y — 1.5)> < 0.8% z < 1.5,y < 1.5},)
0, ifse D\(D2U Ds).

The agent will receive a large minus reward of —3 if it steps into the dangerous zone D2, and the done flag will
turn into true. The agent is not allowed to step out of the legal region D. The episode length for RiskWorld
is set to be 300. The RiskWorld is intrinsically a sparse reward environment. We run a random policy on
RiskWorld for 10* timesteps and log the transition data it collected during interactions to form a static dataset
RiskWorld-random.

Model-based reinforcement learning (RL) learns either forward dynamics or reverse dynamics of the environment
[62, 20], and can produce imaginary transitions for training, which has been widely demonstrated to be effective
in improving the sample efficiency of RL in the online setting [4, 23]. The forward dynamics model py;, (s, 7|s, a)
predicts the next state and the corresponding reward function given the current state and action, and the reverse
dynamics model py(s,7|s’,a) outputs the previous state and reward signal given action and the next state.
Bidirectional modeling combines both forward dynamics model and backward dynamics model.

To compare different ways of imagination, i.e., the forward imagination, reverse imagination, and bidirectional
imagination with the double check mechanism, we train a forward dynamics model, a backward dynamics model,
and a bidirectional dynamics model on RiskWorld-random dataset, respectively. We represent the forward
and reverse dynamics model by training a probabilistic neural network. The forward model py, (s, r|s, a)
parameterized by 1) receives the current state and action as input, and outputs a multivariate Gaussian distribution
that predicts the next state and reward as shown in (6).

Pu(s',rls,a) = N(py(s, a), By(s, a)), (©)
where 11, and 32, represent the mean and variance of the forward model p,; (s’, r|s, a), respectively.

Similarly, for the backward model py (s, a|s’, a) parameterized by ¢, it adopts the next state and action as input
and outputs a multivariate normal distribution predicting reward signal and the previous state (see (7)).

Po(s,als’,a) = N (no(s', a), By (s', a)), ™
where 11 and 3 denote the mean and variance of the backward model py (s, 7|s’, a), respectively.

The probabilistic neural network is modeled by a multi-layer neural network that consists of 4 feedforward
layers with 400 hidden units. We adopt swish activation for each intermediate layer. Following prior works
[23, 75, 26], we train an ensemble of seven such probability neural networks for both the forward and backward
model. We use a hold-out set made up of 1000 transitions to validate the performance of the trained dynamics,
and select the five models that have the best performance accordingly. When performing forward or reverse
imagination, we randomly pick one model out of the five best model candidates to generate synthetic trajectories
per step. Considering the simplicity of the toy RiskWorld task, we train both the forward dynamics model and
reverse dynamics model for 100 epochs, and the rollout length (horizon) is set to be 3 for the forward model,
reverse model, and bidirectional model. We use the trained dynamics model (forward, reverse, bidirectional)
to generate 10* imaginary transition samples, and log their model buffer respectively. We plot in Figure 4 the
model buffer of these dynamics models and the raw static dataset obtained by running the random policy.

B Datasets and Evaluation Setting on the D4RL Benchmarks

In this section, we give a detailed description of the datasets we used in this paper, and also describe the
evaluation setting that is adopted on the D4RL benchmarks [14]. D4RL is specially designed for evaluating
offline RL (or batch RL) algorithms, which covers the dimensions that offline RL may encounter in practical
applications, such as passively logged data, human demonstrations, etc.

15

B.1 Adroit datasets and MuJoCo datasets

The Adroit dataset involves controlling a 24-DoF simulated Shadow Hand robot to perform tasks like hammering
a nail, opening a door, twirling a pen, and picking/moving a ball, as shown in Figure 5. The Adroit domain is
super challenging for even online RL algorithms because: (1) the dataset contains narrow human demonstrations;
(2) this domain solves sparse reward, high-dimensional robotic manipulation tasks. There are four tasks in the
dataset, and there are three types of datasets for each task, cloned, human, expert. human: a small number of
demonstrations operated by a human (25 trajectories per task). expert: a large amount of expert data from a
fine-tuned RL policy. cloned: a large amount of data generated by performing imitation learning on the human
demonstrations, running the policy, and mixing the data at a 50-50 ratio with the demonstrations. Dataset mixing
is involved for cloned as the cloned policies themselves fail on the tasks, making the dataset otherwise hard to
learn from.

(a) Pen (b) Door (c) Relocate (d) Hammer

Figure 5: Adroit datasets. There are four tasks, namely pen, door, relocate, and hammer.

The MuJoCo dataset is collected during the interactions with the continuous action environments in Gym [3]
simulated by MuJoCo [66]. We adopt three tasks in this dataset, halfcheetah, hopper, walker2d as illustrated in
Figure 6. Each task in the MuJoCo dataset contains five types of datasets, random, medium, medium-replay,
medium-expert, expert. random: a large amount of data from a random policy. medium: experiences collected
from an early-stopped SAC policy for 1M steps. medium-replay: replay buffer of a policy trained up to the
performance of the medium agent. expert: a large amount of data gathered by the SAC policy that is trained to
completion. medium-expert: a large amount of data by mixing the medium data and expert data at a 50-50
ratio.

(a) HalfCheetah (c) Walker2d

Figure 6: MuJoCo datasets. We conduct experiments on halfcheetah, hopper, and walker2d tasks.

Note that the Adroit dataset is qualitatively different from the MuJoCo Gym dataset because (1) there do not exist
human demonstrations in the MuJoCo dataset; (2) the reward is dense in MuJoCo, making it less challenging to
learn from; (3) the dimension of transitions in MuJoCo is low compared with Adroit. It is hard for even online
RL algorithms to learn useful policies on the Adroit tasks, while it is easy for online RL methods to achieve
superior performance on the MuJoCo environments.

B.2 Evaluation setting in D4RL
D4RL suggests using the normalized score metric to evaluate the performance of the offline RL algorithms [14].

Denote the expected return of a random policy on the dataset as C' (reference min score), and the expected return
of an expert policy as C. (reference max score). Suppose that an offline RL algorithm achieves an expected

16

return of C' after training on the given dataset. Then the normalized score Cis given by (8).

CC —_CC"T % 100 = C' — performance of random policy %100, (8)

C= = : .
performance of expert policy — performance of random policy

The normalized score ranges roughly from 0 to 100, where 0 corresponds to the performance of a random policy
and 100 corresponds to the performance of an expert policy. We give the detailed reference min score C,. and
reference max score C. in Table 5, where all of the tasks share the same reference min score and reference max
score across different types of datasets.

Table 5: The referenced min score and max score for the Adroit dataset and MuJoCo dataset in D4RL.

Domain Task Name Reference min score C,. Reference max score C.,

Adroit pen 96.26 3076.83
Adroit door —-56.51 2880.57
Adroit relocate —6.43 4233.88
Adroit hammer —274.86 12794.13
MuJoCo halfcheetah —280.18 12135.0
MuJoCo hopper —20.27 32343

MuJoCo Walker2d 1.63 4592.3

C Implementation Details and Hyperparameters

C.1 Implementation details

In this section, we give implementation details and hyperparameters for Confidence-Aware Bidirectional
Offline Model-Based Imagination (CABI). We represent the approximated forward dynamics and reward model,
and backward dynamics and reward model by training a probabilistic neural network. The configuration of
the probabilistic neural network is identical to Appendix A. That is, the forward model and reverse model
are modeled as a multivariate Gaussian distribution with mean g and variance 3. For the forward model
Py (s, 7|s, a) parameterized by 1, it accepts the current state and action as input and generates the next state and
reward. The backward model p (s, 7|s’, a) parameterized by ¢ receives the next state and current action as input
and outputs the former state and scalar reward. The probabilistic neural network is modeled by a multi-layer
neural network that contains 4 feedforward layers, with 400 hidden units in each layer, and a swish activation in
each intermediate layer. We train an ensemble of seven such probabilistic neural networks and select the best
five models based on their performance on a hold-out set made up of 1000 transitions from the offline dataset.

As a data augmentation method, CABI does not actively generate actions during the training process, i.e., the
policy optimization process is isolated from the data generation process. We use a conditional variational
autoencoder (CVAE) to approximate the behavior policy in the static dataset. We give brief introduction to the
VAE in Appendix E. The CVAE G contains an encoder E and a decoder D. Both the encoder and the decoder
in the forward rollout policy and backward rollout policy contain two intermediate layers with 750 hidden
units each layer. We adopt relu activation for each intermediate layer. Specifically, we train a forward rollout
policy with a CVAE G54 (s), which contains an encoder F, (s, a) and a decoder D,, (s, 2), 6§ = {&1, 11},
and a reverse rollout policy G2¥9(s") = {Ee, (s, a), Dy, (s, 2)}, where w = {£2, 12 }. Note that the forward
rollout policy G5¥(s) and reverse rollout policy G2 (s’) sample actions using stochastic inference from an
underlying latent space, so as to increase diversity in the generated actions.

Intrinsically, CABI can be combined with any off-the-shelf model-free offline RL algorithms. In this work, we
incorporate CABI with BCQ [16] and TD3_BC [15], and conduct extensive experiments on the Adroit dataset
and MuJoCo dataset on the D4RL benchmarks, respectively. There are generally three steps when combining
CABI with model-free offline RL methods: (1) Model training. We first train bidirectional dynamics models
and bidirectional rollout policies using the raw static offline dataset Denv; (2) Data generation. After the
bidirectional models and rollout policies are well trained, we utilize them to generate imaginary trajectories,
while conducting double check and admitting high-confidence transitions simultaneously. This will induce
the model generated dataset Dmodel; (3) Policy optimization. We then merge the real dataset Den, With the
imagined dataset Dy,ode1 to form a composite dataset Dyotal, i.€., Diotal = Denv U Dmodel. The mini-batch
samples used for training the model-free offline RL algorithms come from Deny and Dodel- To be specific, we
define the ratio of data come from D, (real data) as 7. Suppose we use a mini-batch size of N for training the
algorithm. Then for each optimization step, we sample nN samples from Denv, and sample (1 — 1) N samples
from Dimodel. We pick the optimal real data ratio n among {0.1,0.3,0.5,0.7,0.9} using grid search.

17

Influence of k. For the double check mechanism, we keep the top 20% of samples in a mini-batch that the
forward model and backward model have the smallest disagreements. As explained in Section 4.3, we do
not set a threshold and then admit samples that the deviation of the forward model and backward model on
them are smaller than the threshold, because it requires human knowledge and the threshold is task-specific.
However, in real-world problems, we cannot always have full knowledge about the system. For better flexibility
and generality, we choose to keep top k% samples. Note that if we use k£ = 0, then the influence of data
augmentation will be excluded. If we use k = 100, then CABI will degenerate into Bidirectional Model-based
Offline Imagination (BOMI), where there is no double check procedure. Intuitively, if & is small, few samples
can be left, which may negatively affect the advantages of data augmentation with a model. While if k is large,
some poorly imagined transitions may be included in the model buffer. We simply set £ = 20 by default, and
use it throughout our experiments on the Adroit dataset and MuJoCo dataset. We conduct experiments on two
types of MuJoCo datasets, random, medium, with varied & in {0, 10, 20, 50, 100} over 5 different random seeds.
The results are shown in Table 6, where we observe performance drop for both large k£ and small k. We hence
set k = 20 for all of our experiments.

Table 6: Normalized average score of CABI+TD3_BC on two datasets, random and medium, from
MuJoCo dataset with different values of k. CABI+TD3_BC with £ = 0 degenerates into vanilla
TD3_BC, and CABI+TD3_BC with k£ = 100 turns into BOMI+TD3_BC. We bold the highest mean.

Task Name k=0 k=10 k=20 k=50 k=100
halfcheetah-random 10.2 14.8 15.1 14.0 11.4
hopper-random 11.0 10.3 11.9 10.6 9.3
walker2d-random 1.4 49 6.4 5.8 4.3
halfcheetah-medium 42.8 44.6 45.1 44.4 44.3
hopper-medium 99.5 99.7 100.4 323 3.1

walker2d-medium 79.7 78.7 82.0 79.8 78.6

Computation time and compute infrastructure. The computation time for CABI ranges from 4 to 14 hours on
the MuJoCo and Adroit tasks. The model training time differs on different types of datasets, e.g., it takes much
less time to train our bidirectional models and rollout policies on medium-replay and human datasets (about 40
minutes), while it takes comparatively longer time to train on other types of datasets (about 2-6 hours). TD3_BC
consumes about 3 hours to run on all MuJoCo datasets, and BCQ takes about 6-8 hours to train on the Adroit
tasks. We run both CABI+BCQ and CABI+TD3_BC for 1 x 10 timesteps. We additionally run IQL [28], and
the results are presented in Section G. IQL takes about 3-7 hours to run on all tasks with 1 x 10°® timesteps. We
give detailed compute infrastructure in Appendix F.

Discussion on CABI and ROMI [69]. A recent work, Reverse Offline Model-based Imagination (ROMI) [69],
explores the data augmentation in offline RL via training a reverse dynamics model. It is worth noting that we
do not directly compare with ROMI+BCQ as there are many secondary components in the codebase of ROMI
(https://github.com/wenzhe-li/romi), e.g., prioritized experience replay, modifying state information, adopting
varied rollout policies for different domains, etc. CABI represents the rollout policy using only conditional
variational autoencoder (CVAE). Also, ROMI assumes that the termination functions are known. However,
CABI does not include any prior knowledge about termination conditions, even on simple MuJoCo tasks. That
generally follows the key claims in the recent work of [15]. For a fair comparison, we disable the forward model
as well as the double check mechanism in CABI to get our reverse model. As for the comparison with forward
imagination, we disable the double check mechanism and the reverse dynamics part of CABI to get our pure
forward model.

Ensemble variance. In the main text, we compare our CABI against EV-20, which rejects transitions with
large ensemble variance. The ensemble variance is calculated in the following way where we take the forward
imagination as an example: suppose we have an ensemble of forward dynamics models f;(|s,a),i =1,..., N
with the ensemble size N. Then each model in the ensemble predicts a next state s;. We then have a collection
of next state {s;},i = 1,..., N. We then randomly pick one next state while recording the variance in the
ensemble at the same time. We reject the generated next state if the variance in the ensemble is large. That is, we
evaluate the variance of {s},7 = 1,..., N. We sort the transitions in a batch by their calculated variance, and
only trust the top 20% that have the smallest ensemble variance.

Other implementation details. On the Adroit tasks, we combine CABI with BCQ, and compare against recent
state-of-the-art methods, including vanilla BCQ [16], UWAC [73], CQL [32], MOPO [75], and COMBO [74],
etc. On the MuJoCo domain, we incorporate CABI with TD3_BC [15], and compare with baseline methods
like FisherBRC [29], UWAC, CQL, BEAR [31], MOPO, etc. Note that we omit some baseline methods, such
as AWAC [51] and BRAC [72] in the MuJoCo domain, as they do not obtain good enough performance for
comparison. We run UWAC with the official codebase (https://github.com/apple/ml-uwac), and so is MOPO
(https://github.com/tianheyu927/mopo). We run MOPO on the Adroit tasks as those results are not reported

18

https://github.com/wenzhe-li/romi
https://github.com/apple/ml-uwac
https://github.com/tianheyu927/mopo

in the original paper, and we take the results of MOPO on the MuJoCo datasets from [73] directly. We re-run
UWAC on the Adroit domain and MuJoCo domain because, unfortunately, we cannot reproduce the results
reported in its original paper. All baseline methods are run for 1 x 10° timesteps over 5 different random seeds.

C.2 Hyperparameters

In this subsection, we give the detailed hyperparameter setup for our experiments in Table 7. We keep the top
20% samples in a mini-batch for all tasks. For simplicity, we use identical rollout length for the forward model
and backward model. For all of the MuJoCo tasks and most of the Adroit tasks, the rollout length for both the
forward model and backward model is set to be 3, which yields a total horizon of 6. On datasets that the model
disagreement are comparatively large for long horizons (e.g., pen-expert, see Table 9), we set the forward and
backward horizon as 1, which leads to a total horizon of 2. We use the forward and backward horizon 5 for
hammer-human as we experimentally find that it performs better. On other tasks, the forward and backward
horizon is set to be 3 by default. Note that the model disagreement on MuJoCo datasets are smaller than 0.1 for
all horizons, and the trained forward and backward model well fits MuJoCo datasets. We therefore adopt the
forward and backward horizon of 3 for all of these tasks.

Table 7: Hyperparameters setup in our experiments with CABI on the Adroit dataset and MuJoCo
dataset. ForH = Forward Horizon, BackH = Backward Horizon.

Domain Dataset Type Task Name ForH BackH Real Data Ratio n
Adroit human pen 1 1 0.7 (BCQ), 0.5 (IQL)
Adroit human door 3 3 0.7 (BCQ), 0.5 IQL)
Adroit human relocate 3 3 0.9 (BCQ), 0.5 IQL)
Adroit human hammer 5 5 0.5 (BCQ), 0.7 (IQL)
Adroit cloned pen 1 1 0.5 (BCQ), 0.5 (IQL)
Adroit cloned door 3 3 0.5 (BCQ), 0.7 IQL)
Adroit cloned relocate 3 3 0.3 (BCQ), 0.5 IQL)
Adroit cloned hammer 3 3 0.5 (BCQ), 0.7 IQL)
Adroit expert pen 1 1 0.7 (BCQ), 0.9 (IQL)
Adroit expert door 3 3 0.7 (BCQ), 0.9 (IQL)
Adroit expert relocate 3 3 0.9 (BCQ), 0.7 (IQL)
Adroit expert hammer 1 1 0.9 (BCQ), 0.5 IQL)
MuJoCo random halfcheetah 3 3 0.7 (TD3_BC), 0.7 (IQL)
MuJoCo random hopper 3 3 0.1 (TD3_BC), 0.7 (IQL)
MuJoCo random walker2d 3 3 0.1 (TD3_BC), 0.7 (IQL)
MuJoCo medium halfcheetah 3 3 0.7 (TD3_BC), 0.7 (IQL)
MuJoCo medium hopper 3 3 0.9 (TD3_BC), 0.7 (IQL)
MuJoCo medium walker2d 3 3 0.7 (TD3_BC), 0.9 (IQL)
MuJoCo medium-replay halfcheetah 3 3 0.5 (TD3_BC), 0.7 (IQL)
MuJoCo medium-replay hopper 3 3 0.7 (TD3_BC), 0.7 AQL)
MuJoCo medium-replay walker2d 3 3 0.5 (TD3_BC), 0.9 (IQL)
MuJoCo medium-expert halfcheetah 3 3 0.7 (TD3_BC), 0.9 (IQL)
MuJoCo medium-expert hopper 3 3 0.9 (TD3_BC), 0.9 (IQL)
MuJoCo medium-expert walker2d 3 3 0.7 (TD3_BC), 0.9 (IQL)
MuJoCo expert halfcheetah 3 3 0.7 (TD3_BC), 0.9 (IQL)
MuJoCo expert hopper 3 3 0.9 (TD3_BC), 0.9 (IQL)
MuJoCo expert walker2d 3 3 0.7 (TD3_BC), 0.9 IQL)

We search for the best n over {0.1,0.3,0.5,0.7,0.9}. We find that the real data ratio n = 0.7 and n = 0.9
are generally effective for CABI. The best ratio 7 strongly depends on the dataset and may need to be tuned
manually. For example, random dataset in the MuJoCo domain and cloned dataset in the Adroit domain are
poor for training naturally, and small 7 is therefore needed. While for expert dataset or medium dataset, a
comparatively large 7 is better.

D Model Prediction Error and Model Disagreement

In this section, we are interested in exploring (1) can CABI generate more trustworthy transitions in complex
environments (2) the model disagreement of the forward and backward models in CABI under different horizons,

19

Table 8: Comparison of one-step model prediction error of the forward model, reverse model, and
bidirectional model with the double check mechanism on the Adroit tasks.

Unidirectional Bidirectional (CABI)

Task Name

€fwd €bwd E€fwd €bwd
pen-cloned 837.5 7774 751.5 603.0
pen-human 195.0 177.8 107.5 97.8
pen-expert 169.01 179.8 143.58 149.8
door-cloned 24.7 27.7 0.05 0.01
door-human 18.2 20.2 4.4 6.0
door-expert 4.3 10.5 1.8 6.3
relocate-cloned 351.9 12714 0.0 0.9

relocate-human 229.5 267.4 178.6 205.1
relocate-expert ~ 201.5 48.3 167.5 37.9
hammer-cloned 1330.8 1984.3 723 1602.2
hammer-human 577.9 596.4 480.9 477.8
hammer-expert ~ 601.1 561.4 557.2 503.4

aiming at checking whether the model disagrees with each other more with the increment of the horizon. To begin
with, we define the one-step model prediction error to check whether CABI admits more accurate transitions.

Definition D.1 (Model Prediction Error). Given the static offline dataset Denv, we define one-step model
prediction error for forward model €fwq and reverse model €nwq as:

€fwd = E(sﬁa,'r,s')NDenv [HS/ - é”% + (T - 72)2] ’
8,7~py (s,a)
€bwd = E(s,a,r',s’)N’Denv [HS - §||§ + (T - 7:)2] :

§,7~pg(-|s’,a)

€rwa and epwa generally capture the accuracy of the trained dynamics models, i.e., smaller €yq and epwa indicate
better forward and backward dynamics model fitting. Intuitively, the one-step model prediction error of admitted
samples in CABI should be smaller than that of the mere forward dynamics model or reverse dynamics model,
as only transitions that the forward model and backward model are all confident about are admitted. We verify
this by comparing the one-step model error in the forward model, backward model, and CABI, where we keep
the top 20% imagined samples for CABI. The results are presented in Table 8, where we observe CABI leads to
significant error drop for both forward and reverse models on all of the tasks. For example, the forward error in
door-cloned drops from 24.7 to 0.05 and the backward error drops from 27.7 to 0.01, which reveals that CABI
can select reliable and conservative imaginations that well fit the dataset for training.

We then define the model disagreement of forward model and backward model in the following.

Definition D.2 (Bidirectional Model Disagreement). For a sampled current state s and reward r from a given
static offline dataset D, a series of forward states §; and reward signals 7; can be generated by utilizing the
forward model, ¢ = 1, ..., H. Denote the imagined backward state and reward based on §; as 5,1 and 71,
respectively, ¢ = 1, ..., H. Then the forward model disagreement is defined as:

m_{Ewos@+%m% i1,

i - N - . e 9
¢ E [H81‘71 — 52;1”% + (7‘1’71 — T¢71)2] R if 1 > 2. ®

Similarly, for a sampled next state s’ and reward r from the offline dataset, an imaginary trajectory Towd

containing the backward states §_; and rewards 7_;, ¢ = 1,..., H, can be generated with the aid of the
backward dynamics model. For each imagined state S_; in Thwa, its previous state $_;+1 and reward 7_; 41 are
generated by the forward model, ¢ = 1, ..., H. Then the backward model disagreement is defined as:

;m:{mwos%+worﬂ,iu—L (10

' E[lI5-it1 —8-ipl3 + (Foipr — Fosn)?], ifi>2.

Remark: The above definition generally capture the disagreement between the forward model and the backward
model. Note that the model disagreement is different from the model prediction error defined above even if
the rollout length is set as 1. The model prediction error measure how well the forward or backward model
fits the transition data, while the model disagreement measures how the forward model and backward model
disagree on the transition. We take the forward setting as an example. The forward model prediction error is the
deviation between the forward imagined state and reward against the real next state and reward signal, while the
forward model disagreement is the deviation between the real current state and scalar reward with the backward
imagined current state and reward based on the forward imagination.

20

Table 9 details model disagreement comparison of CABI against CABI without double check mechanism, which
turns into BOMLI, i.e., bidirectional modeling without double check, under different horizons. We perform
experiments on 12 Adroit tasks and the sampled mini-batch size is set to be 5 x 10*. As demonstrated in the

table, the model disagreement of CABI is significantly smaller than that of BOMI under different rollout steps.
It is worth noting that the model disagreement for both CABI and BOMI is irrelevant to the rollout length.

The model disagreement generally is small when performing one-step model rollout, and increases if longer
horizon imaginations are generated (some datasets like door-human are exceptions). We observe that the model
disagreement in CABI is much more controllable than BOMI, e.g., on some expert datasets.

Table 9: The model disagreement comparison of CABI and BOMI under different rollout length. The
superscript fwd denotes forward, and bwd denotes backward. The subscript denotes the imagined
horizon, e.g., €}¥9 represents the forward model disagreement under horizon 1. The best results are

in bold (smaller is better).

fwd fwd fwd bwd bwd bwd
Task Name “l 2 s “l 2 s
CABI BOMI CABI BOMI CABI BOMI CABI BOMI CABI BOMI CABI BOMI
pen-human 0.23 1829.21 20.63 1608.66 21.24 1608.94 0.23 1857.14 19.93 1693.70 19.25 1686.21
door-human 053 36.03 021 28.06 021 29.04 053 36.19 040 29.38 0.38 30.07
relocate-human 0.00 26837 532 237.03 545 236.64 0.00 26534 4.68 19356 472 195.08
hammer-human 0.67 401.58 5.56 26143 5.53 259.86 0.69 402.67 5.63 26093 543 258.86

pen-cloned 159.58 12048.06 373.10 22506.36 359.56 22440.26 136.89 11624.98 359.91 22350.11 331.18 21939.83

door-cloned 0.00 4635 0.00 6375 0.00 62.89 0.00 30.68 0.00 61.03 0.00 6296

relocate-cloned 0.00 745.77 0.00 93851 0.00 92995 0.00 269.66 0.00 909.64 0.00 889.79
hammer-cloned 0.0 3791.10 0.01 4509.45 0.01 439546 0.0 1021.85 0.02 444390 0.03 4447.14
pen-expert 0.42 196576 21.92 9642.54 26.05 9691.13 0.41 1953.54 56.12 9569.12 52.69 9399.45
door-expert 095 25749 094 26184 1.04 26352 1.01 25851 0.79 27660 0.69 276.12
relocate-expert 0.05 64959 147 77099 218 78479 0.06 652.63 0.06 631.83 0.05 631.74

hammer-expert 1.03 6135.13 58.07 82422.41 60.78 82633.47 1.02 6198.06 11.24 92882.87 10.70 92102.51

The double check mechanism we introduced in the main text selects trustworthy synthetic samples based on
the deviation between states, i.e., transition samples with small state deviation will be kept in the model buffer.
While we can also trust the transition samples via the model disagreement, i.e., keep transition samples with
small model disagreement. We experimentally find that evaluating the deviation between states brings almost the
same performance as evaluating the model disagreement under the identical hyperparameter setup. We choose to
select transitions according to the deviation between states alone as shown in Algorithm 2 for both space and
time saving during data generation process of CABIL.

E Omitted Background for VAE

In this section, we provide a brief introduction to the variational autoencoder (VAE) [27]. Given a dataset

NN
X = {x(”} , the VAE is trained to generate samples that come from the same distribution as the data
i=1

points. That is to say, the goal of a VAE is to maximize pg(X) = Hil Do (x(i)) , where 0 is the parameter of

the approximate maximum-likelihood (ML) or maximum a posterior (MAP) estimation. To reach this goal, a
latent variable z sampled from its posterior distribution p(z) is introduced, and we model a decoder py (X |z)
parameterized by 6. However, directly optimizing the marginal likelihood ps(X) = [p(2z)pe(X|z)dz is
intractable. Instead, VAE approximates the true posterior pg(z|X) via training an encoder g, (z|X), and we
resort to optimizing the evidence lower bound (ELBO) on the log-likelihood of the data as shown in (11).

max log py (X) > max By, (z) x) [log po (X|2)] — Dir. (¢4 (2| X)Ipo(2))- (1D)

The first term in the right-hand-side of (11) denotes the reconstruction loss, where z is sampled from g4 (2| X).
The second term represents the KL-divergence between the learned encoder of z and its true prior. The encoder
g¢ (2| X) is usually set to be a multivariate Gaussian distribution with mean p4 and variance 3 4. The prior of
the latent variable z is set to be a standard multivariate Gaussian distribution. Optimizing the lower bound in
(11) enables the trained model to generate samples similar to the data distribution. After the VAE is well trained,
we sample z from the encoder g, (2| X) and pass it through the decoder pg (X |z) to obtain samples.

In this work, we use the conditional variational autoencoder (CVAE) [16] to model the behavior policy in the
dataset. CVAE is a variant of the vanilla VAE, which aims to model pg(X|Y"). Similar to the original ELBO of
VAE, CVAE optimizes the conditional lower bound as shown in (12).

maxlog po (X[Y) 2 maxEy, - x v log po(X]2 V)] = Dicu(asIX, VoY) (12)

21

F Compute Infrastructure
In Table 10, we list the compute infrastructure that we use to run all of the baseline algorithms and experiments.

Table 10: Compute infrastructure.

CPU \ GPU | Memory
AMD EPYC 7452 ‘ RTX3090x8 ‘ 288GB

G Experimental Results of CABI+IQL

In this section, we additionally incorporate CABI with a recently proposed offline RL method, IQL [28]. IQL
learns without querying OOD samples. Such a learning paradigm ensures that the whole learning process is
conducted under the support of the dataset, and a safe policy can be learned. However, as we explained in
the main text, the datasets often cannot contain all possible transitions. Hence, the generalization capability
of IQL is actually limited. With the aid of CABI, such concern can be mitigated to some extent. We conduct
experiments on 12 Adroit datasets and 15 MuJoCo datasets over 5 different random seeds. For IQL, we use its
official codebase (https://github.com/ikostrikov/implicit_q_learning) to run on all 27 datasets over 5 random
seeds with the hyperparameters suggested by the authors. We incorporate CABI with IQL and run CABI+IQL
over 5 different random seeds. The forward and backward horizons for CABI+IQL are identical to CABI+BCQ
on Adroit tasks and CABI+TD3_BC on MuJoCo datasets. We summarize the results in Table 11 and Table 12.

As shown, CABI boosts the performance of IQL on all 27 datasets of Adroit and MuJoCo. CABI+IQL
outperforms baseline methods on 10 out of 12 datasets. While on MuJoCo datasets, CABI+IQL only surpasses
baseline methods on 5 out of 15 datasets, due to the fact that the base method IQL itself has poor performance
on "-v0" datasets. Nevertheless, CABI+IQL has a total score of 604.1 on Adroit, surpassing the total score 562.5
of the vanilla IQL. CABI+IQL achieves a total score of 909.3 on MuJoCo datasets, while vanilla IQL only has
a total score of 860.7. We want to emphasize here that we do not aim to beat the most recent strong baseline
methods in this paper, the key point we want to carry here is the conservative data augmentation with CABI is
effective and beneficial for the performance improvement over the base offline RL algorithms. The empirical
experiments work as the evidence to validate our claim.

H Omitted Full Comparison of CABI against Baselines

In this section, we provide the full comparison of CABI against baseline methods as we omit standard deviation
for baselines in the main text due to space limitation. We show in Table 13 the full performance comparison
of CABI+BCQ against BCQ [16], UWAC [73], CQL [32], MOPO [75], COMBO [74], etc. We additionally
compare against SAC. As MOPO and COMBO do not report the performance on the Adroit dataset in their
original paper, we run COMBO on the Adroit tasks over 5 different random seeds with our reproduced code,
and run MOPO and UWAC with their official codebases on the Adroit tasks over 5 different random seeds,
respectively. The results of the rest of the baselines are taken directly from [14].

Table 14 gives the full comparison of CABI+TD3_BC against TD3_BC [15], BCQ [16], UWAC [73], FisherBRC
[29], CQL [32], MOPO [75], etc. We additionally compare CABI+BCQ against BEAR here. The results of BC,
TD3_BC, CQL, and FisherBRC are taken directly from [15], and the results of UWAC are acquired by running
the official codebase over 5 different random seeds. The results of BEAR are taken directly from [73]. We do
not report standard deviation for BEAR and BCQ.

22

https://github.com/ikostrikov/implicit_q_learning

Table 11: Normalized average score comparison of CABI+IQL against different baselines on the
Adroit "-v0Q" tasks, where score 0 represents the performance of a random policy and 100 corresponds
to an expert policy performance. The highest mean scores are in bold.

Task Name CABI+IQL IQL UWAC BEAR BC AWR CQL MOPO COMBO
pen-cloned 42.2+6.1 352473 33.1 26.5 569 280 392 -21 2.4
pen-human 72.0£9.1 68.7£8.6 21.7 -1.0 344 123 375 9.7 27.7
pen-expert 129.1+0.6 118.4+69 1119 1059 851 111.0 107.0 -0.6 11.5
door-cloned 0.8+0.4 0.7£0.5 0.0 -0.1 -0.1 0.0 0.4 -0.1 0.0
door-human 11.5+3.6 33£1.3 2.1 -0.3 0.5 0.4 9.9 -0.2 -0.3

door-expert 105.7+0.2 105.2+0.3 104.1 103.4 349 1029 1015 -0.2 4.9
relocate-cloned -0.1+0.0 -0.24+0.0 -0.3 -0.3 -0.1 -0.2 -0.1 -0.3 -0.1
relocate-human 0.4+0.3 0.040.0 0.5 -0.3 0.0 0.0 0.2 -0.3 -0.3
relocate-expert 107.4+0.2 105.6£0.5 105.6 98.6 101.3 915 950 -0.2 17.2
hammer-cloned 2.4 £0.2 1.6+1.0 0.4 0.3 0.8 0.4 2.1 0.2 0.4
hammer-human 4.8+1.8 2.3+0.6 1.1 0.3 1.5 1.2 4.4 0.2 0.2
hammer-expert 127.9+1.2 121.7+1.3 110.6 1273 1256 390 86.7 03 0.3

Total Score 604.1 562.5 490.8 460.3 440.8 386.5 483.8 6.4 59.1

Table 12: Normalized average score comparison of CABI+IQL vs. baseline methods on the D4RL
MuJoCo "-v0O" dataset, where score O corresponds to a random policy performance and 100 corre-
sponds to an expert policy performance. The highest mean scores are in bold.

Task Name CABI+IQL IQL UWAC MOPO BCQ BC CQL FisherBRC
halfcheetah-random 184+£09 162£02 23 354 22 20 217 322
hopper-random 11.44+0.1 93+1.8 9.8 11.7 10.6 9.5 10.7 114
walker2d-random 8.0£0.5 6.24+22 3.8 136 49 12 27 06

halfcheetah-medium-replay 42.24+0.2 40.5+04 38.9 53.1 382 347 419 433
hopper-medium-replay 36.8+0.4 334+£1.1 180 67.5 33.1 197 28.6 35.6
walker2d-medium-replay ~ 17.2£0.8 15.8+1.7 84 39.0 150 8.3 15.8 42.6
halfcheetah-medium 41.6+0.1 41.240.1 374 423 407 366 372 413

hopper-medium 40.0£12.9 30.7£0.0 30.3 28.0 545 30.0 442 994
walker2d-medium 55.1£23 50.8+£7.7 174 17.8 53.1 114 575 1795

halfcheetah-medium-expert 96.7£1.3 89.0+£0.7 406 633 647 67.6 27.1 96.1
hopper-medium-expert 112.8+0.2 111.5+£1.0 95.4 23.7 1109 89.6 1114 90.6
walker2d-medium-expert ~ 104.8+£1.0 99.7+29 148 446 575 120 68.1 103.6

halfcheetah-expert 104.7£0.9 100.84+3.7 104.0 - 89.9 105.2 82.4 106.8
hopper-expert 112.840.2 112.0£0.0 109.1 - 107.0 111.5 111.2 112.3
walker2d-expert 106.8+3.7 103.6+2.0 884 - 102.3 56.0 103.8 79.9
Total Score 909.3 860.7 618.6 - 784.6 5953 764.3 974.6

23

I'6S ¥'9 LTl 8¢€8y G98¢ 8O0y €09 8067 LILY 0°L09 91098 TBI0L

I'0FE0 00F€0 TST L9%8 06€ 9STI €LTT LOTFYOIT TLOT 60F6'8CI Madxe-rourwey
0'0FT0 00FT0 S0 % Tl Sl €0 90FI'1 S0 TTFI'¢ uewny-rowwrey
TOFY0 00FCTO0 T0 I'C 70 80 €0 0'0F¥0 0 9IF €y PpouOO-IOWIWEY
I'€FTLL 00FCO- €0~ 0S6 SI6 €101 986 9 IF9SOI 91F OTF6SOI Hodxe-areds0[ar
'0FE0- 1'0FE0- 00 0 00 00 €0- 9'0FS0 S0 ['0FI'0 uewny-sjedo[ar
'0FTI°0- 1'0F€0- 700 T10- TO- T0 €0 00F¢0- €0 0'0FC0- PAUO[d-2)eIO[I
TIF6Y 10FCO- SL SI0I 6701 6% $e€0l SIFIVOI 066 SOFESOT 12dxa-100p
T0FE0- 1'0FCO- 6'¢ 66 70 S0 €0- 9IFICT 00 T'OFLT uewny-1oop
00F00 T0FI0 00 70 00 10 1'0- 0'0F00 00 T0FS0 pauo[2-100p
CTFSTT 61F90 I'9 0L0T OTIT IS8 6S0I CTIF6IIT 6F%I1 0CTFYLIL 1adxo-uad
LOTFLLT TVYFL6 €9 GLE €Tl ¥¥E 01- TTFLIT 689 SIFISL uewny-uad
U'IFye OvFIC S¢€T T6E 08T 69§ §9T I'OIFI'EE Ovp 0CFLYS pauopd-uad
OdINOD OdOIW Ho-DVS 10D UMV g dvdad ovMN 0D9d 0Dd+IdvD QuieN Yse[,

‘PI0q UI 218 S9I0JS UBaW ISAYS1Y Ay], -ooueuriojrad Aorjod 1radxs ue 03 spuodsariod g1 pue Aorjod
wopuel & Jo aoueuliofrad oy sjuasaidar () 9109 21y ‘SYSB) JI0IPY Y} UO SAUI[ISB] JUAIHIP IsuteSe OD G+ VD JO uostredwiod 2109s 95eIdAR PIZI[eWION €] 9[qBL

24

9YL6 €YoL €665 - 9708 - 9819 £6L6 L0201 9100§ TBI0L

YTEF6'6L 9LFSE0l 6FTF09S - 1901 - L'EFY'88 LTFLSOI S 1F9°801 1adxa-pzIoyem
TOFECTIT TTFTIIL CIFSIII - €011 - 6€FI'601 TOFTTII '0FHZIT 1adxa-raddoy
0€F890l ¥ LFPT8 LIFTSOL - 7801 - 0CTFOP0I 6 1FL SOl 6'0F9°L0T 1adxa-yeIvaydyey
9YFOEOl T'CIFISY 8SFOTI SLS 10V 6TIFOHY HIF8YI €6FI 101 CIFH'80T Modxo-paw-pzioyem
CEPF906 TIFFIIL 9LTF968 6011 €96 09FLET SETFV'S6 TOFTTII 0'0FLTIT 1adxa-paw-raddoy
S6F196 6CEFILT TEIFILY LT9 ¥'ES 08EFEEY 99F90r +vvT6'L6 TOF0°SOT 1Hadxo-pow-yeroaydy[ey
O1FS6L €8FSLS €9FFIT 1'€S 165 €6IFSLI SSFFLI SIFL6L ¥'0F0C8 wWnIpaw-pzIoy[em
YOFY66 SO0IFCHr SOFO0E S+vS 1S +TIFOSC €0FE0E O 1FS66 €0FH 001 wnipaw-12ddoy
SOFECTIy €0FTLE 90F99¢ LOF LIy 9IFETY TOFYLE €OFSTY '0FI'Sy WNIPIW-YEIAYIJ[eY
OLFITY 9TFSSI SIFES 0SI T6l 96F06E TIFVS 1'SFTST CI1Fv6r Aerdor-pow-pzroyrem
STFISE 60F98C 6SFLG6I T'€E LE€E LYTFSL9 9SFOSI 0EFHIE LOFETE Aerda-pew-raddoy
60FcEy TIF61y SIFLYE T8 98¢ O0TFIES €0F6SE SOFEEH TOFY vy Aepder-paw-yeaayoyrey
90F90 CTIFLT TOFCI 6% €L 9TFYEL €IFSE 90FI SIFH9 WOPUBI-PTIN[EM
TOFYIT T'OFLOI I'0FS6 901 +II ¥OFLII 1'0F86 T10FOT1 1'0F6 1T wopues-1oddoy
TTFTE 60FLIC 10F0T TT 'St STFYSE 00FE€T €IFCOI YOFISI WOPURI-YRIdYJey
DY gIoysty 100 Ood 009 ¥vad OdON OVMN D9 €Al D9 €dLHdvD SweN yseL,

-9oueuioyrad Aorjod 31adxe ue 03 spuodsariod (] pue 2ouewriofrad Aorjod
wopuel & 0} Spuodsariod () 9100s 21y ‘Jaseiep 0DOMA Ty Y3 UO SPOYIdW 11e-33-Jo-e)s JoLd ‘sa D ¢ L+IGVD JO 9100s a5BIoAR PIZI[eWION] 4] 9[qBL

25

	Introduction
	Related Work
	Preliminaries
	Confidence-Aware Bidirectional Offline Model-Based Imagination
	You Need to Double Check Your State
	Bidirectional Models Learning in CABI
	Conservative Data Augmentation with CABI

	Experiments
	Performance on Challenging Adroit Dataset
	Ablation Study
	Broad Results on MuJoCo Dataset

	Conclusion and Limitations
	Experimental Setup of Toy RiskWorld Task
	Datasets and Evaluation Setting on the D4RL Benchmarks
	Adroit datasets and MuJoCo datasets
	Evaluation setting in D4RL

	Implementation Details and Hyperparameters
	Implementation details
	Hyperparameters

	Model Prediction Error and Model Disagreement
	Omitted Background for VAE
	Compute Infrastructure
	Experimental Results of CABI+IQL
	Omitted Full Comparison of CABI against Baselines

