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A Background and additional results

A.1 Additional experiments

0 20 40 60 80
number of steps t

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

pr
ed

ict
io

n 
ris

k

n = 2048
n = 4096
n = 8192
n = 32768

(a) Failure of GET prediction.
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(b) Alignment with teacher f∗.
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(c) Prediction risk (η = Θ(Nα)).

Figure 4: (a) Prediction risk of ridge regression on trained CK features after multiple GD steps with η = Θ(1):
dots represent empirical simulations (averaged over 50 runs) and solid curves are asymptotic values predicted
by the GET. We set σ = σ∗ = ReLU, ψ2 = 2, d = 512, λ = 10−4, and η = 0.1. (b) Alignment between
the student f t

λ and the linear (red) and nonlinear (blue) components of the teacher model (A.1). Darker colors
correspond to larger sample size n = {211, 212, 213, 215}. (c) Prediction risk of ridge regression on trained
CK features after one gradient step (empirical simulation, d = 1024): brighter color represents larger step size
scaled as η = Nα for α ∈ [0, 1/2]. We set σ = σ∗ = SoftPlus, ψ2 = 2, λ = 10−3, and σε = 0.1.

Failure cases of GET. It is worth noting that the Gaussian equivalence property (Theorem 3) may
no longer hold if we train the features longer. In particular, because of our mean-field parameteri-
zation, the first-layer weight W needs to travel sufficiently far away from initialization to achieve
small training loss (see Figure 2). Hence in our experimental simulations (where n, d,N are large
but finite), as the number of steps t increases, we expect the Gaussian equivalence predictions to be-
come inaccurate at some point. This transition is empirically demonstrated in Figure 4(a). Observe
that for larger t, the GET predictions overestimate the test loss; one possible explanation is that the
trained kernel can learn nonlinear functions (which we show in Section 5 for one gradient step with
η = Θ(

√
N) and specific choices of f∗), which the GET cannot capture.

We provide additional empirical evidence on this explanation in Figure 4(b). To track the learning
of the linear and nonlinear components of f∗, we recall the orthogonal decomposition:

f∗(x) = µ∗
0 + µ∗

1⟨x,β∗⟩︸ ︷︷ ︸
f∗
L(x)

+P>1f
∗(x)︸ ︷︷ ︸

f∗
NL(x)

.

Denote the CK ridge estimator on the feature map after t gradient steps x → σ(W⊤
t x) as f tλ. We

estimate the following alignment quantities (we normalize f∗L and f∗NL to have unit L2-norm):

Linear component:
〈
f∗L, f

t
λ

〉
L2(Rd,Γ)

. Nonlinear component:
〈
f∗NL, f

t
λ

〉
L2(Rd,Γ)

. (A.1)

In Figure 4(b), we observe that the student model f tλ first aligns with the linear component of the
teacher f∗L; on the other hand, when the student model begins to learn the nonlinear component f∗NL
(at ∼30 gradient steps), the GET predictions (Figure 4(a)) overestimate the prediction risk.

Large learning rate (SoftPlus). In Figure 4(c) we repeat the large learning rate experiment in
Section 5 for different nonlinearity σ = σ∗ = SoftPlus, for which τ∗ ≈ 0.03 > 0, and hence the
upper bound in Theorem 7 is non-vanishing. In this case, we observe that the prediction risk of
the CK ridge regression model (after one feature learning step) is also non-vanishing even when the
step size is large; this indicates that although we do not compute the exact risk in Theorem 7, the
upper-bounding quantity τ∗ in (5.1) has predictive power on the actual prediction risk.

Impact of data splitting. As previously mentioned, our current theoretical analysis requires the
first-layer W and second-layer a to be learned from independent training data, i.e., a “data-splitting”
procedure. Note that from Lemmas 10,11, and 22 one can easily deduce that when the sample size
becomes large (ψ1 = n/d→ ∞), the gradient at each neuron becomes proportional to β∗ which no
longer depends on X . In other words, if we denote R̃(λ) as the CK ridge prediction risk without
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the data-splitting procedure, then R̃(λ) = R(λ)+oψ1,P(1). Consequently, as we gradually increase
the sample size n (or ratio ψ1), we expect the behavior of training W and a on the same data X to
become more aligned with our theoretical results.

This intuition is confirmed in Figure 5, where we plotted our theoretical prediction (for the data-
splitting setting) against empirical simulations where W and a are trained on the same data. In
Figure 5(a) we observe that our asymptotic formula for the small learning rate regime (Theorem 5)
accurately tracks the risk curve for ψ1 > 2 but deviates when ψ1 is small (subfigure). Moreover,
Figure 5(b) shows that without data-splitting, the trained CK under large learning rate may also
outperform the kernel lower bound for large ψ1. To sum up, in both cases, we observe similar
learning behavior with or without the data-splitting procedure (especially in the large ψ1 regime).
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(b) η = Θ(Nα), no data splitting.

Figure 5: Prediction risk of ridge regression on trained CK. Dots represent empirical simulations without
data-splitting, i.e., W , a trained on the same data (d=1024), and solid lines are theoretical predictions from the
data-splitting setting. (a) η = Θ(1), σ = tanh, σ∗ = SoftPlus, ψ2 = 2, λ = 10−4, σε = 0.25. (b) η = Nα

for α ∈ [0, 1/2]; brighter color represents larger α. We set σ = σ∗ = tanh, ψ2 = 2, λ = 10−3, σε = 0.1.

A.2 Additional related works

The kernel regime and beyond. The neural tangent kernel (NTK) [JGH18] describes the learn-
ing dynamics of wide neural network under specific parameter scaling. Such description is based
on linearizing the NN around its initialization, and the limiting kernel can be computed for various
architectures [ADH+19, Yan20]. Thanks to strong convexity of the kernel objective, global con-
vergence rate guarantees of gradient descent can be established [DZPS19, JT20]. As mentioned in
Section 1.2, this first-order Taylor expansion fails to explain the adaptivity of NNs; therefore, re-
cent works also analyzed higher-order approximations of the training dynamics [DGA20, HY20].
Noticeably, a quadratic model (i.e., second-order approximation) can outperform kernel (NTK) es-
timators in certain settings [AZLL19, BL20].

In contrast to the aforementioned local approximations (via Taylor expansion and truncation), the
mean-field regime (e.g., [NS17, MMN18, CB18]) deals with a different scaling limit under which
the evolution of parameters can be described by some partial differential equation (for comparison
between regimes see [WGL+20, GSJW20]). While the mean-field limit can capture the presence
of feature learning [CB20, Ngu21], quantitative guarantees often require additional conditions such
as KL regularization [NWS22, Chi22]. Note that our parameterization (1.1) mirrors the mean-field
scaling, but we circumvent the difficulty of analyzing the nonlinear PDE because only the “early
phase” (one gradient step) is considered.

Finally, we highlight two concurrent papers that studied the mean-field dynamics of two-layer NNs
(under one-pass SGD) in the high-dimensional asymptotic regime, and showed learnability results
for certain target functions. [ABAM22] established a separation between NNs and kernel methods
in learning “staircase-like” functions on hypercube; [VSL+22] analyzed how the model width and
step size impact the learning of a well-specified two-layer NN teacher model.

Spectrum of kernel random matrices. Kernel matrices in the proportional regime was first ana-
lyzed by [EK10] through Taylor expansion, and later their limiting spectra were fully described by
[CS13, DV13, FM19]. As an extension of kernel random matrices, the CK matrix has also been
studied in [PW17, Péc19, BP21, BP22] and [LLC18, FW20, WZ21], using the moment method and
the Stieltjes transform method, respectively. In addition, the spectrum and concentration behavior
of the NTK matrix were elaborated in [MZ20, FW20, WZ21]. We remark that based on these prior

18



results on the NTK of two-layer NNs, one can check our large learning rate η = Θ(
√
N) satisfies√

Nη · λmax(F ) = Θd,P(1), where F is the Fisher information matrix; heuristically speaking, this
means that the chosen step size is not unreasonably large (under first-order approximation).

A.3 Linearity of kernel ridge regression

As previously mentioned, our kernel ridge regression lower bound (Proposition 1) is a simple com-
bination of existing results, which we briefly outline below.

Linear regression on input. We first discuss the prediction risk of the ridge regression es-
timator on the input features. Recall that under Assumptions 1, we may write: f∗(x) =

µ∗
1⟨x,β∗⟩ + P>1f

∗(x). Given the ridge regression estimator on the input features: θ̂Lin ≜
(X⊤X + λnId)

−1X⊤y, we have the following bias-variance decomposition,

RLin(λ) =Ex

(
f∗(x)− x⊤(X⊤X + λnId)

−1X⊤f∗(X)
)2

︸ ︷︷ ︸
Bias

+ σ2
ε Tr

(
(X⊤X + λnId)

−2X⊤X
)

︸ ︷︷ ︸
Variance

+od,P(1).

Following a similar computation as [BMR21, Theorem 4.13] and using the asymptotic formulae in
[DW18, WX20], we can derive the following expression,

RLin(λ)
P→ m̄′(−λ)
m̄2(−λ)

· µ∗2
1

(1 + m̄(−λ))2
+ (σ2

ε + µ∗2
2 ) ·

(
m̄′(−λ)
m̄2(−λ)

− 1

)
+ µ∗2

2 , (A.2)

where m̄(−λ) > 0 is the Stieltjes transform of the limiting eigenvalue distribution of 1
nXX⊤. Ob-

serve that RLin(λ) ≥ µ∗2
2 . In addition, as shown in [DW18, WX20], the optimal ridge regularization

and the corresponding prediction risk can be written as

λopt =
σ2
ε + µ∗2

2

ψ1µ∗2
1

, RLin(λopt)
P→ σ2

ε + µ∗2
2

λoptm̄(−λopt)
− σ2

ε . (A.3)

Lower bound for RF/kernel ridge regression. First note that for RF models (3.1), the lower
bound µ∗2

2 is directly implied by the GET [HL20] under Assumption 1 (see Fact 4). For inner-
product kernels3 in (3.2), if g : R → R is a smooth function in a neighborhood of 0, then the same
lower bound can be obtained from [BMR21, Theorem 4.13] (observe that the bias is lower bounded
by ∥P>1f

∗∥2L2 ). Finally, for the (first-layer) NTK, the ridge regression estimator is given as

f̂NTK(x) =g⊤(K + λI)−1y,

where gi =
1

Nd

N∑
k=1

⟨x,xi⟩σ′(⟨x,wk⟩)σ′(⟨xi,wk⟩),

andKij =
1

Nd

N∑
k=1

⟨xi,xj⟩σ′(⟨xi,wk⟩)σ′(⟨xj ,wk⟩).

Define the orthogonal decomposition σ′(z) = b0 + σ′
⊥(z), where b0 = µ1 = E[σ′(z)], b21 =

E[σ′(z)2]− b20, for z ∼ N (0, 1). Similar to [AP20, MZ20], we make the following linearization:

g ≈ ḡ ≜
1

d
· b20Xx, K ≈ K̄ ≜

1

d
· b20XX⊤ + b21I.

The error of this substitution has been studied in [MZ20, Lemma B.8] [WZ21, Theorem 2.7], which,
together with [BMR21, Theorem 4.13], entail the following equivalence under Assumption 1,

RNTK(λ) = RLin

(
λ+ b21
b20ψ1

)
+ od,P(1),

where RLin is the prediction risk of the ridge regression estimator on the input features defined in
(A.2). Hence, the linear lower bound (3.3) directly applies; in fact, the prediction risk is lower-
bounded by the optimal ridge regression estimator on the input (A.3).

3Similar result can also be shown for Euclidean distance kernels following the analysis in [EK10, Thm. 2.2].
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Kernel lower bound under polynomial scaling. For high-dimensional input x uniform on sphere
or hypercube, [GMMM21, MMM21] showed that RF and kernel ridge estimators can learn at most a
degree-k polynomial when n = O

(
dk+1−ε) for small ε > 0; for the proportional scaling n ≍ d, this

implies our lower bound ∥P>1f
∗∥2L2 (but under different input assumptions). [DWY21] provided a

similar result for more general data distributions and a class of rotation invariant kernels based on
power series expansion, but the dependence on k is not sharp enough to recover the linear lower
bound in Proposition 1.

B Matrix concentration properties

B.1 Norm control of gradient matrix

In this section we establish a few important properties of the gradient matrix defined in (2.1). For
our later analysis, a key quantity to control is the entry-wise 2-∞ matrix norm defined as

∥M∥2,∞ := max
1≤i≤N

∥mi∥,

for any matrix M ∈ Rd×N with the i-th column mi ∈ Rd and 1 ≤ i ≤ N . It is easy to verify that

∥M∥2,∞ ≤ ∥M∥ ≤ ∥M∥F ≤
√
N∥M∥2,∞.

In addition, for the Hadamard product with rank-1 matrix, we have the following property.
Fact 9. Given mn⊤ ⊙M = diag(m)M diag(n) for m ∈ Rm,n ∈ Rn,M ∈ Rm×n, we have∥∥mn⊤ ⊙M

∥∥ ≤ ∥diag(m)∥ · ∥M∥ · ∥diag(n)∥ = ∥m∥∞∥M∥∥n∥∞.

B.1.1 Norm bounds for the first gradient step

We begin with the first gradient step. Recall the definition of the gradient matrix under the squared
loss (we omit the learning rate η and prefactor

√
N ):

G0 =− 1

n
X⊤

[(
1√
N

(
1√
N
σ(XW 0)a− y

)
a⊤
)
⊙ σ′(XW 0)

]
=

1

n
· µ1√

N
X⊤ya⊤︸ ︷︷ ︸
A

+
1

n
· 1√

N
X⊤(ya⊤ ⊙ σ′

⊥(XW 0)
)

︸ ︷︷ ︸
B

− 1

n
· 1

N
X⊤(σ(XW 0)aa

⊤ ⊙ σ′(XW 0)
)

︸ ︷︷ ︸
C

,

(B.1)

where we utilized the orthogonal decomposition: σ′(z) = µ1 + σ′
⊥(z). Due to Stein’s lemma, we

know that E[zσ(z)] = E[σ′(z)] = µ1, and hence E[σ′
⊥(z)] = 0 for z ∼ N (0, 1). The following

lemma provides norm control for the above decomposition under the same Gaussian initialization
for W 0, a and X as Assumption 1.
Lemma 10. Assume that f∗ ∈ L2(Rd,Γ), and both f∗ and σ are Lipschitz functions. Then

(i) E∥A∥2,∞ ≤ E∥A∥ ≤ E∥A∥F ≤ C
√

d
nN + 1

N ,

(iii) E∥C∥ ≤ E∥C∥F ≤ C
N

√
1 + d

n .

Furthermore, we have the following probability bounds.

(i) P
(
∥A∥F ≥ C

(√
d
nN +

√
1
N

))
≤ C ′(e−cn + e−cN

)
,

P
(
∥A∥F ≤ C

√
d
nN

)
≤ C ′

(
e
−cmin

{
nd2

(n2+d2)
, nd
n+d

}
+ e−cN + e−cn

)
, and

P
(
∥A∥2,∞ ≥ C (

√
n+

√
d) logn

N
√
n

)
≤ C ′

(
e−c

(
√

n+
√

d)2

n log2 n + e−cn +Ne−c log
2 n
)
.
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(ii) P
(
∥B∥ ≥ C (

√
n+

√
d)(

√
n+

√
N) log2 n

n
√
Nd

)
≤ C ′

(
(n+N)e−c log

2 n + e−(
√
n+

√
d)2 + e−cN + e−cd

)
,

P
(
∥B∥F ≥ C

√
n+

√
d√

nN

)
≤ C ′

(
e−cn + e−cN + e−c(

√
n+

√
d)2
)
.

(iii) P
(
∥C∥F ≥ C (

√
d+

√
n) logn logN√
nN

)
≤ C ′

(
Ne−cN + ne−cd + ne−c log

2 n +Ne−c log
2N
)

.

Here all constants C,C ′, c > 0 only depend on λσ , µ1, σε and ∥f∗∥L2(Rd,Γ).
Remark. In Lemma 10, we do not use the proportional scaling to simplify the expressions. This is
because the dependence on n, d,N needs to be tracked separately in some of our calculations.

Proof. We analyze the three matrices of interest separately.

Part (i). We first upper-bound ∥A∥2F . Notice that

n
√
N

µ1
∥A∥F ≤∥X⊤f∗(X)a⊤∥F + ∥X⊤εa⊤∥F

≤∥X∥(∥f∗(X)∥+ ∥ε∥)∥a∥. (B.2)

We know that Gaussian random matrices and vectors satisfy

E∥ε∥2 = σ2
εn, E∥f∗(X)∥2 = n∥f∗∥2L2(Rd,Γ), (B.3)

E∥a∥2 = 1, E∥X∥2 ≤ C0(n+ d), (B.4)

where the last inequality is from [Ver18, Exercise 4.6.2]. Based on Cauchy-Schwarz inequality, we
can employ (B.3) and (B.4) to obtain

E∥A∥2,∞ ≤ E∥A∥ ≤ E∥A∥F ≤ C1

√
d

nN
+

1

N
,

where constant C1 > 0 only depends on µ1, σε and ∥f∗∥L2(Rd,Γ). As for the probability bound,
we use the Lipschitz concentration property (e.g., see [Ver18, Theorem 5.2.2]) of ∥a∥, ∥ε∥ and
∥f∗(X)∥, and apply [Ver18, Corollary 7.3.3] for ∥X∥ to obtain

P
(
∥ε∥ ≥ σε

√
n
)
≤ 2e−cn, P

(
|∥a∥ − 1| ≥ 1

2

)
≤2e−cN , (B.5)

P
(∣∣∥f∗(X)∥ − ∥f∗∥L2(Rd,Γ)

√
n
∣∣ ≥ 1

2
∥f∗∥L2(Rd,Γ)

√
n

)
≤2e−cn, (B.6)

P
(
∥X∥ ≥

√
n+

√
d+ t

)
≤2e−ct

2

, (B.7)

for any t ≥ 0. Hence, from (B.2), we arrive at

P

(
∥A∥F ≥

√
d

nN
+

√
1

N
+ t

)
≤ 4
(
e−cn + e−cN + e−ct

2nN
)
.

Note that the same probability bounds also applies to ∥A∥ and ∥A∥2,∞. Thus, we may take t =
√

1
N

to obtain the desired result. The lower bound on ∥A∥F follows from a similar computation, the
details of which can be found in [BES+22, Appendix B.3]. As for the last inequality on ∥A∥2,∞,
by definition we know that

∥A∥2,∞ ≤ µ1

n
√
N

∥X∥(∥f∗(X)∥+ ∥ε∥)∥a∥∞.

The desired result can be obtained from the tail bound on the sup-norm of Gaussian random vector,
P
(
∥a∥∞ ≤ t/

√
N
)
≥ 1− 2Ne−ct

2

, in combination with (B.5), (B.6) and (B.7).

Part (ii). As a result of Fact 9, we have

∥B∥ ≤ 1

n
√
N

∥X∥∥a∥∞(∥f∗(X)∥∞ + ∥ε∥∞)∥σ′
⊥(XW 0)∥. (B.8)
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We first control the operator norm of the random feature matrix σ′
⊥(XW 0). Since σ′

⊥ is centered,
[FW20, Lemma D.4] implies that

P
(
∥σ′

⊥(XW 0)∥ ≥ C(
√
n+

√
N)λσB,AB

)
≤ 2e−cN ,

where event AB is defined by

AB :=

{
∥W 0∥ ≤ B,

N∑
i=1

(∥w0
i ∥2 − 1)2 ≤ B2

}
,

given any constant B > 0. Following the proof of Proposition 3.3 in [FW20], we can obtain that

P

(
N∑
i=1

(
∥w0

i ∥2 − 1
)2 ≥ 4t2

)
≤ 2eN log 5−cdmin{t2,t}, (B.9)

for any t ≥ 0. Besides, inequality (B.7) implies that for any t ≥ 0,

P

(
∥W 0∥ ≤ c′

√
N

d

)
≥ 1− 2e−cd.

By choosing t = c′
√

N
d in (B.9) and B := c′

√
N
d for sufficient large c′ > 0, we can claim that

there exists sufficient large constant c > 0 such that

P(Ac
B) ≤ 2e−cd + 2e−cN .

Combining the above inequalities, we have

P

(
∥σ′

⊥(XW 0)∥ ≥ C(
√
n+

√
N)

√
N

d

)
≤ 4e−cN + 2e−cd. (B.10)

In addition, the following tail bound is due to property of (sub-)Gaussian random variables:

P
(
∥a∥∞ ≤ t1/

√
N
)
≥ 1− 2Ne−ct

2
1 , P(∥ε∥∞ ≤ t2) ≥ 1− 2ne−ct

2
2 , (B.11)

for any t1, t2 ≥ 0. Because f∗ is Lipschitz, f∗(X) is a sub-Gaussian random vector satisfying

P(∥f∗(X)∥∞ ≤ t2) ≥ 1− 2ne−ct
2
2 .

Let t1 = t2 = log n. Applying all these three tail bounds (B.10) and (B.7), (B.8) gives us the first
part of the probability bound in (ii). As for the second part, following the observation

∥B∥F ≤ µ1

n
√
N

∥X∥∥ya⊤ ⊙ σ′
⊥(XW 0)∥F ≤ µ1λσ

n
√
N

∥X∥∥y∥∥a∥,

we can adopt (B.5), (B.6) and (B.7) to conclude the second probability bound.

Part (iii). Finally, we analyze the lower-order term C. Recall the definitions X = [X̃, . . . ,xn]
⊤,

W 0 = [w0
1, . . . ,w

0
N ] and a = [a1, . . . , aN ]⊤. We first observe that

E∥σ(XW 0)aa
⊤ ⊙ σ′(XW 0)∥2F ≤ λ2σ

n∑
j=1

N∑
k=1

E

(
N∑
i=1

aiakσ(x
⊤
j w

0
i )

)2

,

=λ2σ

n∑
j=1

N∑
k=1

N∑
i,l=1

E
[
alaia

2
kσ(x

⊤
j w

0
i )σ(x

⊤
j w

0
l )
]
= λ2σ

n∑
j=1

N∑
k=1

N∑
i=1

E
[
a2i a

2
kσ(x

⊤
j w

0
i )

2
]
,

≤ C ′

N2

n∑
j=1

N∑
k=1

N∑
i=1

E
[
σ(x⊤

j w
0
i )

2
]
≤ C ′′n, (B.12)

where the last inequality can be deduced by

E[σ(x⊤w)2] = Ew

[
Ex[σ(x

⊤w)2]
]
= Ew

[
Ez[σ(∥w∥z)2]

]
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≤2Ew

[
Ez(σ(∥w∥z)− σ(z))2

]
+ 2Ew

[
Ez[σ(z)2]

]
≤2λ2σEw

[
(∥w∥ − 1)2

]
+ 2Ew

[
Ez[σ(z)2]

]
≤ 4λ2σ + Ez[σ(z)2],

which is uniformly bounded by a constant. Therefore, by (B.4) and (B.12), we get

E∥C∥] ≤ E∥C∥F ≤ 1

nN
E[∥X∥2] 12E[∥σ(XW 0)aa

⊤ ⊙ σ′(XW 0)∥2F ]
1
2 ≤ C3

N

√
1 +

d

n
.

As for the tail control, because of Fact 9, we consider the following upper-bound,

∥C∥ ≤ ∥C∥F ≤ 1

nN
∥X∥∥σ(XW 0)a∥∞∥a∥∞∥σ′(XW 0)∥F ≤ λσ√

nN
∥X∥∥σ(XW 0)a∥∞∥a∥∞,

(B.13)
where the last inequality is due to |σ′| being upper-bounded by λσ .

To control ∥σ(XW 0)a∥∞, note that since a is centered by Assumption 1, we can apply Bernstein

inequality for a and W conditioned on the event M :=
{∣∣∣∥xi∥/√d− 1

∣∣∣ ≤ 1/2, i ∈ [n]
}

. Con-

ventionally, we denote ∥·∥ψ2
as the sub-Gaussian norm. Since

∥∥∥xi∥−√
d
∥∥
ψ2

is bounded by some
absolute constant ([Ver18, Theorem 3.1.1]), we know that

P(M) ≥ 1− ne−cd.

Notice that for any j ∈ [n], σ(x⊤
j W 0)a =

∑N
i=1 aiσ(x

⊤
j w

0
i ) is the sum of N independent

and centered sub-Exponential random variables, where, in terms of [FW20, Lemma D.5], the sub-
Exponential norm ∥·∥ψ1

of each term is bounded by the sub-Gaussian norm of the entries as follows,

∥aiσ(x⊤
j w

0
i )∥ψ1

≤ ∥ai∥ψ2
∥σ(x⊤

j w
0
i )∥ψ2

≤ Cλσ√
N

∥xj∥√
d

≤ 3Cλσ

2
√
N
,

for constant C > 0. Thus, by Bernstein inequality [Ver18, Theorem 2.8.1], for each j ∈ [n],

P
(
|σ(x⊤

j W 0)a| ≥ log n
)
≤ 2e−c(logn)

2

.

Then we take the union over all xj and obtain ∥σ(XW 0)a∥∞ ≤ log n with probability at least

1 − 2ne−c(logn)
2

. Hence, by (B.7), (B.11) and (B.13), we get ∥C∥F ≥ (
√
d+

√
n+t) logn logN√

nN
with

probability at most 2ne−c(logn)
2

+ 2Ne−c(logN)2 + ne−cd + 2e−ct
2

+ 2Ne−cN . Part (iii) is
established by choosing t =

√
d. This concludes the proof of the lemma.

Proposition 2 is a direct consequence of the above norm bounds.

Proof of Proposition 2. Notice that G0−A = B+C. In the proportional regime, by Lemma 10,
there exist universal constants C, c > 0 such that

P
(
∥G0 −A∥ ≤ C

log2 n

n

)
≥ 1− ne−c log

2 n.

On the other hand, part (i) in Lemma 10 implies that

P
(
∥A∥ ≥ C√

n

)
≥ 1− e−cn,

for some constant c, C > 0. Here we used the fact ∥A∥ = ∥A∥F because it is a rank-one matrix.
Conditioning on the two events stated above, we have

∥G0 −A∥ ≤ C√
n

log2 n√
n

≤ log2 n√
n

∥A∥ ≤ log2 n√
n

(∥G0∥+ ∥G0 −A∥).

As long as n is sufficiently large such that log2 n√
n

< 1
2 , we can obtain

P
(
∥G0 −A∥ ≤ 2 log2 n√

n
∥G0∥

)
≥ 1− ne−c log

2 n − e−cn,

which completes the proof.
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B.1.2 Decomposition of matrix A

Using the orthogonal decomposition (2.3), we can further decompose the rank-1 matrix A as follows

A =
1

n
· µ1µ

∗
1√
N

X⊤Xβ∗a
⊤︸ ︷︷ ︸

A1

+
1

n
· µ1√

N
X⊤(µ∗

01+ P>1f
∗(X) + ε)a⊤︸ ︷︷ ︸

A2

, (B.14)

where we denote P>1f
∗(X) := [P>1f

∗(x1), . . . ,P>1f
∗(xn)]

⊤ ∈ Rn. Similar to the previous
Lemma 10, we have the following norm bound.
Lemma 11. Assume that target function f∗ ∈ L4(Rd,Γ) is a Lipschitz function. We have

(i) E∥A1∥F ≤ C√
N

(
1 + d

n

)
and P

(
∥A1∥F ≥ C

(
1√
N

+ d
n
√
N

))
≤ C ′(e−cN + e−cn);

(ii) E∥A2∥F ≤ C
√

d
Nn , and when n ≥ d,

P
(
∥A2∥2F ≥ Cd

nN

)
≤ C ′(e−c

√
n + e−cN + ne−cd + d−1), (B.15)

for some constants C,C ′, c > 0 that only depend on µ1, σε and f∗.

Proof. For simplicity, we denote P>1f
∗(x) by f∗NL(x) and P>1f

∗(X) by f∗
NL ∈ Rn.

Part (i). The expectation follows from (B.4) and the following inequality,

∥A1∥F ≤ µ1µ
∗
1

n
√
N

∥X∥2∥β∗∥∥a∥ =
µ1µ

∗
1

n
√
N

∥X∥2∥a∥.

The probability bound also follows from the same argument as Lemma 10.

Part (ii). Following the proof of part (i) in Lemma 10, we can further decompose ∥A∥F into

∥A2∥F ≤ µ1

n
√
N

∥X∥∥a∥
(
µ∗
0

√
n+ ∥f∗

NL∥+ ∥ε∥
)
.

Since P>1f
∗ is a Lipschitz function as well, we can again apply the Lipschitz concentration (B.6).

Hence, combining (B.7), (B.5) and (B.6), one can conclude the bound on the expectation of ∥A2∥F .

For the tail bound, we consider matrices

A′
2 :=

µ1

n
√
N

X⊤f∗
NLa

⊤, A′′
2 :=

µ1

n
√
N

X⊤εa⊤, A′′′
2 :=

µ∗
0µ1

n
√
N

X⊤1a⊤,

whose squared Frobenius norms are given by ∥A′
2∥2F =

µ2
1

n2N a⊤af∗⊤
NLXX⊤f∗

NL, and

∥A′′
2∥2F =

µ2
1

n2N
a⊤aε⊤XX⊤ε, ∥A′′′

2 ∥2F =
µ∗2
0 µ

2
1

n2N
a⊤a1⊤XX⊤1.

Recall that (B.5) implies
P
(
∥a∥2 ≥ 4

)
≤ 2e−cN . (B.16)

Let us first address A′′
2 . Due to (B.16), it suffices to control ε⊤XX⊤ε, whose expectation with

respect to ε is σ2
ε Tr(XX⊤), and E[Tr(XX⊤)] = nd. Recalling the Lipschitz Gaussian concen-

tration for ∥X∥F and (B.5), we know that for some constant c > 0, P(Aε) ≥ 1 − 4e−cd, where
Aε := {∥X∥F ≤

√
nd, ∥X∥ ≤

√
n+

√
d}. This directly implies that

∥XX⊤∥F ≤ ∥X∥F ∥X∥ ≤
√
nd
(√

n+
√
d
)
,

conditioned on event Aε. Thus, the Hanson-Wright inequality (Theorem 6.2.1 [Ver18]) indicates

P
(
ε⊤XX⊤ε ≥ t+ 4σ2

εnd
)
≤ P

(
ε⊤XX⊤ε ≥ t+ σ2

εnd
∣∣∣ Aε

)
+ P(Ac

ε)
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≤P
(∣∣∣ε⊤XX⊤ε− σ2

ε∥X∥2F
∣∣∣ ≥ t

∣∣∣ Aε

)
+ 4e−cd ≤ 2e

−cmin

{
t2

nd(n+d)
, t

(
√

d+
√

n)2

}
+ 4e−cd.

Thus, by choosing t = nd and employing (B.16), we have

P
(
∥A′′

2∥2F ≥ Cd

nN

)
≤ 6e−cd + 2e−cN ,

where we simplified the expression using the assumption that n ≥ d.

As for ∥A′
2∥2F , ∥A′′′

2 ∥2F , the moment computation in [BES+22, Appendix B.3] yields

P
(
∥A′

2∥2F + ∥A′′′
2 ∥2F ≥ Cd

nN

)
≤ 2e−c

√
n + ne−cd + 2e−cN +

c

d
,

for some constant C, c > 0. The proof of (B.15) is completed by combining the above calculations.

B.2 Concentration of quadratic forms

In this section we establish a quadratic form concentration result which will be useful in the later
analysis. Given η = Θ(1), we define µ̄ = limd→∞∥f∗∥L2(Rd,Γ), and

θ1 :=

√
µ̄2ψ−1

1 + µ∗2
1 · µ1η, θ2 := µ1µ

∗
1η. (B.17)

These two constants will appear in Theorem 5 when defining δ(η, λ, ψ1, ψ2). Notice that by (2.3)
and Assumption 1, we have µ̄2 = µ∗2

1 + µ∗2
2 .

The following quadratic concentration lemma is an adaptation from Lemma 2.7 and Lemma A.1 in
[BS98]. We also refer readers to section B.5 in [BS10] for more details.
Lemma 12. Define u := ηµ1

n X⊤y where y = f∗(X) + ε. Under the Assumption 1, consider
any deterministic matrix D ∈ Rd×d with ∥D∥ ≤ C uniformly for some constant C > 0. Then, as
n/d→ ψ1 proportionally, we have that∣∣∣u⊤Du−

(
θ21 − θ22

)
trD − θ22β

⊤
∗ Dβ∗

∣∣∣, ∣∣∣β⊤
∗ Du− θ2β

⊤
∗ Dβ∗

∣∣∣ P→ 0,

where θ1 and θ2 are defined in (B.17). In addition, recalling that the nonlinear part of the target
function is given as f∗NL(x) := f∗(x)− µ∗

0 − µ∗
1⟨x,β∗⟩, we have that∣∣∣∣ 1nβ⊤

∗ DX⊤f∗NL(X)

∣∣∣∣ P→ 0.

We refer to Appendix B.4 in [BES+22] for the detailed proof of this lemma.

C Proof for small learning rate (η = Θ(1))

C.1 Gaussian equivalence for trained feature map

The Gaussian equivalence property. To validate Theorem 3, we follow the proof strategy of
[HL20], which established the GET for RF models using the Lindeberg approach and leave-one-out
arguments [EK18]. We remark that concurrent to our work, [MS22] proved the Gaussian equiva-
lence property for a larger model class under an assumed central limit theorem, which is verified for
two-layer RF or NTK models, and thus cannot directly imply our results on the trained features.

We first introduce the notations used in this section. Given weight matrix W and input x, we define
the feature vector ϕx = 1√

N
σ(W⊤x) ∈ RN ; similarly, given training data matrix X̃ ∈ Rn×d, the

kernel feature matrix is given as Φ = 1√
N
σ(X̃W ) ∈ Rn×N . Also, the Gaussian feature can be writ-

ten as: ϕ̄x = 1√
N

(
µ1W

⊤x+ µ2z
)

, and the corresponding matrix Φ̄ = 1√
N

(
µ1X̃W + µ2Z

)
,
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where z, [Z]i
i.i.d.∼ N (0, I) for i ∈ [n]. We emphasize that in our analysis W does not depend on

X̃; for notational simplicity, in this subsection we omit the accent in X̃ .

We establish the Gaussian equivalence property (Theorem 3) for kernel regression with respect to
certain trained feature map under general convex loss ℓ satisfying Assumption (A.4) in [HL20].
Consider the estimators obtained from ℓ2-regularized empirical risk minimization:

â ≜ arg mina
{ 1

n

n∑
i=1

ℓ(yi, ⟨a,ϕi⟩) +
λ

N
∥a∥22

}
, (C.1)

ā ≜ arg mina
{ 1

n

n∑
i=1

ℓ(yi, ⟨a, ϕ̄i⟩) +
λ

N
∥a∥22

}
, (C.2)

where we abbreviated the feature vector ϕi = ϕxi
= 1√

N
σ(W⊤xi), ϕ̄i = ϕ̄xi

=

1√
N

(
µ1W

⊤xi + µ2zi

)
for i ∈ [n].

In our setting, the first-layer weight W is no longer the initialized random matrix W 0. However,
we can still write the weight matrix as a perturbed version of W 0, i.e., W = W 0 + ∆, where
∆ ∈ Rd×N corresponds to the update to the weights that is independent of the training data X for
ridge regression (e.g., the weight matrix and the ridge regression estimator are trained on separate
data). We aim to show that under suitable conditions on ∆, the Gaussian equivalence theorem holds
for the kernel model defined by the perturbed features x → 1√

N
σ(x⊤W ).

Define the set of weight matrices perturbed from the Gaussian initialization W 0 as

W :=

{
W = W 0 +∆ ∈ Rd×N : ∥∆∥ = O(1), ∥∆∥2,∞ = O

(
polylog d√

d

)}
. (C.3)

Note that for learning rate η = Θ(1), we can verify that W is a high-probability event after one
gradient step, as characterized in Lemma 10. The following proposition is a reformulation and
extension of [HL20, Theorem 1], stating that the Gaussian equivalence property holds as long as W
remains “close” to the initialization W 0.
Proposition 13. Under Assumption 1, and P(W) ≥ 1− exp

(
−c log2N

)
for some c > 0, we have

that as n, d,N → ∞ proportionally,

Ex(f
∗(x)− ⟨ϕx, â⟩)

2
= (1 + od,P(1)) · Ex

(
f∗(x)− ⟨ϕ̄x, ā⟩

)2
,

where â and ā are defined in (C.1) and (C.2).

From Proposition 13 we know that Theorem 3 holds if the optimized weight matrix W falls into the
set W with sufficiently high probability. This condition is in turn verified by Lemma 10. Also note
that in our setting of MSE loss and λ > 0, the RHS of the above equation is bounded in probability.

Central limit theorem for trained features. Recall the single-index teacher assumption: yi =
σ∗(⟨xi,β∗⟩)+ εi for i ∈ [n]. Observe that for W ∈ W , the following near-orthogonality condition
between the neurons holds with high probability

∥W ∥ = O(1), and max
i̸=j

{⟨wi,wj⟩, ⟨wi,β∗⟩} = O
(

polylog d√
d

)
. (C.4)

Importantly, for W satisfying the near-orthogonality condition (C.4), we can utilize the following
central limit theorem from [HL20] derived via Stein’s method.
Proposition 14 (Theorem 2 in [HL20]). Given Assumption 1, suppose that the activation σ
is an odd function. Let {φd(x; y)} be a sequence of two-dimensional test functions, where
|φd(x; y)|, |φ′

d(x; y)| ≤ Bd(y)(1 + |x|)K for some function Bd and constant K ≥ 1, then for
W satisfying (C.4), and fixed vectors α ∈ RN ,β ∈ Rd with ∥β∥ = 1, we have∣∣∣Eφd(ϕ⊤

xα;x⊤β
)
− Eφd

(
ϕ̄

⊤
xα;x⊤β

)∣∣∣
=O

(
polylogN√

N
E[Bd(z)4]1/4

(
1 + ∥α∥2∞ +

(
1√
N
∥α∥

)K′))
,

where z ∼ N (0, 1), and K ′ only depends on constant K.
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We remark that our assumption of odd activation in Theorem 3 is required by the above Proposi-
tion 14, and we believe it could be removed with some extra work. Also, to verify the GET, we
take φd to be the test function defined in [HL20, Equation (50)]. In our case, by [HL20, Lemma
25] we know that there exists a function B satisfying the growth condition such that E[B(z)4] is
bounded. Therefore, in order to apply Proposition 14 and obtain the Gaussian equivalence theorem
(see derivation in [HL20, Section 2]), we only need to control the ℓ2-norm and ℓ∞-norm of certain
vector α of interest. The following subsection establishes the required norm bound.

Norm control along the interpolation path. Following [HL20], we construct an interpolating
sequence between the nonlinear and linear features model. For any 0 ≤ k ≤ n, we define

g∗
k ≜ arg ming∈RN

{
k∑
i=1

ℓ(yi, ⟨g, ϕ̄i⟩) +
n∑

j=k+1

ℓ(yj , ⟨g,ϕj⟩) +
n

N

(
λ∥g∥22 +Q(g)

)}
, (C.5)

where we introduce a perturbation term

Q(g) ≜ γ1g
⊤
(
µ2
1W

⊤W + µ2
2I
)
g + γ2µ1

√
Nβ⊤

∗ Wg.

Note that when γ1 = γ2 = 0, setting k = 0 recovers the estimator on nonlinear features â, and
similarly, setting k = n gives the estimator on the linear Gaussian features ā.

We remark that the perturbation Q(g) allows us to compute the prediction risk by taking the deriva-
tive of the objective w.r.t. γ1, γ2 around 0 — see [HL20, Proposition 1] for details. Note that when
∥W ∥ = Θ(1), we may choose γ∗ = N

n · λ/4

µ2
1∥W ∥2+µ2

2

> 0 such that for |γ1| ≤ γ∗, |γ2| ≤ 1,

the overall objective (C.5) is λ
2 -strongly convex (i.e., the strongly-convex regularizer dominates the

concave part of Q(g) when γ1 < 0).

While most of the statements in [HL20] hold for deterministic weight matrices satisfying (C.4), the
ℓ∞-norm bound relies on the (sub-)Gaussian property of W and thus only applies to RF models.
The following lemma establishes a high probability upper bound on the ℓ∞-norm of g∗

k on our
trained feature map.

Lemma 15. Given Assumption 1, if we further assume that 1− P(W) ≤ exp
(
−c log2N

)
for some

constant c > 0, then there exists some constant c′ > 0 such that for any 0 ≤ k ≤ n,

P(∥g∗
k∥∞ ≥ polylogN) ≤ exp

(
−c′ log2N

)
.

Proof. We follow the proof of [HL20, Lemma 23] and first analyze one coordinate of g∗
k defined by

(C.5), which WLOG we select to be the last coordinate. For concise notation, we instead augment
the weight matrix with an (N + 1)-th column and study the corresponding [g∗

k]N+1. Denote the
weight vector wN+1 = w0

N+1 + δN+1, where w0
N+1 is the (N + 1)-th column of the initialized

W 0, and δ is the perturbation (i.e., gradient update for W ).

To further simplify the notation, we define ri ∈ RN , where ri =
1√
N

(
µ1W

⊤xi + µ2zi

)
, zi

i.i.d.∼
N (0, I) for i ≤ k, and ri =

1√
N
σ(W⊤xi) for k < i ≤ n. Recall that W = W 0 +∆, in which

the initialization [W 0]i,j = N (0, d−1); we denote the i-th feature vector at initialization W 0 by r0i .
Let f ∈ Rn be the feature vector at the last coordinate, i.e., fi = [f ]i =

1√
N

(
µ1x

⊤
i wN+1 + µ2zi

)
,

zi
i.i.d.∼ N (0, 1) for i ≤ k, and fi = [f ]i =

1√
N
σ(x⊤

i wN+1) for k < i ≤ n; similarly, we introduce

a superscript in f0 ∈ Rn to denote the features produced by the initial w0
N+1.

The (N + 1)-th coordinate of interest, which we denote as u∗, can be written as the solution to the
following optimization problem,

u∗ = argmin
u

min
g

n∑
i=1

ℓ
(
r⊤i g + fiu; yt

)
+
n

N

(
λ∥g∥2 +Q(g) + λu2 + q(u) +

(
2γ1µ

2
1w

⊤
N+1Wg

)
u
)
,
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where we defined q(u) = γ1

(
µ2
1∥wN+1∥2 + µ2

2

)
u2+γ2

(
µ1

√
Nβ⊤

∗ wN+1

)
u.By [HL20, Equation

(249)], we know that for W ∈ W ,

|u∗| ≲ 1

λ

∣∣∣∣∣2γ1µ2
1w

⊤
N+1Wg∗

k + γ2µ1

√
Nβ⊤

∗ wN+1 +

n∑
i=1

ℓ′
(
r⊤i g

∗
k; yi

)
fi

∣∣∣∣∣. (C.6)

We control each term on the right hand side of (C.6) separately. Note that W ∈ W implies
that ∥δN+1∥ = O

(
polylogd√

d

)
due to the definition (C.3). Since

∣∣∣β⊤
∗ wN+1

∣∣∣ ≤
∣∣∣β⊤

∗ w
0
N+1

∣∣∣ +
∥δN+1∥∥β∗∥, by combining [HL20, Equation (252)] and our assumption that ∥β∗∥ = 1, we know
that for some constant c1 > 0 and large N ,

P
(∣∣∣√Nβ⊤

∗ wN+1

∣∣∣ ≥ polylogN
)
≤ exp

(
−c1 log2N

)
.

Similarly,
∣∣w⊤

N+1Wg∗
k

∣∣ ≤ ∣∣∣w0⊤

N+1Wg∗
k

∣∣∣+ ∥δN+1∥∥Wg∗
k∥, and therefore by [HL20, Lemma 17]

(note that the lemma only requires W to satisfy (C.4)), we have

P
(∣∣w⊤

N+1Wg∗
k

∣∣ ≥ polylogN
)
≤ exp

(
−c2 log2N

)
,

for constant c2 > 0. To control the sum of ℓ′ in (C.6), for simplicity we define θ∗ ∈ Rn, where
θ∗i = [θ∗]i = ℓ′

(
r⊤i g

∗
k; yi

)
for i ∈ [n]. Notice that

∣∣x⊤
i wj − x⊤

i w
0
j

∣∣ =
∣∣x⊤
i δj

∣∣. Due to the
assumed independence between X and ∆, and the assumption on P(W), we know that

∣∣x⊤
i δj

∣∣ ≲
∥δj∥ · logN = O

(
polylogN√

N

)
with high probability. In addition, since the activation function σ is

Lipschitz, for k < i ≤ n, we may take a union bound over the weight vectors wj and obtain

P
(√

N
∥∥ri − r0i

∥∥ ≥ polylogN
)
≤ N · exp

(
−c3 log2N

)
, (C.7)

for some c3 > 0. The case where i ≤ k (i.e., the features are linear) follows from the exact same
argument. Also, because of

∣∣r⊤i g∗
k

∣∣ ≤ ∣∣r0⊤i g∗
k

∣∣ + ∥∥ri − r0i
∥∥∥g∗

k∥, we know that [HL20, Equation
(257)], [HL20, Lemma 17], and (C.7) together ensure that

P(|θ∗i | ≥ polylogN) ≤ exp
(
−c4 log2N

)
, (C.8)

for some constant c4 > 0 and large enoughN . Now we can control
∣∣∑n

i=1 ℓ
′(r⊤i g∗

k; yi
)
fi
∣∣ in (C.6).

Again using the Lipschitz property of activation σ, we get∣∣∣∣∣
n∑
i=1

ℓ′
(
r⊤i g

∗
k; yi

)
(fi − f0i + f0i )

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

ℓ′
(
r⊤i g

∗
k; yi

)
f0i

∣∣∣∣∣+
∣∣∣∣∣
n∑
i=1

ℓ′
(
r⊤i g

∗
k; yi

)(
fi − f0i

)∣∣∣∣∣
≲

∣∣∣∣∣
n∑
i=1

θ∗i f
0
i

∣∣∣∣∣+ 1√
N

n∑
i=1

|θ∗i | ·
∣∣x⊤
i δN+1

∣∣.
Given (C.8) (which implies that 1√

N
∥θ∗∥ = O(polylogN) with high probability), it has been shown

in [HL20, Proof of Lemma 23] that P
(∣∣∑n

i=1 θ
∗
i f

0
i

∣∣ ≥ polylogN
)
≤ exp

(
−c5 log2N

)
for some

constant c5 > 0. Hence, by taking union bound over the failure events |θ∗i | ≥ polylogN and√
N ·

∣∣x⊤
i δN+1

∣∣ ≥ polylogN , we arrive at the following high probability upper bound on u∗ in
terms of (C.6):

P(|u∗| ≥ polylogN) ≤ n2N · exp
(
−c6 log2N

)
,

for some constant c6 > 0 and all large N . Finally, since the assumption on ∥∆∥2,∞ implies control
of ∥δi∥ for all i ∈ [N ], we complete the proof by a union bound over the N coordinates.

Putting things together. Denote the optimal value of objective (C.5) by

R∗
k ≜ ming∈RN

{
1

n

k∑
i=1

ℓ(yi, ⟨g, ϕ̄i⟩) +
1

n

n∑
j=k+1

ℓ(yj , ⟨g,ϕj⟩) +
1

N

(
λ∥g∥22 +Q(g)

)}
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From [HL20, Section 2.3], we know that Proposition 14 and Lemma 15 imply that for any W ∈ W
and 1 ≤ k ≤ n, the discrepancy due to one swap can be bounded as∣∣∣E[ψ(R∗

k)]− E
[
ψ(R∗

k−1)
]∣∣∣ = O

(
polylogN
N3/2

)
,

for bounded test function ψ with bounded first and second derivatives. As there are n = Θ(N)
total swaps to be made, we can obtain the desired Gaussian equivalence ([HL20, Theorem 1]) if the
failure probability (1− P(W)) is sufficiently small. Hence we conclude Proposition 13.

Proof of Theorem 3. Finally, we establish Theorem 3 by verifying that in our setting the event W
occurs with high probability. For one gradient step on the squared loss with learning rate η = Θ(1),
Lemma 10 together with ∥β∗∥ = 1 entail that for proportional n, d,N , there exists some constant
c, C > 0 such that

P(∥W 1∥ ≥ C) ≤ exp(−cd),

P
(
max
i ̸=j

∣∣⟨w1
i ,w

1
j ⟩
∣∣ ≥ C log2 d√

d

)
≤ exp

(
−c log2 d

)
,

P
(
max
i

∣∣⟨w1
i ,β∗⟩

∣∣ ≥ C log2 d√
d

)
≤ exp

(
−c log2 d

)
,

where w1
i stands for the i-th column of W 1 for i ∈ [N ]. In addition, under Assumption 1, when λ >

0, it is straightforward to verify that prediction risk of the Gaussian equivalent model RGE(λ)
P→ Cλ

for some finite constant Cλ > 0 as n,N, d → ∞ proportionally. Theorem 3 therefore follows from
Proposition 13 (or equivalently, Equation (16) in [HL20, Theorem 1]).

C.2 Prediction risk under Gaussian equivalence

Now we compute the prediction risk of the CK ridge estimator on the feature map after one gradient
step x → σ(W⊤

1 x). Recall the closed-form solution of the ridge regression estimator:

â = arg mina =

(
Φ⊤Φ+

λn

N
I

)−1

Φ⊤ỹ,

where Φ = 1√
N
σ(X̃W 1) ∈ Rn×N , X̃ ∈ Rn×d denotes a new batch of training data indepen-

dent of W 1, and ỹ = f∗(X̃) + ε̃ ∈ Rn is the corresponding training labels (following the same
Assumption 1). Also, recall the following Gaussian covariates model:

Φ̄ ≜
1√
N

(
µ1X̃W 1 + µ2Z

)
∈ Rn×N ; ā ≜

(
Φ̄

⊤
Φ̄+

λn

N
I

)−1

Φ̄
⊤
ỹ.

where [Z]ij ∼ N (0, 1) independent of X̃ and W 1. Due to the Gaussian equivalence property (4.2),
we can analyze the prediction risk of the Gaussian covariates model, which we denote as RGE(λ).

Bias-variance decomposition. The following lemma simplifies the prediction risk RGE(λ) and
separates the bias (due to learning the teacher f∗) and variance (due to the label noise ε̃).
Lemma 16. Under Assumption 1, we have

RGE(λ)− (B1 +B2 + V )
P→ 0,

where the bias and variance terms are given as

B1 = µ∗2
1 + µ∗2

2 − 2µ1µ
∗
1√

N
β⊤
∗ W 1

(
Σ̂Φ + λ̃I

)−1

Φ̄
⊤
f∗. (C.9)

B2 = f∗⊤Φ̄
(
Σ̂Φ + λ̃I

)−1

ΣΦ

(
Σ̂Φ + λ̃I

)−1

Φ̄
⊤
f∗. (C.10)

V = σ2
ε Tr

((
Σ̂Φ + λ̃I

)−1

Σ̂Φ

(
Σ̂Φ + λ̃I

)−1

ΣΦ

)
. (C.11)

and we defined λ̃ = λn
N , Σ̂Φ = Φ̄

⊤
Φ̄,ΣΦ = 1

N

(
µ2
1W

⊤
1 W 1 + µ2

2I
)

, and [f∗]i = f∗(x̃i).
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Proof. First note that RGE is given by [HL20, Equation (57)]:

RGE = Ex

(
σ∗(x⊤β∗)− ϕ̄

⊤
x ā
)2

(C.12)

=Ez1,z2

(
σ∗(z1)−

µ1√
N

β⊤
∗ W 1ā · z1 +

√
1

N
ā⊤(µ2

1W
⊤
1 W 1 + µ2

2I −µ2
1W

⊤
1 β∗β

⊤
∗ W 1)ā ·z2

)2

where z1, z2
i.i.d.∼ N (0, 1). Because of the independence between z1, z2, we only need to show the

following as n, d,N → ∞ proportionally:
1√
N

β⊤
∗ W 1

(
Σ̂Φ + λ̃I

)−1

Φ̄
⊤
ε̃

P→ 0,

f∗⊤Φ̄
(
Σ̂Φ + λ̃I

)−1

ΣΦ

(
Σ̂Φ + λ̃I

)−1

Φ̄
⊤
ε̃

P→ 0.

Both equations follow from the general Hoeffding inequality for ε̃ (e.g., see Theorem 2.6.3 [Ver18])

since both
∥∥∥∥β⊤

∗ W 1

(
Σ̂Φ + λ̃I

)−1

Φ̄
⊤
∥∥∥∥ and

∥∥∥∥√N · f∗⊤Φ̄
(
Σ̂Φ + λ̃I

)−1

ΣΦ

(
Σ̂Φ + λ̃I

)−1

Φ̄
⊤
∥∥∥∥

are bounded by some constant with high probability when λ > 0.

Also, the risk lower bound for the Gaussian equivalent model is a direct consequence of (C.12).

Proof of Fact 4. Under Assumption 1, we may write σ∗(z) = µ∗
1z+σ∗

⊥(z), where Ez[zσ∗
⊥(z)] =

0,Ez[σ∗
⊥(z)

2] = µ∗2
2 for z ∼ N (0, 1). Hence from (C.12) we know that

RGE ≥ Ez1
(
σ∗(z1)−

µ1√
N

β⊤
∗ W 1ā · z1

)2

=

(
µ∗
1 −

µ1√
N

β⊤
∗ W 1ā

)2

+ µ∗2
2 .

This implies that RGE ≥ ∥P>1f
∗∥2L2 = µ∗2

2 with probability one as d→ ∞.

In the following sections, we compare the bias and variance terms given in (C.9), (C.10) and (C.11)
before and after one feature learning step. We first simplify the calculation by showing that the
values of these equations remain asymptotically unchanged if we remove certain low-order terms.

Stability of the bias and variance. We now control the errors in the bias and variance terms after
ignoring the lower-order terms in the weight matrix.

Recall that W 1 = W 0 + η
√
NG0; we introduce W̃ := W 0 + η

√
NA, in which we ig-

nored the terms B and C in the gradient matrix (B.1). We also denote the corresponding CK
features and kernel matrix as Φ̃ := 1√

N

(
µ1X̃W̃ + µ2Z

)
, Σ̃Φ := Φ̃

⊤
Φ̃, and the bias terms

as B̃1, B̃2 (parallel to (C.9) and (C.10)). Finally, we write the initial random feature matrix as
Φ̄0 := 1√

N

(
µ1X̃W 0 + µ2Z

)
, Σ̂Φ0

:= Φ̄
⊤
0 Φ̄0, and refer to the variance of the initialized RF

ridge estimator as V0.
Lemma 17. Given Assumption 1 and λ > 0. Then for η = Θ(1), we have

|B1 − B̃1| = od,P(1), |B2 − B̃2| = od,P(1), |V − V0| = od,P(1).

Proof. To start with, recall that the operator norms of all matrices W 1,W 0, W̃ , Φ̄, Φ̄0 and Φ̃
are uniformly bounded by some constants with high probability. We first consider the change in
Frobenius norm of first-layer W to analyze the difference between V and V0. By Lemma 10,
standard calculation yields:∥∥∥W⊤

1 W 1 −W⊤
0 W 0

∥∥∥
F
= Od,P(1);

∥∥Φ̄− Φ̄0

∥∥
F
= Od,P(1);

∥∥∥Σ̂Φ − Σ̂Φ0

∥∥∥
F
= Od,P(1).

Utilizing the above estimates, we obtain∥∥∥∥(Σ̂Φ + λ̃I
)−1

Φ̄
⊤ −

(
Σ̂Φ0

+ λ̃I
)−1

Φ̄
⊤
0

∥∥∥∥
F
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≤
∥∥Φ̄− Φ̄0

∥∥
F

∥∥∥∥(Σ̂Φ + λ̃I
)−1

∥∥∥∥+ ∥∥Φ̄0

∥∥∥∥∥∥(Σ̂Φ + λ̃I
)−1

−
(
Σ̂Φ0

+ λ̃I
)−1

∥∥∥∥
F

(i)
= Od,P(1).

where (i) is due to our assumption that λ > 0. Denote M :=
(
Σ̂Φ + λ̃I

)−1

Φ̄
⊤ and likewise

M0 :=
(
Σ̂Φ0

+ λ̃I
)−1

Φ̄
⊤
0 . Then we have

|V − V0|
(ii)

≲
1

N

∣∣∣Tr(MM⊤
(
µ2
1W

⊤
1 W 1 + µ2

2I
)
−M0M

⊤
0

(
µ2
1W

⊤
0 W 0 + µ2

2I
))∣∣∣

≲
1

N

∥∥∥M0M
⊤
0

∥∥∥
F
·
∥∥∥W⊤

1 W 1 −W⊤
0 W 0

∥∥∥
F
+

1

N

∥∥∥MM⊤ −M0M
⊤
0

∥∥∥
F
·
∥∥∥µ2

1W
⊤
1 W 1 + µ2

2I
∥∥∥
F

= od,P(1),

as n, d,N → ∞ at comparable rate, where we dropped the constant σ2
ε in (ii).

For the bias terms, we consider perturbation on W 1 in the operator norm. Again, Lemma 10 entails∥∥∥W⊤
1 W 1 − W̃

⊤
W̃
∥∥∥ = od,P(1);

∥∥∥Φ̄− Φ̃
∥∥∥ = od,P(1);

∥∥∥Σ̂Φ − Σ̃Φ

∥∥∥ = od,P(1).

Define M̃ :=
(
Σ̃Φ + λ̃I

)−1

Φ̃
⊤

. Following the same procedure, we obtain

∥∥∥M − M̃
∥∥∥ =

∥∥∥∥(Σ̂Φ + λ̃I
)−1

Φ̄
⊤ −

(
Σ̃Φ + λ̃I

)−1

Φ̃
⊤
∥∥∥∥

≤ ∥Φ̄− Φ̃∥
∥∥∥∥(Σ̂Φ + λ̃I

)−1
∥∥∥∥+ ∥Φ̃∥

∥∥∥∥(Σ̂Φ + λ̃I
)−1

−
(
Σ̃Φ + λ̃I

)−1
∥∥∥∥ = od,P(1).

Based on this result, it is straightforward to show that

|B1 − B̃1| ≲
∥∥∥W 1 − W̃

∥∥∥∥M̃∥+ ∥W 1∥
∥∥∥M − M̃

∥∥∥ = od,P(1).

Similarly, for B2, we have

|B2 − B̃2| ≲
1

N
∥f∗∥2 ·

∥∥∥M⊤
(
µ2
1W

⊤
1 W 1 + µ2

2I
)
M − M̃

⊤(
µ2
1W̃

⊤
W̃ + µ2

2I
)
M̃
∥∥∥

(iii)

≲ Od,P(1) ·
(
(∥M∥+ ∥M̃∥)

∥∥∥W⊤
1 W 1

∥∥∥∥∥∥M − M̃
∥∥∥+ ∥M̃∥2

∥∥∥W⊤
1 W 1 − W̃

⊤
W̃
∥∥∥)

= od,P(1),

where in (iii) we used the fact that σ∗ is Lipschitz and ∥β∗∥ = 1 (for example see [BMR21,
Lemma A.12]). The statement is proved by combining all the above calculations.

Lemma 17 entails that the variance term in the risk does not change after one gradient step with
η = Θ(1), and for the bias terms, we may consider the rank-1 approximation of the gradient matrix
given in Proposition 2 instead. In the following, we use this property to simplify the risk expressions.

C.3 Precise characterization of prediction risk

Now we compute the asymptotic expressions of the bias and variance terms defined in Lemma 16.
As previously remarked, due to the dependence between the feature matrix Φ and the teacher β∗, we
cannot naively employ a rotation invariance argument to simplify the calculation (as in [MM22]).
Instead, based on the Gaussian equivalence property, we first make use of the Woodbury formula
to separate the low-rank terms in the risk expressions. In particular, because of Lemma 10 and
Lemma 17, we may simply consider the rank-one approximation of the first-step gradient: W 1 =
W 0+ua⊤, where u = µ1η

n X⊤y and y = f∗(X)+ε satisfying Assumption 1. Notice here u, X̃ ,
W 0 and a are mutually independent. To distinguish the terms in the CK ridge regression estimator

31



using the initial weights W 0 and the trained weights W 1, in this section we denote

Φ̄ :=
1√
N

(
µ1X̃W 1 + µ2Z

)
, Φ0 :=

1√
N

(
µ1X̃W 0 + µ2Z

)
,

Σ̂Φ := Φ̄
⊤
Φ̄, Σ̂Φ0 := Φ⊤

0 Φ0 ∈ RN×N ,

R :=
(
Σ̂Φ + λ̃I

)−1

, R0 :=
(
Σ̂Φ0

+ λ̃I
)−1

,

ΣΦ :=
1

N

(
µ2
1W

⊤
1 W 1 + µ2

2I
)
, ΣΦ0 :=

1

N

(
µ2
1W

⊤
0 W 0 + µ2

2I
)
.

(C.13)

Also, we write f∗ := f∗(X̃) ∈ Rn, which can be decomposed into f∗ = µ∗
1X̃β∗ + f∗

NL, where
[f∗

NL]i = P>1f
∗(x̃i) (recall that µ∗

0 = 0 by Assumption 1). Furthermore, we introduce the follow-
ing terms which will be important in the decomposition of the prediction risk:

T1 := a⊤R0a, T2 :=
µ2
1

N
u⊤X̃

⊤
Φ0R0Φ

⊤
0 X̃u,

T3 :=
µ2
1

N
u⊤X̃

⊤
X̃u, T4 := µ∗

1β
⊤
∗ u,

T5 :=
µ2
1µ

∗
1

N
β⊤
∗ X̃

⊤
X̃u, T̃5 :=

µ2
1

N
f∗⊤
NLX̃u,

T6 :=
µ1µ

∗
1

2
√
N

β⊤
∗

(
W 0R0Φ

⊤
0 X̃ + X̃

⊤
Φ0R0W

⊤
0

)
u, T̃6 :=

µ1

2
√
N

f∗⊤
NLΦ0R0W

⊤
0 u, (C.14)

T7 :=
µ2
1µ

∗
1

N
u⊤X̃

⊤
Φ0R0Φ

⊤
0 X̃β∗, T̃7 :=

µ2
1

N
u⊤X̃

⊤
Φ0R0Φ

⊤
0 f

∗
NL,

T8 :=
N

µ2
1

a⊤R0ΣΦ0
R0a, T9 :=

µ1

2
√
N

u⊤
(
W 0R0Φ

⊤
0 X̃+X̃

⊤
Φ0R0W

⊤
0

)
u,

T11 := u⊤X̃
⊤
Φ0R0ΣΦ0

R0Φ
⊤
0 X̃u, T10 := ∥u∥2,

T12 := µ∗
1u

⊤X̃
⊤
Φ0R0ΣΦ0

R0Φ
⊤
0 X̃β∗, T̃12 := u⊤X̃

⊤
Φ0R0ΣΦ0

R0Φ
⊤
0 f

∗
NL.

In the following subsections we will characterize the limiting value of each Ti as n, d,N → ∞.

C.3.1 Concentration and simplification

In the following lemma, we show that each Ti will concentrate around some T 0
i given by

T 0
1 := trR0, T 0

2 :=
µ2
1

N
θ21 tr

(
X̃

⊤
Φ0R0Φ

⊤
0 X̃

)
,

T 0
3 :=

µ2
1θ

2
1

N
tr
(
X̃

⊤
X̃
)
, T 0

4 := µ∗
1θ2,

T 0
5 :=

µ2
1µ

∗
1θ2
N

tr
(
X̃

⊤
X̃
)
, T 0

6 :=
µ1µ

∗
1θ2√
N

tr
(
W 0R0Φ

⊤
0 X̃

)
,

T 0
7 :=

µ2
1µ

∗
1θ2
N

tr
(
X̃

⊤
Φ0R0Φ

⊤
0 X̃

)
, T 0

8 :=
N

µ2
1

tr
(
R0ΣΦ0

R0

)
,

T 0
9 :=

µ1θ
2
1√
N

tr
(
W 0R0Φ

⊤
0 X̃

)
, T 0

10 := θ21,

T 0
11 := θ21 tr

(
X̃

⊤
Φ0R0ΣΦ0

R0Φ
⊤
0 X̃

)
, T 0

12 := µ∗
1θ2 tr

(
X̃

⊤
Φ0R0ΣΦ0

R0Φ
⊤
0 X̃

)
,

(C.15)

where scalars θ1 and θ2 are defined in (B.17). In what follows, we first use the following simpli-
fication of quadratic forms to obtain the desired T 0

i . Here, we extend Lemma 12 to cover the case
where matrix D is also random to establish the concentrations for all Ti’s in (C.14).
Lemma 18. Consider a random matrix D ∈ Rd×d that does not rely on β∗ and is rotational

invariant in distribution, namely D
d
= O⊤DO for any random rotational matrix O ∈ Rd×d.
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Assume that ∥D∥ ≤ C with high probability for some universal constant C > 0. Then as d→ ∞,∣∣∣β⊤
∗ Dβ∗ − trD

∣∣∣ P→ 0,

Also as a corollary, we have
∣∣Ti − T 0

i

∣∣ P→ 0 as n, d,N → ∞ proportionally for all 1 ≤ i ≤ 12,
where Ti, T 0

i are defined in (C.14) and (C.15).

Proof. Given any rotational matrix O ∈ Rd×d following the Haar distribution, notice that
β⊤
∗ Dβ∗ = β

′⊤
∗ O⊤DOβ′

∗
d
= β

′⊤
∗ Dβ′

∗, where β′
∗ := O⊤β∗. Consequently, we can equiva-

lently take β∗ to be a random vector uniformly distributed on the unit sphere Sd−1. Notice that
β∗ ∼ Unif(Sd−1) satisfies the convex concentration property

P(|f(β∗)− E[f(β∗)]| > t) ≤ e−cdt
2

for any 1-Lipschitz function f . Therefore, conditioned on the event ∥D∥ ≤ C, by Theorem
2.5 in [Ada15], one can conclude that

∣∣∣β⊤
∗ Dβ∗ − Eβ∗ [β

⊤
∗ Dβ∗]

∣∣∣ P→ 0. Finally, note that

Eβ∗ [β
⊤
∗ Dβ∗] = trD because the covariance of the uniform random vector on Sd−1 is 1

dI;
this concludes the proof. Convergence of each Ti to the corresponding T 0

i follows from a direct
application of Lemma 12 and this lemma.

Finally, following the above rotation invariance argument and applying Lemma 4.9 in [MZ20], we
can verify that each T̃i in (C.14) asymptotically vanishes in probability for i = 5, 6, 7, 12.

Lemma 19. Under Assumption 1, as n, d,N → ∞ proportionally, we have

|T̃5|, |T̃6|, |T̃7|, |T̃12|
P→ 0.

The proof of Lemma 19 is analogous to the proof of Lemma A.5 in [MZ20]. We omit the proof of
this lemma here for the sake of clarity and compactness of current paper. For a detailed proof of this
lemma, see Appendix C.4 in [BES+22].

C.3.2 Risk calculation via linear pencils

In this section, we derive analytic expressions of the terms Ti defined in (C.14) as n, d,N → ∞
proportionally. In particular, the exact values are described by self-consistent equations defined in
the following proposition.

Proposition 20. Given Assumption 1 and λ > 0. For Ti defined in (C.14) and 1 ≤ i ≤ 12, we have

Ti → τi,

in probability, as n/d→ ψ1 and N/d→ ψ2, where τi’s are defined as follows

τ1 :=
ψ1

ψ2
m1 +

(
ψ2

ψ1
− 1

)
1

λ
, τ2 := µ2

1θ
2
1

ψ1

ψ2

(
1− λ

ψ1

ψ2
m2

)
, τ3 := µ2

1θ
2
1

ψ1

ψ2
,

τ4 := µ∗
1θ2, τ5 := µ2

1µ
∗
1θ2

ψ1

ψ2
, τ6 := µ∗

1θ2

(
1− m2

m1

)
,

τ7 := µ2
1µ

∗
1θ2

ψ1

ψ2

(
1− λ

ψ1

ψ2
m2

)
, τ8 :=

m1 +
ψ1

ψ2
λm′

1(
µ1

ψ1

ψ2
λm1

)2 , τ9 := θ21

(
1− m2

m1

)
,

τ10 := θ21, τ11 := θ21

(
1− 2m2

m1
− m′

2

m2
1

)
, τ12 := µ∗

1θ2

(
1− 2m2

m1
− m′

2

m2
1

)
,

where θ1 and θ2 are defined by (B.17). All scalars τi’s are only determined by parameters
ψ1, ψ2, η, µ1, µ2, λ, and m1,m2,m

′
1,m

′
2. Here, m1 := m1

(
λψ1

ψ2

)
, m′

1 := m′
1

(
λψ1

ψ2

)
, m2 :=
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m2

(
λψ1

ψ2

)
and m′

2 := m′
2

(
λψ1

ψ2

)
, where m1(z) and m2(z) ∈ C+ ∪ R+ are the solutions to the

following self-consistent equations for z ∈ C+ ∪ R+,
1

ψ1
(m1(z)−m2(z))(µ

2
2m1(z) + µ2

1m2(z)) + µ2
1m1(z)m2(z)(zm1(z)− 1) = 0,

ψ2

ψ1

(
µ2
1m1(z)m2(z) +

1

ψ1
(m2(z)−m1(z))

)
+ µ2

1m1(z)m2(z)(zm1(z)− 1) = 0. (C.16)

Proof. First note that due to Lemma 18, it suffices to consider the limits of T 0
i instead. Con-

vergence of T3, T4, T5, and T10 directly follows from Lemma 12, Lemma 18 and the Marchenko-
Pastur law for 1

nX̃
⊤
X̃ . In addition, T7, T9 and T12 are analogous to T2, T6 and T11, respectively.

To characterize the remaining T1, T2, T6, T8 and T11, we adopt the linear pencil method in ba-
sis of operator-valued free probability theory [FOBS06, HFS07, MS17, HMS18]. Specifically, the
linear pencil allows us to relate the quantities of interest to the trace of certain large block matri-
ces; in our case, variants of T1, T2, T6, T8, T11 have already appeared in prior constructions from
[AP20, BM21, TAP21], which we build upon in the following calculation.

For z ∈ C+ ∪ R+, let us define R0(z) :=
(
Σ̂Φ0

+ zI
)−1

and R̄0(z) :=
(
Φ0Φ

⊤
0 + zI

)−1

∈
Rn×n. Note that due to the Gaussian equivalent property, as n,N, d → ∞ at comparable rate, the
limit of tr R̄0(z) is exactly the Stieltjes transform of the limiting spectrum of the (nonlinear) CK,
namely ΦΦ⊤ ∈ Rn×n, evaluated at −z. We denote m1(z) := limn→∞ tr R̄0(z). Similarly, the
limit of trR0(z) is the companion Stieltjes transform ofm1(z), as Φ0Φ

⊤
0 and Φ⊤

0 Φ0 have the same
non-zero eigenvalues. We denote τ1(z) := limn→∞ trR0(z). The defined Stieltjes transforms will
be evaluated at z = ψ1

ψ2
λ. Also recall the the following relationship between R0(z) and R̄0(z),

τ1(z) =
ψ1

ψ2
m1(z) +

(
1− ψ1

ψ2

)
1

z
. (C.17)

Analogously, we introduce the following quantities: for any z ∈ C+ ∪ R+, as n,N, d → ∞
proportionally,

m2(z) := lim
n→∞

tr

(
1

d
X̃X̃

⊤
R̄0(z)

)
, τ2(z) : = lim

n→∞
tr

(
1

n
X̃

⊤
Φ0R0(z)Φ

⊤
0 X̃

)
,

τ6(z) := lim
n→∞

1√
N

tr
(
W 0R0(z)Φ

⊤
0 X̃

)
, τ8(z) : = lim

n→∞
tr
(
R0(z)

(
µ2
1W

⊤
0 W 0 + µ2

2I
))
.

It is straightforward to verify all the above limits exist and are finite. Finally, in the following
analysis we will repeatedly make use of the following identities:

R0(z)Φ
⊤
0 =Φ⊤

0 R̄0(z),

X̃
⊤
Φ0R0(z)Φ

⊤
0 X̃ =X̃

⊤
X̃ − zX̃

⊤
R̄0(z)X̃.

The analyses of individual Ti is based on the risk computation in [AP20, TAP21]. For instance, to
match our situation, we can simply set σW2

= 0 in [AP20] (which considered the sum of the CK
and the first-layer NTK). In the following, we give a concrete example where we derive the limit of
T6. We refer to the proof of Proposition 35 in [BES+22] for other omitted parts of this computation.

Analysis of T6. For T6, we utilize the computations in Appendix I.6.1 of [TAP21] by setting the
covariance Σ = I . More precisely, based on Equations (S370) and (S418) in [TAP21],

µ1τ6(z) =1−GK
−1

6,6 =
zµ2

1ψ1m1(z)τ1(z)

1 + zµ2
1ψ1m1(z)τ1(z)

(i)
= zµ2

1ψ1m1(z)τ1(z)
(ii)
=1− m2(z)

m1(z)
, (C.18)

where (i) and (ii) are both due to (C.16) and (C.17). Hence we obtain the formulae of τ6 and τ9.

Having obtained the asymptotic expressions of each term in the decomposition of the prediction
risk, we can now compute the difference in the prediction risk of CK ridge regression before and
after one gradient descent step, i.e., R0(λ) −R1(λ) in Theorem 5. The following statement is the
complete version of Theorem 5.
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Theorem 21. Given Assumption 1, consider ψ1, ψ2 ∈ (0,+∞). Fix η = Θ(1) and λ > 0. Denote
R0(λ) and R1(λ) as the prediction risk of CK ridge regression in (4.1) using initial weight W 0 and
first-step updated W 1, respectively. The difference between these two risk values satisfies

R0(λ)−R1(λ)
P→ δ(η, λ, ψ1, ψ2),

where δ is a non-negative function of η, λ, ψ1, ψ2 ∈ (0,+∞) with parameters µ∗
1, µ1, µ2 given as

δ(η, λ, ψ1, ψ2) =
τ1(τ7 − τ5)(τ4 + τ12 − 2τ6)

τ1(τ2 − τ3)− 1

− τ1(τ7 − τ5)(τ4 + τ12 − 2τ6) + (τ7 − τ5)
2τ8

(τ1(τ2 − τ3)− 1)
2 . (C.19)

Here the scalars τi’s are defined in Proposition 20. Furthermore, δ(η, λ, ψ1, ψ2) = 0 if and only if
at least one of µ∗

1, µ1 and η is zero.

Proof. Due to Lemma 17, we can see that variance V is unchanged after one gradient descent step
with η = Θ(1). Hence we only need to analyze the changes in (C.9) and (C.10). Also, due to
Lemma 17 and Lemma 10, we can ignore B and C in W 1 and take W 1 := W 0 + ua⊤, where
u = µ1η

n X⊤y and y = f∗(X) + ε, without changing the bias terms.

Separation of low-rank terms. First note that if µ1 = 0, then u = 0 and therefore R0(λ) =
R1(λ) as n → ∞. In the following, we take µ1 ̸= 0 which implies that θ1 defined in (B.17) will
not vanish. Now we aim to extract the low-rank perturbation ua⊤ from bias terms (C.9) and (C.10).
We adhere to the notions in (C.13), (C.14) and (C.15) and define D := T1(T2 − T3) − 1. Similar
to [MM22, Lemma C.1], we use the following linearization trick to separate the gradient step ua⊤

from the matrices R, Φ̄,ΣΦ and W 1.

Define b := µ1√
N
X̃u and c := Φ⊤

0 b; observe that T2 = c⊤R0c, T3 = b⊤b, and

Σ̂Φ = Σ̂Φ0
+ [a c]

[
T3 1
1 0

][
a⊤

c⊤

]
.

Therefore, by the Sherman-Morrison-Woodbury formula and Hanson-Wright inequality, we have

R = R0 −∆aa −∆cc +∆ac +∆ca + od,P(1), (C.20)

where we further defined

∆aa :=
T2 − T3
D

R0aa
⊤R0, ∆cc :=

T1
D

R0cc
⊤R0,

∆ca :=
1

D
R0ca

⊤R0, ∆ac :=
1

D
R0ac

⊤R0.

Consider the linear part of the subtracted term in (C.9):

B1,1 : = −2µ1µ
∗2
1√

N
β⊤
∗ W 1RΦ̄

⊤
X̃β∗, B0

1,1 := −2µ1µ
∗2
1√

N
β⊤
∗ W 0R0Φ

⊤
0 X̃β∗.

By repeatedly applying the Hanson-Wright inequality (since a is centered and independent of all
other terms) and Lemma 19, we can employ decomposition (C.20) to obtain

B1,1 = B0
1,1 − 2T1(T7 − T5)(T4 − T6)/D + od,P(1).

Now we denote ∆ua :=
µ2
1

N W⊤
0 ua

⊤, ∆au := ∆⊤
ua and ∆aua :=

µ2
1T10

N aa⊤. Hence,

ΣΦ = ΣΦ0
+∆ua +∆au +∆aua. (C.21)

Let B0
2 := f∗⊤X̃

⊤
Φ0R0ΣΦ0

R0Φ
⊤
0 X̃f∗. With (C.20) and (C.21), we can decompose B2 defined

in (C.10) as follows

B2=B
0
2 +

2T1(T7 − T5)(T6 − T12)

D
+

(T7 − T5)
2(T 2

1 T11 + T 2
1 T10 + T8 − 2T 2

1 T9)

D2
+ od,P(1),
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where we repeatedly make use of Lemma 19 and the concentration for a to simplify the computa-
tions. Therefore, one can obtain

R0(λ)−R1(λ) = B0
1,1 −B1,1 +B0

2 −B2 + od,P(1)

=
2T1(T7 − T5)(T4 + T12 − 2T6)

D
− (T7 − T5)

2(T 2
1 T11 + T 2

1 T10 + T8 − 2T 2
1 T9)

D2
+ od,P(1).

For the details of the above computation, we refer to the Theorem 36 in [BES+22]. Meanwhile,
from Proposition 20 we know that

R0(λ)−R1(λ)
P→ 2τ1(τ7 − τ5)(τ4 + τ12 − 2τ6)

τ1(τ2 − τ3)− 1
− (τ7 − τ5)

2(τ21 τ11 + τ21 τ10 + τ8 − 2τ21 τ9)

(τ1(τ2 − τ3)− 1)
2︸ ︷︷ ︸

≜δ(η,λ,ψ1,ψ2)

,

where the right hand side is the quantity of interest δ(η, λ, ψ1, ψ2) defined in Theorem 5. Also
observe the following equivalences from Proposition 20,

µ∗
1θ2(τ2 − τ3) = θ21(τ7 − τ5), µ∗

1θ2(τ11 + τ10 − 2τ9) =θ
2
1(τ4 + τ12 − 2τ6).

Hence, we can simplify δ(η, λ, ψ1, ψ2) to conclude (C.19).

Non-negativity of δ(η, λ, ψ1, ψ2). Finally, we validate that the function δ(η, λ, ψ1, ψ2) is non-
negative on variables η, λ, ψ1 and ψ2 ∈ (0,+∞). Observe that the formula of δ(η, λ, ψ1, ψ2) in
(C.19) is decomposed into two parts. From Proposition 20 we know that τ1 and m1 are the limits
of trR0(z) and tr R̄0(z) evaluated at z = ψ1λ/ψ2; this indicates that τ1 ∈ (0, ψ2/λψ1] is non-
negative. For the same reason, m2 ∈ (0, ψ2/λψ1] and −m′

1,−m′
2 ∈ (0, ψ2

2/λ
2ψ2

1 ]. Also due to
Proposition 20, we have

τ2 − τ3 = −µ2
1θ

2
1

(
ψ1

ψ2

)2

λm2 ≤ 0, τ7 − τ5 = −µ2
1µ

∗
1θ2

(
ψ1

ψ2

)2

λm2 ≤ 0,

τ4 + τ12 − 2τ6 = −µ∗
1θ2

m′
2

m2
1

≥ 0, τ11 + τ10 − 2τ9 = −θ21
m′

2

m2
1

≥ 0,

τ8 =
1

m1

1

µ2
1λ

2

(
ψ2

ψ1

)2

+
m′

1

m2
1

(
ψ2

ψ1

)
1

µ2
1λ
.

(C.22)

Therefore, τ1(τ7 − τ5)(τ4 + τ12 − 2τ6) ≤ 0 and τ1(τ2 − τ3) − 1 ≤ −1. This entails that the first
part of δ(η, λ, ψ1, ψ2) is non-negative:

τ1(τ7 − τ5)(τ4 + τ12 − 2τ6)

τ1(τ2 − τ3)− 1
≥ 0.

As for the second part, it suffices to evaluate ∆ := τ1(τ4 + τ12 − 2τ6) + (τ7 − τ5)τ8 since

−τ1(τ7 − τ5)(τ4 + τ12 − 2τ6) + (τ7 − τ5)
2τ8

(τ1(τ2 − τ3)− 1)
2 =

(τ5 − τ7)∆

(τ1(τ2 − τ3)− 1)
2 .

Plugging in quantities in (C.22) with z = λψ1/ψ2, we have

∆ =− µ∗
1θ2

(
ψ1

ψ2

m2

zm2
1

(m1 + zm′
1) +

τ1m
′
2

m2
1

)
=− µ∗

1θ2
zm2

1

(
ψ1

ψ2
(m1m2 + zm2m

′
1 + zm1m

′
2) +

(
1− ψ1

ψ2

)
m′

2

)
=− µ∗

1θ2
zm2

1

d

dz

∣∣∣∣
z=λψ1/ψ2

(
ψ1

ψ2
zm1(z)m2(z) +

(
1− ψ1

ψ2

)
m2(z)

)
(i)
= − µ∗

1θ2
zm2

1ψ1µ2
1

d

dz

∣∣∣∣
z=λψ1/ψ2

(
1− m2(z)

m1(z)

)
(ii)
= − µ∗

1θ2
zm2

1µ
2
1

d

dz

∣∣∣∣
z=λψ1/ψ2

zµ2
1m1(z)τ1(z),
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where (i) and (ii) are due to (C.16) and (C.18), respectively. By Lemma A.1 in [TAP21], we know
function zµ2

1m1(z)τ1(z) has non-positive derivative when z > 0. This implies that ∆ ≥ 0 and
hence the second part of δ(η, λ, ψ1, ψ2) is also non-negative.

Finally, we note that when µ∗
1 = 0, the function δ(η, λ, ψ1, ψ2) = 0. This is because

τ7 − τ5 = −µ2
1µ

∗
1θ2ψ

2
1λm2/ψ

2
2 = 0,

when µ∗
1 = 0. Whereas when η = 0, we know that θ1 = θ2 = 0, which entails δ(η, λ, ψ1, ψ2)

is also vanishing. Also observe that in (C.22), m1,m2,m
′
1,m

′
2, τ1 are all positive. Hence we

conclude that if δ(η, λ, ψ1, ψ2) = 0, then at least one of η, µ1µ
∗
1 must be zero.

D Proof for large learning rate (η = Θ(
√
N))

In this section we restrict ourselves to a single-index target function (generalized linear model):
f∗(x) = σ∗(⟨x,β∗⟩), and study the impact of one gradient step with large learning rate η =

Θ(
√
N). For simplicity, we denote η = η̄

√
N where η̄ > 0 is a fixed constant not depending on N .

As the Gaussian equivalence property is no longer applicable, we instead establish an upper bound
on the prediction risk of the CK ridge estimator. Our proof is divided into two parts: (i) we show that
there exists an “oracle” second-layer ã that achieves small prediction risk τ∗ when n/d is large; (ii)
based on τ∗, we provide an upper bound on the prediction risk when the second layer is estimated
via ridge regression.

Here we provide a short summary on the construction of ã and upper bound on the prediction risk.

• We first introduce fr(x) := 1
|Ar|

∑
i∈Ar

σ
(
⟨x,w1

i ⟩
)
, which is the average of a subset of neurons

in Ar ⊂ [N ] defined in (D.4). Intuitively, this subset of neurons approximately matches the target
direction β∗. This averaging corresponds to setting the second-layer ãi =

√
N

|Ar| for all i ∈ Ar.

• We show that fr can be approximated up to Θ(d/n)-error by an “expected” single-index model
f̄(x) := Ew∼N (0, I/d)[σ(⟨w + cβ∗,x⟩)], for some c ∈ R that depends on the learning rate and
nonlinearities. To bound this substitution error, we establish a more refined control of gradient
norm in Section D.1.

• By choosing an “optimal” subset Ar, we simplify the prediction risk of f̄ into the one-dimensional
expectation τ∗ defined in (5.1). This provides a high-probability upper bound of the prediction
risk of the constructed ã up to Θ(d/n)-error.

After constructing some ã that achieves reasonable test performance, we can then show that the
prediction risk of CK ridge regression estimator with trained weight W 1 is also upper-bounded by
τ∗ when n ≫ d. This result is established in Section D.3 and follows from classical analysis of
kernel ridge regression.

D.1 Refined properties of the first-step gradient

Recall that W 1 = W 0 + η
√
NG0, where G0 = A1 +A2 +B +C is defined in Lemma 10 and

11, and the full-rank term B is given as

B =
1

n
· 1√

N
X⊤(ya⊤ ⊙ σ′

⊥(XW 0)
)
.

We first refine the estimate on the Frobenius norm of certain submatrix of B; the choice of such
submatrices will be explained in Section D.2.
Lemma 22. Given Assumption 1, take Br ∈ Rd×Nr which is a submatrix of B via selecting any
Nr ∈ [N ] columns in B, and let ar ∈ RNr be the corresponding 2nd layer coefficients. If entries
of ar are uniformly bounded by α/

√
N , then for any ε ∈ (0, 1/4), we have

E∥Br∥2F ≤ C0α
2Nr
N

(
1

Nd
1
2−ε

+
d

nN

)
, (D.1)

37



and

P
(
N

Nr
∥Br∥2F ≤ C1

Nd
1
4−ε

+
C2d

Nn

)
≥ 1− α2

d
1
4

− α4

n
, (D.2)

where constants C0, C1, C2 > 0 only depend on λσ and ∥f∗∥L2(Rd,Γ).

Proof. Let X⊤ = (x1,x2, . . . ,xn) and y⊤ = (y1, . . . , yn). Then, matrix Br can be written as

Br =
1

n
√
N

n∑
i=1

yixiσ
′
⊥(x

⊤
i W

r
0) diag(ar),

where W r
0 ∈ Rd×Nr is a submatrix of W 0 by choosing any Nr columns of W 0, and ar ∈ RNr is

the corresponding second layer (note that by assumption ∥ar∥∞ ≤ α/
√
N ). Hence,

∥Br∥2F =Tr(BrB
⊤
r ) =

1

n2N

n∑
i,j=1

yiyj Tr
[
xiσ

′
⊥(x

⊤
i W

r
0) diag(ar)

2σ′
⊥(x

⊤
j W

r
0)

⊤x⊤
j

]
=

1

n2N

n∑
i,j=1

yiyj
(
σ′
⊥(x

⊤
i W

r
0) diag(ar)

2σ′
⊥(x

⊤
j W

r
0)

⊤x⊤
j xi

)
=

1

n2N

n∑
i ̸=j

yiyj
(
σ′
⊥(x

⊤
i W

r
0) diag(ar)

2σ′
⊥(x

⊤
j W

r
0)

⊤x⊤
j xi

)
+

1

n2N

n∑
i=1

y2i

(
σ′
⊥(x

⊤
i W

r
0) diag(ar)

2σ′
⊥(W

r⊤
0 xi)∥xi∥2

)
=: J1 + J2.

Here, J1 represents the sum for distinct i ̸= j ∈ [n] and J2 is the sum when i = j ∈ [n]. Therefore,

E[∥Br∥2F ] ≤
α2Nr
N

n(n− 1)

n2N
E
[
f∗(x1)f

∗(x2)σ
′
⊥(x

⊤
1 w)σ′

⊥(x
⊤
2 w)x⊤

2 x1

]
+
α2Nr
nN2

E
[
(f∗(x1)

2 + σ2
ε)σ

′
⊥(x

⊤
1 w)2∥x1∥2

]
,

where w ∼ N (0, I) independent of a,X . We compute the aforementioned expectations as follows
N

α2Nr
E[∥B∥2F ] ≤

1

N

∣∣E[f∗(x1)f
∗(x2)σ

′
⊥(x

⊤
1 w)σ′

⊥(x
⊤
2 w)x⊤

2 x1

]∣∣
+

1

nN
E
[
f∗(x1)

2σ′
⊥(x

⊤
1 w)2∥x1∥2

]
+

σ2
ε

nN
E
[
σ′
⊥(x

⊤
1 w)2∥x1∥2

]
=: I1 + I2 + I3.

To verify (D.1), we in turn control I1, I2 and I3. For I1, the moment calculation in [BES+22,
Appendix D.1] entails that I1 ≤ C d

N d
ε−3/2, for all large d, sufficiently large constant C > 0 and

sufficient small ε. As for I2 and I3, notice that

I2 ≤ λ2σ
nN

E[f∗(x1)
4]

1
2E[∥x1∥4]

1
2 ≤ 3Cλ2σd

nN
,

because σ∗ is Lipschitz and f∗ ∈ L4(Rd,Γ). Following the same computation, we also have
I3 ≤ λ2

σd
nN . This establishes a bound for E[[∥B∥2F ] in (D.1).

For the tail control (D.2), recall that ∥Br∥2F = J1 + J2 where E[|J1|] ≤ α2Nr

N I1 and E[J2] ≤
α2Nr

N (I2 + I3). Hence Markov’s inequality and the upper bound for I1 implies that

P
(
N

Nr
|J1| ≥ t

)
≤ Cα2

td
1
2−εN

.

By choosing t = C/Nd
1
4−ε, we conclude that N

Nr
|J1| cannot exceed C/Nd

1
4−ε with probability

at least 1 − α2/d
1
4 , for any ε ∈ (0, 1/4). As for J2, since σ′

⊥ is uniformly bounded by λσ and all
entries of ar are bounded by α/

√
N , we have

N

Nr
|J2| ≤

λ2σα
2

Nn2

n∑
i=1

y2i ∥xi∥2 =: J ′
2.
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Similarly for I2 and I3, it is easy to check |E[J ′
2]| ≤ 3α2Cd

Nn . Besides,

Var(J ′
2) =

λ4σα
4

N2n3
Var(y21∥x1∥2) ≤

λ4σα
4

N2n3
E[y41∥x1∥4] ≤

cα4d2

N2n3
,

where constant c > 0 only depends on λσ and ∥f∗∥L8(R,Γ). By Chebyshev’s inequality,

P(|J ′
2 − E[J ′

2]| > t) ≤ cα4d2

t2N2n3
.

Letting t =
√
cd/Nn, we arrive at

P
(
N

Nr
J2 ≤

√
cd

Nn
+

3Cd

Nn

)
≥ P

(
J ′
2 ≤

√
cd

Nn
+

3Cd

Nn

)
≥ 1− α4

n
.

We conclude (D.2) by combining the above estimates of J1 and J2.

D.2 Construction of “oracle” estimator

In this subsection we prove the following lemma related to Lemma 6.

Lemma 23 (Reformulation of Lemma 6). Suppose Assumption 1 holds, η = Θ(
√
N) and the

activation σ is bounded. Then given any ε > 0, for N sufficiently large, there exists some constant
C and second-layer ã such that the model f̃(x) = 1√

N
ã⊤σ(W⊤

1 x) has prediction risk

R(f̃) ≤ τ∗ + C

(
√
τ∗ ·

√
d

n
+
d

n

)
+ ε+ od,P(1), (D.3)

where the scalar τ∗ is defined in (5.1).

We first introduce a constant α (independent to N ). Recall that [a]i = ai
i.i.d.∼ N

(
0, N−1

)
for

i ∈ [N ]. For any α ∈ R, define the subset of initialized weights:

Aα
r =

{
i ∈ [N ] :

∣∣∣√N · ai − α
∣∣∣ ≤ N−r

}
, for any given r > 0. (D.4)

The size of the subset is given by |Aα
r | =

∑N
i=1 1|√Nai−α|≤N−r , and hence its expectation is

E|Aα
r | = N · Ez∼N (0,1)

[
1|z−α|≤N−r

]
= C(α)N1−r for some constant C(α) ∝ exp

(
−α2

)
. By

Hoeffding’s inequality,

P(||Aα
r | − E|Aα

r || ≥ t) ≤ 2 exp

(
−2t2

N

)
. (D.5)

Hence we may conclude that for any r ∈ (0, 1/2) and large enough N , |Aα
r | = Θd,P(N

1−r) with
probability at least 1−2 exp

(
−c log2N

)
. This is to say, for any constant α, we know that with high

probability, there exist a large number of initialized second-layer coefficients ai’s that are close to
α. We specify our choice of α ∈ R via (5.1) in the subsequent analysis.

Rank-1 approximation of gradient. Denote Nr := |Aα
r | for some constant α, and ir ∈ [N ] as

the index such that ir ∈ Aα
r . We define fr as an average over neurons with indices ir ∈ Aα

r , and
fA as an approximation of fr in which the first-step gradient matrix G0 in (B.1) is replaced by the
rank-1 matrix A1 defined in (B.14):

fr(x) :=
1

Nr

∑
ir∈Aα

r

σ
(
⟨x,w1

ir ⟩
)
; fA(x) :=

1

Nr

∑
ir∈Aα

r

σ
(
⟨x,wA

ir ⟩
)
, (D.6)

where w1
ir

is the ir-th neuron in W 1, wA
i = w0

i + η
√
N [A1]i, [A1]i is the i-th column of A1

and w0
i ∈ Rd is the corresponding initial neuron in W 0. Applying the Lipschitz property of the

activation function, one can control Ex[(fA(x)− fr(x))
2] as follows

|fA(x)− fr(x)| ≲
1

Nr

∑
ir∈Aα

r

∣∣⟨w1
ir −wA

ir ,x⟩
∣∣ = η

√
N

Nr

∑
ir∈Aα

r

|⟨δir ,x⟩|.
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where the “residual” is entry-wisely defined as [δi]j := [A2 + B + C]ji for i ∈ [N ] and j ∈
[d]. Recall that A2,B and C have been analyzed in Lemmas 10 and 11. Let us further denote
Ar ∈ Rd×Nr as a submatrix of A2 by selecting all ir ∈ Aα

r columns of A2. Similarly, we choose
Br,Cr ∈ Rd×Nr as submatrices of B,C related to Aα

r , respectively. Using Lemma 11 applied to
the submatrix, we have

P
(
N

Nr
∥Ar∥2F ≥ Cd

nN

)
≤ C ′

(
ne−c

√
n +

1

d

)
. (D.7)

Moreover, by definition of Aα
r , all air ’s are close to α√

N
for ir ∈ Aα

r ; thus Lemma 22 (in particular
(D.2)) can be directly applied to Br. As for Cr, since ∥Cr∥F ≤ ∥C∥F , we use part (iii) in Lemma
10 to obtain

P
(
∥Cr∥F ≥ C log n logN

N

)
≤ C ′

(
ne−c log

2 n +Ne−c log
2N
)
. (D.8)

With these concentration estimates, we know that when n > d,

Ex[(fA(x)− fr(x))
2] ≲ Ex


η√N

Nr

∑
ir∈Aα

r

|⟨δir ,x⟩|

2
 =

η2N

N2
r

Ex

 ∑
ir,jr∈Aα

r

∣∣∣δ⊤irx∣∣∣∣∣∣δ⊤jrx∣∣∣


≤ η2N

N2
r

∑
ir,jr∈Aα

r

Ex

[(
δ⊤irx

)2] 1
2

Ex

[(
δ⊤jrx

)2] 1
2

=
η2N

N2
r

∑
ir,jr∈Aα

r

∥δir∥∥δjr∥

=
η2N

N2
r

 ∑
ir∈Aα

r

∥δir∥

2

≤ η2N

Nr

(
∥Ar∥2F + ∥Br∥2F + ∥Cr∥2F

)
≲
d

n
+

1

d
1
4−ε

+
log2 n log2N

Nr
,

(D.9)

with probability at least 1− c
(
α2

d
1
4
+ α4

n + 1√
N

+ ne−c log
2 n +Ne− log2N

)
for some constant c >

0; this is due to the defined step size η = Θ(
√
N), (D.7), (D.8) in (D.2) of Lemma 22 outlined

above. In (D.9), we ignore the constants in the upper bound since we are only interested in the rate
with respect to n, d,N .

Simplification under “population” gradient. Recall the definition of the single-index teacher:
f∗(x) = σ∗(⟨x,β∗⟩), and the definition of rank-1 matrix A1 = 1

n · µ1µ
∗
1√
N

X⊤Xβ∗a
⊤. Define

v =
ηµ1µ

∗
1

n
√
N

X⊤Xβ∗ ∈ Rd, we can write

fA(x) =
1

Nr

∑
ir∈Aα

r

σ
(
⟨wir +

√
Nairv,x⟩

)
, f̃A(x) :=

1

Nr

∑
ir∈Aα

r

σ(⟨wir + αv,x⟩),

where we dropped the superscript in the initialized weights w0
ir

to simplify the notation. Note that
the difference between fA and f̃A is that the each second-layer coefficient ai is replaced by the
same scalar α. By the definition of Aα

r and the Lipschitz property of σ, one can obtain∣∣∣fA(x)− f̃A(x)
∣∣∣ ≲ 1

Nr

∑
ir∈Aα

r

ηN−r
√
N

·
∣∣∣∣〈 1

n
X⊤Xβ∗,x

〉∣∣∣∣
≲ N−r ·

∣∣∣∣〈 1

n
X⊤Xβ∗,x

〉∣∣∣∣. (D.10)

Define v̄ :=
ηµ1µ

∗
1√

N
β∗ = η̄µ1µ

∗
1β∗, which corresponds to the “population” version of v, and denote

f̄A(x) :=
1

Nr

∑
ir∈Aα

r

σ(⟨wir + αv̄,x⟩). (D.11)
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Similar to (D.10), we have∣∣∣f̄A(x)− f̃A(x)
∣∣∣ ≲ 1

Nr

∑
ir∈Aα

r

η√
N

∣∣∣∣〈( 1

n
X⊤X − I

)
β∗,x

〉∣∣∣∣
≲

∣∣∣∣〈( 1

n
X⊤X − I

)
β∗,x

〉∣∣∣∣. (D.12)

Combining the inequalities (D.10) and (D.12), we know that for some constant C,

Ex[(fA(x)− f̄A(x))2] ≲ N−2r · Ex

(〈
1

n
X⊤Xβ∗,x

〉)2

+ Ex

(〈(
1

n
X⊤X − I

)
β∗,x

〉)2

≤

(
N−2r

∥∥∥∥ 1nX⊤X

∥∥∥∥2 + ∥∥∥∥ 1nX⊤X − I

∥∥∥∥2
)

· ∥β∗∥
2

≲

((
1 +

d

n

)
N−2r +

d

n

)
,

where the last inequality holds with probability at least 1 − exp(−cd) for some universal constant
c > 0, due to the operator norm bound and concentration of the sample covariance matrix 1

nX
⊤X

(for instance see [Ver18, Theorem 4.6.1]).

Now we take the expectation of f̄A over initial weight wir in (D.11) to define

f̄(x) := Ew∼N (0, d−1I)[σ(⟨w + αv̄,x⟩)].

Note that for fixed x, ⟨w,x⟩ ∼ N (0, ∥x∥2/d). Since σ is λσ-Lipschitz, by the Hoeffding bound on
sub-Gaussian random variables, conditionally on x, we have

P
(∣∣f̄A(x)− f̄(x)

∣∣ > t
∣∣x) ≤ 2 exp

(
− t2Nr

2λ2σ · ∥x∥22/d

)
, (D.13)

Also notice that

Ew(f̄(x)− f̄A(x))2 =

∫ ∞

0

P
(∣∣f̄A(x)− f̄(x)

∣∣2 > t
∣∣x) dt

≤
∫ ∞

0

2 exp

(
− tNr

2λ2σ · ∥x∥22/d

)
dt =

4λ2σ∥x∥2

Nrd
.

Thus, by taking expectation over x in the above bound, we know that E(f̄(x) − f̄A(x))2 ≤
4λ2

σE[∥x∥
2]

Nrd
=

4λ2
σ

Nr
. By Markov’s inequality, we have

P
(
Ex(f̄(x)− f̄A(x))2 ≥ t

)
≤ E(f̄(x)− f̄A(x))2

t
≤ 4λ2σ
Nrt

. (D.14)

Hence we deduce that Ex(f̄(x)− f̄A(x))2 ≤ 4λ2
σ√
Nr

with probability 1− 1√
Nr

.

Observe that f̄ is given by an expectation over w in a single-index model. To calculate its difference
from the true model: Ex(f̄(x) − f∗(x))2, first recall the assumption that ∥β∗∥ = 1, and w ∼
N (0, I/d), x ∼ N (0, I). Denote ξ1 := ⟨x,β∗⟩ ∼ N (0, 1) and, condition on x, ⟨x,w⟩ d

=

ξ2∥x∥/
√
d, where ξ2 ∼ N (0, 1) independent of ξ1. Since η/

√
N = η̄, we can write κ :=

αηµ1µ
∗
1√

N
=

αη̄µ1µ
∗
1 ∈ R. Following these definitions, we have f̄(x) = Eξ2 [σ(ξ2∥x∥/

√
d+ κξ1)], and

Ex(f̄(x)− f∗(x))2 = Eξ1
(
σ∗(ξ1)− Eξ2 [σ(κξ1 + ξ2∥x∥/

√
d)]
)2
. (D.15)

In addition, given κ ∈ R, we introduce a scalar quantity

τ := Eξ1
(
σ∗(ξ1)− Eξ2 [σ(κξ1 + ξ2)]

)2
. (D.16)
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Note that σ∗ ∈ L2(R,Γ) and σ is uniformly bounded by assumption; one can easily check that τ
is uniformly bounded for all κ ∈ R. Hence τ defined above is always finite. We now show that the
difference between τ and Ex(f̄(x)−f∗(x))2 is asymptotically negligible, again using the Lipschitz
property of σ, ∣∣∣σ(κξ1 + ξ2)− σ(κξ1 + ξ2∥x∥/

√
d)
∣∣∣ ≲ ∣∣∣∣1− ∥x∥√

d

∣∣∣∣ · |ξ2|.
Since σ∗ ∈ L2(R,Γ), and σ is uniformly bounded and Lipschitz, based on (D.15) and (D.16), we
can apply the Cauchy-Schwarz inequality to get∣∣τ − Ex(f̄(x)− f∗(x))2

∣∣
≲ E

[(
σ(κξ1 + ξ2)− σ(κξ1 + ξ2∥x∥/

√
d)
)2] 1

2

≲ E[ξ22 ]
1
2E

[∣∣∣∣1− ∥x∥√
d

∣∣∣∣2
] 1

2

≤ C√
2d
, (D.17)

where the last inequality is due to property of the sub-Gaussian norm ∥∥x∥/
√
d − 1∥ψ2

≤ C/
√
d

(see e.g. [Ver18, Theorem 3.1.1]) for some universal constant C > 0.

Proof of Lemma 23. Based on above calculations, we now control the prediction risk of f̃
by combining the substitution errors, where f̃ = fr is constructed as the average over subset Aα

r
defined in (D.6).

Given any α ∈ R and r ∈ (0, 1/2), we define the subset Aα
r and the corresponding f̃(x) = fr(x) =

1√
N
ã⊤σ(W⊤

1 x), where the second-layer ã is given as [ã]i =
√
N/Nr if i ∈ Aα

r , otherwise [ã]i =

0. Moreover, (D.5) implies that Nr = Θd,P(N
1−r) with probability at least 1 − exp

(
− log2N

)
.

Therefore, together with (D.9), (D.13), (D.14), and (D.17), we know that

Ex(fr(x)− f̄(x))2 ≤ Cd

n
+ od,P(1); Ex(f

∗(x)− f̄(x))2 = τ + od(1),

as n, d,N → ∞, for some constant C > 0. By the Cauchy-Schwarz inequality,

Ex(f
∗(x)− fr(x))

2 ≤ τ + C

(
√
τ ·
√
d

n
+
d

n

)
+ od,P(1),

where the failure probability only relates to r, α,N, d, n and vanishes as N, d, n→ ∞. For simplic-
ity, we only keep the leading orders and ignore the subordinate terms in the probability bounds.

Note that the above characterization holds for any finite α; since our goal is to construct an estimator
fr that achieves as small prediction risk as possible, we optimize over α ∈ R by defining

τ∗ := inf
α∈R

Eξ1
(
σ∗(ξ1)− Eξ2

(
σ
(
αη̄µ1µ

∗
1 · ξ1 + ξ2

)))2
, τ∗ε := τ∗ + ε,

where ε ≥ 0 is a small constant. This definition of τ∗ is identical to (5.1) and is always finite
because τ defined in (D.16) is uniformly bounded and non-negative (observe that optimizing over κ
or α ∈ R are equivalent, since we can reparameterize κ = αη̄µ1µ

∗
1 where µ1, µ

∗
1 ̸= 0). When τ∗ is

attained at some finite α, then we may simply set ε = 0 and define

α∗ := argmin
α∈R

Eξ1
(
σ∗(ξ1)− Eξ2

(
σ
(
αη̄µ1µ

∗
1 · ξ1 + ξ2

)))2
.

Otherwise, observe that as a bounded and continuous function of α on the real line, τ(α) :=

Eξ1
(
σ∗(ξ1) − Eξ2

(
σ
(
αη̄µ1µ

∗
1 · ξ1 + ξ2

)))2
will approach its minimum at infinity. Therefore, in

this case, for any ε > 0, we can find some finite α∗
ε such that τ(α∗

ε) ≤ τ∗ε = τ∗ + ε; hence, we
may set α = α∗

ε and conclude the proof. Finally, note that given nonlinearities σ and σ∗ (which
determine the relation between ε and αε), we can take ε→ 0 at a slow enough rate as n, d,N → ∞,
as long as C(α) · N1−r → ∞. Thus we also obtain an asymptotic version of Lemma 23: with
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probability one, there exists some second-layer ã such that the prediction risk of the corresponding
student model f̃(x) = 1√

N
ã⊤σ(W⊤

1 x) satisfies

R(f̃) ≤ τ∗ + C

(
√
τ∗ ·

√
d

n
+
d

n

)
, (D.18)

for some constant C > 0, as n, d,N → ∞ proportionally.

The above analysis illustrates that because of the Gaussian initialization of ai, for any η = Θ(
√
N),

we can find a subset of neurons Aα
r that receive a “good” learning rate, in the sense that the corre-

sponding (sub-) network defined by fr can achieve the prediction risk close to τ∗ε when n≫ d.

Some examples. Equation (D.3) reduces the prediction risk of our constructed fr to a one-
dimensional Gaussian integral, which can be numerically evaluated for pairs of (σ, σ∗). Denote
κ∗ = α∗η̄µ1µ

∗
1, we give a few examples in which we set ε = 0 and the corresponding τ∗ is small.

Note that due to Assumption 1, choices of σ and σ∗ considered below are centered with respect to
standard Gaussian measure Γ.

• σ = σ∗ = erf. Note that for c1, c2 ∈ R, Ez∼N (0,1)[erf(c1z+ c2)] = erf
(

c2√
1+2c21

)
. Hence we can

choose κ∗ =
√
3, and the corresponding minimum value τ∗ = 0.

• σ = σ∗ = tanh. Numerical integration yields τ∗ ≈ 3× 10−4, κ∗ ≈ 1.6.

• σ = σ∗ = SoftPlus. Numerical integration yields τ∗ ≈ 0.03, κ∗ ≈ 0.96.

• σ = ReLU, σ∗ = SoftPlus. Numerical integration yields τ∗ ≈ 0.09, κ∗ ≈ 0.94.

Observe that in all the above examples, τ∗ can be obtained by some finite α∗ (or equivalently κ∗).
In the following analysis of kernel ridge regression, we drop the small constant ε in Lemma 23 and
directly apply the asymptotic statement given in (D.18).

Remark. We make the following remarks on the calculation of τ∗ in (5.1).

• When σ = σ∗, we intuitively expect τ∗ to be small when the nonlinearity is smooth such that it is
to some extent unchanged under Gaussian convolution (when κ is chosen appropriately).

• Adding weight decay with strength λ < 1 to the first-layer parameters W 0 simply corresponds to
multiplying ξ2 in the definition of τ (D.16) by a factor of (1− λ).

D.3 Prediction risk of ridge regression

In this section we prove Theorem 7. Recall that we aim to upper-bound the prediction risk of the
CK ridge regression estimator defined as

f̂(x) =
〈 1√

N
σ(W⊤

1 x), â
〉
, where â :=

(
Φ⊤Φ+ λnI

)−1

Φ⊤ỹ, Φ :=
1√
N
σ(X̃W 1),

(D.19)
where {X̃, ỹ} is a new set of training data independent of W . For concise notation, in this section
we rescale the ridge parameter in (4.1) by replacing λ

N with λ.

Given feature map x → 1√
N
σ(W⊤

1 x) conditioned on first layer weights W 1, we denote the associ-
ated Hilbert space as H. Note that H is a finite-dimensional reproducing kernel Hilbert space and is
hence closed; we define the optimal predictor in the RKHS as f̌ := argminf∈H Ex(f(x)−f∗(x))2,
which takes the form of f̌(x) = ⟨ 1√

N
σ(W⊤

1 x), ǎ⟩ for some ǎ ∈ RN . In addition, we may write

the orthogonal decomposition in L2(Rd,Γ): f∗(x) = f̌(x) + f⊥(x). By definition of f⊥, we have
∥f⊥∥2L2 = Ex[f⊥(x)

2] ≤ R(h) = ∥f∗ − h∥2L2 , for any h ∈ H and x ∼ N (0, 1). Finally, from
Assumption 1 we know that ∥f∗∥L2 is bounded by some constant, and thus ∥f⊥∥L2 is also bounded.

43



We are interested in the prediction risk of the CK ridge regression estimator denoted as R1(λ). We
first define the following quantities which R1(λ) can be decomposed into (see Lemma 25):

B1 := Ex

(
f∗(x)− f̌(x)

)2
,

B2 := Ex

(
f̌(x)− 1

n
ϕx

(
Σ̂Φ + λI

)−1

Φ⊤f̌

)2

,

V1 :=
1

n2
ε̃⊤Φ

(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

Φ⊤ε̃,

V2 :=
1

n2
f⊤
⊥Φ
(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

Φ⊤f⊥,

(D.20)

where the i-th entry of vector f̌ and f⊥ are given by [f̌ ]i = f̌(x̃i), [f⊥]i = f⊥(x̃i), respectively, and
Σ̂Φ := 1

nΦ
⊤Φ, ΣΦ := 1

NEx

[
σ(W⊤

1 x)σ(W
⊤
1 x)

⊤
]
. Also, ϕx := 1√

N
σ(x⊤W 1) for x ∈ Rd,

which gives Φ⊤ = [ϕ⊤
x̃1
, . . . ,ϕ⊤

x̃i
, . . . ,ϕ⊤

x̃n
], where x̃⊤

i is the i-th row of X̃ . To simplify the
notation, we omit the accent in x̃, ε̃ when the context is clear. In the following subsections, to
control R1(λ), we provide high-probability upper-bounds for B1, B2, V1 and V2 separately.

Concentration of feature covariance. We begin by defining a concentration event A on the em-
pirical feature matrix Σ̂Φ, under which the prediction risk can be controlled. We modify the proof
of [Ver18, Theorem 4.7.1] to obtain a normalized version of the concentration for CK matrix, the
detailed proof can be found in [BES+22, Appendix D.3].
Lemma 24. Under Assumption 1, and using the above notations, there exists some constant c > 0
such that the following holds4

P

(∥∥∥(ΣΦ + λI)
−1/2

(ΣΦ − Σ̂Φ)(ΣΦ + λI)
−1/2

∥∥∥ ≥ 2K2 ·
√
N

n

)
≤ 2 exp

(
−c

√
N
)
,

for all large n > N , where K := λσ√
N
∥W 1∥F .

From Lemma 10 we know that when n, d,N are proportional and η = Θ(
√
N), there exist some

constants c, C such that P
(
∥W 1∥F ≥ C

√
N
)
≤ exp(−cN). We denote t = 2C2N/n and consider

sufficiently large n (but still proportional to d) such that t < 1. Now given fixed λ > 0, we define
the concentration event

Aλ =
{
−tI ≼ (ΣΦ + λI)

−1/2
(ΣΦ − Σ̂Φ)(ΣΦ + λI)

−1/2 ≼ tI
}
.

Similarly, for the “ridgeless” case λ = 0, we define

A0 =
{
−tI ≼ Σ

−1/2
Φ (ΣΦ − Σ̂Φ)Σ

−1/2
Φ ≼ tI

}
.

Lemma 24 entails that both Aλ and A0 hold with probability at least 1 − 2e−c
√
N . Following the

remark on [Bac23, Lemma 7.1], under events Aλ and A0, we can obtain that∥∥∥Σ−1/2
Φ

(
Σ̂Φ −ΣΦ

)
Σ

−1/2
Φ

∥∥∥ ≤ t, (D.21)

and (1− t)(ΣΦ − Σ̂Φ) ≼ t(Σ̂Φ + λI), which implies that

ΣΦ

(
Σ̂Φ + λI

)−1

≼
t

1− t
I + Σ̂Φ

(
Σ̂Φ + λI

)−1

≼
1

1− t
I,

since
∥∥∥∥Σ̂Φ

(
Σ̂Φ + λI

)−1
∥∥∥∥ ≤ 1. Analogously, we claim that(
Σ̂Φ + λI

)−1/2

ΣΦ

(
Σ̂Φ + λI

)−1/2

≼
1

1− t
I.

Thus, under events Aλ and A0, we know that∥∥∥∥Σ1/2
Φ

(
Σ̂Φ + λI

)−1

Σ
1/2
Φ

∥∥∥∥, ∥∥∥∥ΣΦ

(
Σ̂Φ + λI

)−1
∥∥∥∥ ≤ 1

1− t
. (D.22)

We now control B1, B2, V1, V2 under the high probability events Aλ and A0.
4Note that for λ = 0, the LHS of the inequality may be interpreted as a pseudo-inverse.
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Controlling B1, B2. By the definition of f̌ , we have

B1 = inf
f∈H

Ex(f
∗(x)− f(x))

2 ≤ Ex(f
∗(x)− fr(x))

2
= R(f̃), (D.23)

where fr = f̃ ∈ H is the estimator we constructed in Lemma 23. Note that the upper bound R(f̃)
has already been characterized in (D.18) in the previous subsection.

As for B2, since f̌ = 1√
N
σ(X̃W 1)ǎ, simple calculation yields,

B2 = Tr

((
I −

(
Σ̂Φ + λI

)−1

Σ̂Φ

)⊤

ΣΦ

(
I −

(
Σ̂Φ + λI

)−1

Σ̂Φ

)
ǎǎ⊤

)

= λ2
〈
ǎ,
(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

ǎ

〉
.

Following [Bac23, Proposition 7.2], we define aλ = ΣΦ(ΣΦ + λI)
−1

ǎ and obtain

B2 ≤ 2λ2
∥∥∥Σ1/2

Φ (ΣΦ + λI)
−1

ǎ
∥∥∥2 + 2

∥∥∥∥Σ1/2
Φ

(
(ΣΦ + λI)

−1
ΣΦ −

(
Σ̂Φ + λI

)−1

Σ̂Φ

)
ǎ

∥∥∥∥2.
In addition, note that(

Σ̂Φ + λI
)−1

Σ̂Φ − (ΣΦ + λI)
−1

ΣΦ

=
(
Σ̂Φ + λI

)−1(
Σ̂Φ −ΣΦ

)
+

[(
Σ̂Φ + λI

)−1

− (ΣΦ + λI)
−1

]
ΣΦ

=λ
(
Σ̂Φ + λI

)−1(
Σ̂Φ −ΣΦ

)
(ΣΦ + λI)

−1
.

Therefore, we know that under events Aλ and A0,∥∥∥∥Σ1/2
Φ

(
(ΣΦ + λI)

−1
ΣΦ −

(
Σ̂Φ + λI

)−1

Σ̂Φ

)
ǎ

∥∥∥∥2
= λ2

∥∥∥∥Σ1/2
Φ

(
Σ̂Φ + λI

)−1(
Σ̂Φ −ΣΦ

)
(ΣΦ + λI)

−1
ǎ

∥∥∥∥2
≤
∥∥∥∥Σ1/2

Φ

(
Σ̂Φ + λI

)−1

Σ
1/2
Φ

∥∥∥∥2 · ∥∥∥Σ−1/2
Φ

(
Σ̂Φ −ΣΦ

)
Σ

−1/2
Φ

∥∥∥2 · λ2∥∥∥Σ1/2
Φ (ΣΦ + λI)

−1
ǎ
∥∥∥2

(i)

≤ t2

(1− t)2
· λ2
∥∥∥Σ1/2

Φ (ΣΦ + λI)
−1

ǎ
∥∥∥2,

where (i) follows from the definition of the concentration events A, (D.21) and (D.22).

Finally, from [Bac23, Lemma 7.2], we have

λ2
∥∥∥Σ1/2

Φ (ΣΦ + λI)
−1

ǎ
∥∥∥2 ≤ λ

〈
ǎ, (ΣΦ + λI)−1ΣΦǎ

〉
= inf

f∈H

{
∥f − f̌∥2L2 + λ∥f∥2H

}
≤ 2∥f∗ − fr∥2L2 + λ∥fr∥2H, (D.24)

where the last step is a triangle inequality due to ∥f∗ − f̌∥2L2 ≤ ∥f∗ − fr∥2L2 .

Controlling V1, V2. For V1, note that under event Aλ,

V1 =
1

n2
ε̃⊤Φ

(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

Φ⊤ε̃

≤
∥∥∥∥ 1nε⊤Φ

∥∥∥∥2 · ∥∥∥∥(Σ̂Φ + λI
)−1

ΣΦ

∥∥∥∥ · ∥∥∥∥(Σ̂Φ + λI
)−1

∥∥∥∥ (ii)

≲
1

λ(1− t)
·
∥∥∥∥ 1nΦ⊤ε̃

∥∥∥∥2,
where Φ is defined in (D.19), and (ii) is based on the concentration property for Aλ given in (D.22).
Denote χik := [ϕk]i · ε̃k whence

[
Φ⊤ε̃

]
i
=
∑n
k=1 χ

i
k. Note that E[χikχ

j
k] = 0, E[(χik)2] ≲

σ2
ε

N
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for any k ∈ [n] and i ̸= j ∈ [N ], due to the assumptions on label noise and bounded activation σ.
Therefore, by Markov’s inequality, for any x > 0, we have

P
(

1

n2
∥Φ⊤ε̃∥2 ≥ x

)
≤ E∥Φ⊤ε̃∥2

n2x
≲
σ2
ε

nx
. (D.25)

Similarly for V2, under event Aλ, we have

V2 =
1

n2
f⊤
⊥Φ
(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

Φ⊤f⊥

≤
∥∥∥∥ 1nf⊤

⊥Φ

∥∥∥∥2 · ∥∥∥∥(Σ̂Φ + λI
)−1

ΣΦ

∥∥∥∥ · ∥∥∥∥(Σ̂Φ + λI
)−1

∥∥∥∥ ≲
1

λ(1− t)
·
∥∥∥∥ 1nΦ⊤f⊥

∥∥∥∥2.
Recall that E[ϕxf⊥(x)] = 0 due to the orthogonality condition. Hence we may apply the exact
same argument as V1 to obtain an upper bound similar to (D.25); by Markov’s inequality,

P
(

1

n2
∥Φ⊤f⊥∥2 ≥ x

)
≤ E∥Φ⊤f⊥∥2

n2x

(iii)

≲
∥f⊥∥2L2

nx
, (D.26)

where (iii) is due to the boundedness of σ and ∥f⊥∥L2 . Combining V1 and V2, and taking x =
Cnε−1 in (D.25) and (D.26), for some C > 0 and any small ε > 0, we arrive at

V1 + V2 ≲
σ2
ε + ∥f⊥∥2L2

n1−ελ(1− t)
, (D.27)

with probability at least 1− n−ε.

Putting things together. The following lemma provides a decomposition of the prediction risk
R1(λ) in terms of B1, B2, V1, V2 analyzed above.
Lemma 25. Under the same assumptions as Lemma 6, if we choose λ = Ω(nε−1) for small ε > 0,
then the prediction risk of the CK ridge estimator admits the following upper bound

R1(λ) ≤ B1 +B2 + 2
√
B1B2 + od,P(1),

where B1, B2 are defined in (D.20).

Proof. Based on the definition of prediction risk, we have

R1(λ) = Ex

((
f∗(x)− f̌(x)

)
+

(
f̌(x)− 1

n
ϕx

(
Σ̂Φ + λI

)−1

Φ⊤ỹ

))2

≤ Ex

(
f∗(x)− f̌(x)

)2︸ ︷︷ ︸
B1

+2
√
B1S1 + S1,

where we defined

S1 := Ex

(
f̌(x)− 1

n
ϕx

(
Σ̂Φ + λI

)−1

Φ⊤(f̌ + f⊥ + ε̃)

)2

≤ Ex

(
f̌(x)− 1

n
ϕx

(
Σ̂Φ + λI

)−1

Φ⊤f̌

)2

︸ ︷︷ ︸
B2

+2
√
B2S2 + S2,

in which

S2 :=
1

n2
ε̃⊤Φ

(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

Φ⊤ε̃︸ ︷︷ ︸
V1

+
1

n2
f⊤
⊥Φ
(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

Φ⊤f⊥︸ ︷︷ ︸
V2

+
2

n2
f⊤
⊥Φ
(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

Φ⊤ε̃

≤ 2(V1 + V2).
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Recall that Lemma 24 entails that events Aλ and A0 occur with high probability, for constant t ∈
(0, 1). Hence from (D.27) we know that for λ = Ω(nε−1) with small ε > 0, V1 + V2 = od,P(1),
and thus S2 is vanishing when n, d,N → ∞ proportionally. On the other hand, (D.23) and (D.24)
entail that B1 and B2 are both finite. The claim is established by combining the calculations.

Proof of Theorem 7. Since Lemma 24 ensures that events Aλ and A0 happens with high
probability for fixed t ∈ (0, 1), if we set λ = Ω(nε−1) for some small ε > 0, then Lemma 25 entails

R1(λ) ≤ B1 +B2 + 2
√
B1B2 + od,P(1),

where B1 ≤ ∥f∗ − fr∥2L2 , B2 ≤ 2

(
1 +

t2

(1− t)2

)
·
(
2∥f∗ − fr∥2L2 + λ∥fr∥2H

)
+ od,P(1),

in which fr is defined by (D.6) in the proof of Lemma 23. Here, we applied the upper bounds on B1

in (D.23) and B2 in (D.24). Since ∥f∗ − fr∥2L2 = R(f̃), by (D.18) we know that as n, d,N → ∞,
with probability one,

∥f∗ − fr∥2L2 ≤ τ∗ + C

(√
τ∗ ·

√
d
n + d

n

)
, (D.28)

for some constant C > 0. Finally, recall that in the proof of Lemma 23, we constructed an estimator
fr ∈ H with ∥fr∥2H = ∥ã∥2 = N/|Aα

r | = Θd,P(N
r), for 0 < r < 1/2. In other words,

λ∥fr∥2H = od,P(1) as long asNrλ→ 0 as n, d,N → ∞; this provides a way to choose r ∈ (0, 1/2)
given λ. Now from Lemma 24 we know that there exists some constant ψ∗

1 such that both Aλ and
A0 hold with high probability for t < 0.1 when n/d > ψ∗

1 . In this case, given any λ = n−ρ for
some ρ ∈ (0, 1), we know that

R1(λ) ≤ B1 +B2 + 2
√
B1B2 + od,P(1)

≤ ∥f∗ − fr∥2L2 + 4

(
1 +

t2

(1− t)2

)
· ∥f∗ − fr∥2L2 + 4

√
1 +

t2

(1− t)2
· ∥f∗ − fr∥2L2 + od,P(1).

Finally, due to the upper-bound (D.28), we conclude that

R1(λ) ≤ 10τ∗ + C ′
(√

τ∗ ·
√

d
n + d

n

)
,

with probability one as n, d,N → ∞ proportionally and n/d > ψ∗
1 , where τ∗ is defined in (5.1).
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