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Abstract

Cross-device federated learning is an emerging machine learning (ML) paradigm
where a large population of devices collectively train an ML model while the data
remains on the devices. This research field has a unique set of practical challenges,
and to systematically make advances, new datasets curated to be compatible with
this paradigm are needed. Existing federated learning benchmarks in the image
domain do not accurately capture the scale and heterogeneity of many real-world
use cases. We introduce FLAIR, a challenging large-scale annotated image dataset
for multi-label classification suitable for federated learning. FLAIR has 429,078
images from 51,414 Flickr users and captures many of the intricacies typically
encountered in federated learning, such as heterogeneous user data and a long-tailed
label distribution. We implement multiple baselines in different learning setups
for different tasks on this dataset. We believe FLAIR can serve as a challenging
benchmark for advancing the state-of-the art in federated learning. Dataset access
and the code for the benchmark are available at https://github.com/apple/
ml-flair,

1 Introduction

Remote devices connected to the internet, such as mobile phones, can capture data about their
environment. Machine learning algorithms trained on such data can help improve user experience
on these devices. However, it is often infeasible to upload this data to servers because of privacy,
bandwidth, or other concerns.

Federated learning [40] has been proposed as an approach to collaboratively train a machine learning
model with coordination by a central server while keeping all the training data on device. Coupled
with differential privacy, it can allow learning of a model with strong privacy guarantees. Models
trained via private federated learning have successfully improved existing on-device applications
while preserving users’ privacy [18,[19}41].

This has led to many ongoing research on designing better algorithms for federated learning applica-
tions. Centralized (non-federated) machine learning has benefited tremendously from standardized
datasets and benchmarks, such as Imagenet [10]. To evaluate and accelerate progress in (private)
federated learning research, the community needs similarly high quality large-scale datasets, with
benchmarks. Ideally, the dataset would be representative of the challenges identified as important by
the community [28]. Additionally, the benchmark should provide common, agreed-upon metrics to
allow comparison of privacy, utility, and efficiency of various approaches.

Federated data may have various non-IID characteristics that are seldom encountered in traditional
ML [28]. These include shifts in feature and label distribution, imbalanced user dataset sizes, drift in
feature distribution conditioned on the labels and shift in the labeling function itself. This is caused
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Figure 1: FLAIR sample images and labels. Images in the same row are from the same Flickr user.
Captions below each image are the annotated fine-grained labels.

by the independent and diverse user-specific contexts that predicate the data generation process. For
example, the style and content of a written message may differ depending on the author’s age, culture,
and geographical location. Indeed such heterogeneity can be seen in text datasets commonly used as
benchmarks (see Section [2).

However the image domain suffers from a limited selection of large-scale datasets with realistic user
partitions to benchmark algorithms and models (see Section [2). When new hypotheses are tested,
researchers typically use centrally available data to simulate the federated setting. For example, many
works are evaluated by repurposing traditional benchmarks, such as MNIST [35] and CIFAR10 [32],
by creating artificial user partitions [24]]. It is unclear if such artificial partitions are realistic enough to
give confidence that hypotheses evaluated on these will transfer to federated learning in a real-world
scenario.

We introduce FLAIR, a large-scale multi-label image classification dataset, for benchmarking fed-
erated learning algorithms and models. The dataset has a total of 429,078 images originating from



Flickr [1] and partitioned by 51,414 real user IDs. The images are annotated with labels from a
two-level hierarchy, allowing us to define benchmarks with two levels of difficulty: the easier task
has 17 coarse-grained classes and the harder task has 1,628 fine-grained classes. FLAIR also inherits
many of the aforementioned non-IID characteristics:

* Imbalanced partitions — Users have different number of images. The majority of users have
only 1-10 images, but the most active users have hundreds of images.

* Feature distribution skew — Users have different cameras, camera settings, which affect
pixel generation.

* Label distribution skew — Users take photos of objects that align with their interests, which
vary across photographers.

* Conditional feature distribution skew — Photos of the same category of objects can look
very different due to weather conditions, cultural and geographical differences.

We provide benchmarks and analyze the performance of different settings of interest for FLAIR:
centralized learning; federated learning; federated learning with central differential privacy; using
random initialization of model parameters; and using model parameters pretrained on ImageNet [45].

2 Related Work

Previous work has mainly used two methods for preparing federated datasets: artificial partitioning
of existing open-source datasets not originally purposed for federated learning [24], and constructing
realistic partitions using real user identifiers preserved from the data generation process [42]. The
former approach requires fewer resources but more assumptions, and has been used with MNIST [35],
CIFAR [32], and CelebA [39] datasets. These experimental setups rely on artificially inducing some
of the characteristics of real federated datasets during the sampling process. Pachinko allocation
based sampling method was proposed to generate more realistic heterogeneous partitions, but it
requires a hierarchy of coarse labels such as present in CIFAR100 [46]]. Yet, there is no clear way for
measuring how realistic the splits are. In fact, federated data partitions in the wild are usually more
heavy tailed than the artificial partitions previous work has used (see Section4.2).

The latter approach relies on datasets generated from a collection of users, with the user identifiers pre-
served. Previous works have extensively used text datasets that have this property: Sentiment140 [17]],
Shakespeare [40], Reddit[§8] and StackOverflow [6]]. Realistic image datasets commonly used in the
federated learning community are EMNIST [8]], iNaturalist-User-120k and Landmarks-User-160k
[25]. The landmarks dataset is the largest of them, with 164, 172 images, but has only 1262 users,
making it ill-suited for large-scale federated learning, especially for private federated learning where
large batch sizes are typically needed.

Meta-learning is a ML paradigm closely related to federated learning, hence requiring similar kinds
of datasets. Popular image datasets for meta-learning include Mini-Imagenet [48], CUB-200-2011
[49] and Omniglot [34]. These datasets are relatively small and low-resolution, with either artificial
task partitioning or easy tasks, e.g. the original model-agnostic meta-learning algorithm already
achieves 99.9% accuracy with 5-way 5-shot classification on Omniglot [16].

Testing a hypothesis with a standardized benchmark agreed upon by the research community is
essential for systematically making progress in the field of machine learning. There are several
benchmark suites that attempt to do this for federated learning: LEAF [8]], FedML [21]], OARF [26],
FedGraphNN [20]], FedCV [22], FedNLP [38]] and FedScale [33]]. FedScale proposes a benchmark for
image classification on Flickr images, which is similar to FLAIR. This however is a multiclass dataset,
where image-label pairs are constructed by cropping single objects from bounding box annotations;
this results in many duplicate images with different labels because the bounding boxes commonly
overlap. As explored more thoroughly in Section[4.2] FLAIR also has a more diverse set of classes
and includes two levels of difficulty.

3 Preliminaries

Federated learning [40] enables training on users’ data without collecting or storing the data on a
centralized server. In each round of federated learning, the server samples a cohort of users and sends



the current model to the sampled users’ devices. The sampled users train the model locally with SGD
and share the gradient updates back to the server after local training. The server updates the global
model, treating the aggregate of the per-user updates in lieu of a gradient estimate in an optimization
algorithm such as SGD or Adam [31} 146].

Differential Privacy. Even though user data is not shared with the server in the federated setting, the
shared gradient updates can still reveal sensitive information about user data [43,|53]]. Differential
privacy (DP) [14] can be used to provide a formal privacy guarantee to prevent such data leakage in
the federated setting.

Definition 1 (Differential privacy) A randomized mechanism M : D — R with a domain D and
range R satisfies (e, 0)-differential privacy if for any two adjacent datasets d,d’ € D and for any
subset of outputs S C R it holds that Pr[M (d) € S] < e‘Pr[M(d’) € S] + 0.

In the context of DP federated learning [42]], D is the set of all possible datasets with examples
associated with users, range R is the set of all possible models, and two datasets d, d’ are adjacent if
d’ can be formed by adding or removing all of the examples associated with a single user from d.

When a federated learning model is trained with DP, the model distribution is close to what it would
be if a particular user did not participate in the training. Following prior works in DP-SGD [2] in
the federated learning context [42], two modifications are made to the federated learning algorithm
to provide a DP guarantee: 1) model updates from each user are clipped so that their L, norm is
bounded, and 2) Gaussian noise is added to the aggregated model updates from all sampled users.
For the purpose of privacy accounting, we assume that each cohort is formed by sampling each user
uniformly and independently, and that this sample is hidden from the adversary.

4 FLAIR Dataset

4.1 Dataset collection

The initial set of images was curated with the Flickr API The corresponding Flickr user IDs were
preserved so that the images were naturally grouped by users. All curated images are publicly shared
by the Flickr users and permissively licensed (detailed in Appendix [A).

Filtering. We enforce strict filtering criteria to remove images that may contain personally identifiable
information (PII). We use a two stage filtering approach: 1) we apply a face detection model to
automatically remove images with faces, and; 2) we rely on human annotators to filter the remaining
images that contains PII. Specifically, two annotators were assigned for filtering each image where
the first annotator flags whether an image contains PII and the second annotator validates the results.
See Appendix [A for detailed filtering guideline.

Annotation. The images from Flickr API were initially unlabeled. We annotated the images with
the main objects present in the images using a taxonomy of 1,628 fine-grained classes. We also
defined 17 coarse-grained classes in the taxonomy, where each fine-grained class is associated with a
coarse-grained class. Similar to filtering, two annotators were assigned for labeling and validating
each image. If there was an ambiguous object present in the image and the annotator could not tell
which fine-grained label to assign, a coarse-grained label was added instead.

4.2 FLAIR dataset statistics

After filtering and annotation, the finalized FLAIR dataset contain 429,078 images from 51,414 Flickr
users, with 17 coarse-grained labels and 1,628 fine-grained labels.

User data statistics. The number of images per user is significantly skewed, where the largest
2.3% of users collectively have as many images as the bottom 97.7% of users. The left of Figure
[2 compares the quantity skew for FLAIR and other image classification benchmarks for federated
learning. In the case of CIFAR, there is a straight line because there is no skew. The figure indicates
that FLAIR has the second largest quantity skew, after iNaturalist-User-120k.
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Figure 2: Left: Cumulative dataset length of users in descending order of quantity, normalized by
number of users on x-axis and number of datapoints on y-axis. Right: Earth Mover’s Distance
(EMD) between users pixel histogram and the overall average pixel histogram from class structure.
Blue dashed line is from simulating user splits with equal dataset size, green dotted line is simulating
user splits by sampling from the real dataset size distribution, and purple solid line is the actual split.
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Figure 3: FLAIR label distribution for coarse-grained and fine-grained taxonomies. The bars are the
counts of the labels from all images (left y-axis) and the curves are the percentages of the users who
have the label (right y-axis).

To visualize the feature distribution skew in FLAIR, we show in Figure@ (right) the Earth Mover’s
Distance (EMD) between the average pixel histogram of a user’s images, to the population average
pixel histogram. EMD is computed on the images from the most common label, structure, to remove
any skew that the class imbalance might cause. The quantity skew also causes feature distribution
skew (comparing blue dashed line to green dotted line), and the real non-iid partitioning slightly
increases the skew compared to the average simulated non-iid partitioning (comparing green dotted
line to purple solid line).

Label statistics. Figure [3|shows the total count of all labels across all users, revealing a significant
class imbalance. The most common coarse-grained class, structure, occurs 228,923 times on a total
of 87% of users. The least common coarse-grained class, religion, occurs 866 times on a total of
1.4% of users. The fine-grained labels similarly have a skewed distribution, with 1255 out of the 1628
classes being present on less than 0.1% of users.

Dataset split. For comparable and reproducible benchmarks on the FLAIR dataset, we provide a
train-test split based on Flickr user IDs, such that the data of a particular user is only present in one
of three partitions of the data. Out of 51,414 Flickr users, 80% are in the training set, 10% in the
validation set and 10% in the test set. There are 345,879 images in total in the training set, 39,239 in
the validation set and 43,960 in the test set.



5 Experiments

5.1 Benchmark setups

Learning settings. We benchmark the FLAIR dataset in three different learning settings: centralized
learning, non-private and private federated learning. Comparing these settings demonstrates how
heterogeneity of the user data distribution and providing user privacy guarantees affect model
convergence. In the centralized learning setting, training data is the union of images from all users in
the training split and user ID is ignored.

ML tasks and models. As described in Section[4.1| the main objects in each image were annotated
into coarse-grained and fine-grained taxonomies. We consider multi-label classification task on these
two taxonomies, i.e. predicting if a class is present in an image for each class in the taxonomy.

We use a ResNet-18 [23]] model for all benchmark experiments. The final classification layer is a
17-way logistic regression for the coarse-grained taxonomy and 1,628-way for the fine-grained. The
model has more than 11M parameters in total. We consider both training from scratch (i.e. from a
random initialization) and fine-tuning from a pretrained model. The pretrained ResNet-18 model
is obtained from the Torchvision repository (version 0.12.0) ]| and was trained on the ImageNet
dataset [[11].

For models trained from scratch, we further replace all batch normalization (BN) [27] layers with
group normalization [51] to avoid sharing the sensitive states in BN with the server in federated
settings. For the pretrained ResNet-18 model, we freeze the BN states during fine-tuning and only
update the scale and bias parameters.

Evaluation metrics. We use standard multi-label classification metrics for the benchmark, including
precision (percentage of predicted objects that are actually in the images), recall (percentage of
objects in the images found by the classifier), F1 score, and Average Precision (AP) score. We
report overall (micro-averaged) metrics, obtained by averaging over all examples, and per-class
(macro-averaged) metrics, obtained by taking the average over classes of the average over examples
restricted to a specific class.

Simulating large cohort noise-level with small cohort. When training with DP, increasing cohort
size C' will monotonically increase the signal-to-noise ratio (SNR) of the averaged noisy aggregates
as the DP noise will be reduced by averaging. As we will show later in Section[5.2] the minimum
SNR required for training large neural networks such as ResNet corresponds to a C' in the thousands,
which is compute-intensive with current federated learning frameworks.

Following prior work [42]], we simulate the SNR effect of a large cohort C' using a small cohort
Cym so that we can efficiently experiment with different noise-levels. Let o = M(+, C) be the noise
multiplier calculated by moments accountant M [2]] for cohort size C' and other privacy parameters.
We use C, and noise multiplier oy, for experiments, where g, = %l“‘/\/l(-, Cig). The noise
MO
Cig

applied to the averaged Cy,, model updates has standard deviation Z= , which is the

m

same as if we are training with C', users.

Hyperparameters. For all experiments, we use FedAdam [31} 146] as the server-side optimizer.
During training, each image is randomly cropped to size 224 x 224 and randomly flipped horizontally
or vertically. During evaluation, each image is resized to 224 x 224. We performed a grid search
on the hyperparameters and report the values that yield best performance on the validation set. See
Appendix [B.2 for hyperparameters grids.

For the centralized setting, we set the number of epochs to be 100 and the learning rate to be Se-4 if
training from scratch, and number of epochs to be 50 and learning rate to be 1e-4 when fine-tuning.
We use a mini-batch size of 512.

For the federated learning setting, we train the model for 5,000 rounds with a cohort size of 200. We
set the server learning rate to 0.1. Each sampled user trains the model locally with SGD for 2 epochs
with local batch size set to 16 and local learning rate set to 0.1 when training from scratch and 0.01
when fine-tuning. We limit the maximum number of images for each user to be 512 and if a user has
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Table 1: FLAIR benchmark results on test set. All experiments are run for 5 times with different
random seed, and both mean and standard deviation of metrics are reported. For setting, C, FL, PFL
stands for centralized, federated and private federated learning; R and F stands for training from
scratch and fine-tuning; 17 and 1628 are the number of classes in the coarse-grained and fine-grained
taxonomies. For the metrics columns, C and O denotes whether the metrics are per-class or overall;
AP denotes averaged precision; P denotes precision; R denotes recall; and F1 denotes F1 score.

Setting | C-AP C-P C-R C-F1 | O-AP O-P O-R O-F1

C-R-17 60.6+05 T71.740.9 49.3+08 584404 | 874102 81.8+406 7T74.2408 77.8+0.2
FL-R-17 50.1105 581117 37.0009 451105 | 82.8102 789109 67.7112 72.810.4
PFL-R-17 29.2:‘:0,1 29.1:‘:1,1 18.6;&0_5 227;[:0.7 63.6:‘:0.2 67.9:[:0,5 45.7;{:1,1 54.6:‘:0,7

C-F-17 67.840.1 76.9+05 552403 64.310.1 | 90.5400 85.1+02 T77.8402 81.3+0.0
FL-F-17 62.0103 74.041.4 49.5413 59341009 | 89.0101 82.8403 7T7.2405 79.94102
PFL-F-17 43.840.2 491126 32.1+t0.4 388106 | 80.240.1 T77.840.3 63.8407 T70.110.3

C-R-1628 14.610.2 25.640.7 6.7+0.1 10.6410.2 | 42.840.3 66.9409 25.540.7 36.91056
FL-R-1628 1.540.0 0.840.1 0.240.0 04400 | 22.540.3 63.4419 694108 124413
PFL-R-1628 0.3+0.0 0.0+0.0 0.0+0.0 0.0+0.0 7.140.0 0.0+0.0 0.0+0.0 0.0+0.0

C-F-1628 20.040.3 324105 10.2105 15.6405 | 48.0003 68.6107 30.0107 41.7106
FL-F-1628 2.0+0.1 1.640.1 0.440.0 0.6+0.0 | 27.040.4 645416 10.5406 18.0+0.9
PFL-F-1628 0.540.0 0.240.0 0.040.0 0.040.0 | 12.310.2 53.945.0 0.240.1 0.440.2

more images, we randomly sample 512 images so that each sampled user maximally trains on 512
images for each local epoch.

For federated learning with differential privacy, we use € = 2.0,6 = N~ !'! where NN is the number
of training users. We set the server learning rate to 0.02. We use an adaptive clipping algorithm [4] to
tune the clipping bound, with the L, norm quantile set to 0.1. We use 200 users sampled per round to
simulate the noise-level with a cohort size of 5,000, and we also analyze the effect of different cohort
sizes in Section

5.2 Results

Table|l{ summarizes the benchmark results on the FLAIR test set. For the coarse-grained taxonomy,
we observe that the performance gap between centralized and federated setting is about 20% on the
per class metrics and 6% on the overall metrics if the models are trained from scratch. These gaps are
reduced to 8% and 2% if models are fine-tuned from pretrained ResNet. When DP is applied, the per
class metrics drop about 40% and overall metrics 24% from non-private federated learning if training
from scratch. When fine-tuning with DP, the drop is less significant, about 30% for per class metrics
and 10% for overall metrics.

For the fine-grained taxonomy, federated learning performance is much worse than the centralized
baseline. The gaps are around 90% and 50% for per-class and overall metrics regardless whether
the model is trained from scratch or started from a pretrained model. DP model has even worse
performance compared to non-private one due to the extra noise introduced, which indicates long-
tailed prediction tasks are especially hard in private federated learning setting due to the sparse label
distribution among users.

Per class results. Figure 4 summarize averaged precision scores on FLAIR test set for each class
in the coarse-grained taxonomy. The performances are different for different classes and there is a
positive correlation between the frequency of the class and its performance. Noticeably, the gaps
between classes are enlarged if models are trained with federated learning and DP. For instance, the
gap between recreation and outdoor is about 68% in centralized setting while the gap increases to
81% in the federated setting and 96% in the federated setting with DP. In other words, the decrease in
performance is worse for classes that are less frequent in federated learning, especially when DP is
applied. This observation was also noted in prior works [7, 147].

Per user results. Figure|5 summarize the distribution of per user macro averaged precision scores
from coarse taxonomy on FLAIR test set. As expected, the model performances vary among different
users. There are a few users with much higher performances than majority for all training settings.



Setting | struc- equip- mate- out- plant food animal liquid art interior light  recrea- celeb- fire music games reli-
ture  ment rial door room tion  ration gion
C-R 90.1 926 668 953 929 948 865 79.0 421 646 343 331 375 645 175 190 197
FL-R |869 89.7 612 93.0 89.7 914 743 667 30.7 556 244 158 190 382 53 3.6 53
PFL-R | 656 731 430 782 67.1 69.1 254 335 11.6 144 53 42 1.3 4.1 0.9 0.3 0.2
C-F 926 947 713 963 940 967 934 843 554 714 409 426 463 714 389 410 212
FL-F |91.5 939 694 957 93.1 958 913 805 497 69.1 372 290 379 656 197 247 98
PFL-F | 840 886 556 897 860 906 771 550 260 514 152 63 4.0 13.0 1.8 0.4 0.5
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Figure 4: Averaged precision for each coarse-grained class. C, FL, PFL stands for centralized,
federated and private federated learning. R and F stands for training from scratch and fine-tuning.
Columns in the table are sorted by decreasing order of class frequency.For the figures, x-axis is the
counts of each class in log scale and y-axis is the per-class AP on the validation set.
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Figure 5: Violin plots for the distribution of per user macro averaged precision from coarse taxonomy
on test set. C, FL, PFL stands for centralized, federated and private federated learning.

The distribution of scores are similar for centralized and federated learning setting while training
with DP impacts the performances for almost all users.

Effect of cohort size on PFL. As described in Section@, cohort size controls the noise-level of PFL,
and thus we further examine the impact of cohort size on the performance of DP models. Figure[6
illustrates the per-class AP on the validation set in different rounds of PFL training. For both training
from scratch and fine-tuning, increasing cohort size yields faster and better generalization.

6 Discussion

6.1 Research directions

Imbalanced classes. For the coarse-grained taxonomy, models performed differently on different
classes and the performance is correlated to the frequency of the class. This difference is enlarged in
federated learning, especially when DP is applied, indicating that the heterogeneity and DP noise
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Figure 6: Effect of cohort size in PFL training. x-axis is the number of rounds of federated learning
and y-axis is the per-class AP on the validation set.

worsened the imbalance problem. Given its heterogeneous nature, we believe FLAIR is a suitable
dataset with which researchers can study the class imbalance problem in the distributed setting.

Few-shot and zero-shot federated learning. As demonstrated in Section|5.2} federated learning
models perform worse on FLAIR fine-grained taxonomy compared to coarse-grained. Out of 1,628
fine-grained classes, 11 present in the validation and test dataset are unseen and 134 have less than
20 positive examples in the training set. Predicting these few-shot and zero-shot labels can be very
difficult even in the centralized training setting. Indeed the signals for the tail classes in fine-grained
taxonomy are extremely sparse and the sparsity is exacerbated in federated learning as the infrequent
classes are concentrated in only a few users. Furthermore, DP exacerbates the performance of
infrequent classes due to poor SNR of sparse gradients. We believe the long-tailed label distribution
in FLAIR fosters research interests in few-shot and zero-shot learning in the private federated setting.

Noise-robust and efficient federated learning with DP. As shown in Figure[6] the larger the cohort
size, the smaller the noise on the aggregated model updates and thus the better the model when trained
with DP, especially for deep neural networks with tens of millions of parameters. Larger cohorts
increase the latency of federated learning with DP and may become impractical when the number
of iterations required to converge is also large. We believe the scale and complexity of FLAIR will
inspire research in designing model architectures and optimization algorithms which are more robust
to DP noise and also more efficient to train.

Personalization. Personalization in federated learning is an active research area as a single model is
unlikely to generalize equally well among all users. Meta learning [15]] and local adaptation [12}/52]
are some of the attractive approaches for personalized federated learning. As many of the users in
FLAIR have handful of images due to our strict filtering criterion, evaluating personalized federated
learning algorithms on FLAIR can be challenging. We did not benchmark FLAIR with personalization
in this work and leave it for future works.

Advanced vision models. As an initial benchmark, we only explored one model architecture,
ResNet18. There are many more advanced architectures or pretrained models such as vision trans-
formers [13], SimCLR [9]], or CLIP [44] that we did not use for experiments. It is also an interesting
research topic to search for the optimal model architectures in federated learning with DP.

Advanced optimization algorithms. There is a line of efforts that aims to tackle the heterogeneity
in federated learning by more advanced optimization such as FedProx [36]], Scaffold [30], Mime [29],
and FedNova [50]. On the other hand, many recent works proposed optimization algorithms that
improved upon DP-SGD [3} 15, 37]]. As the main focus of this paper is to introduce the FLAIR dataset,
we only benchmarked on federated learning algorithm, FedAdam [46]. We leave it for future works
to benchmark FLAIR on the more advanced optimization algorithms in the DP and federated learning
literature.



6.2 Limitations

Due to our strict filtering criteria, images with faces or identifiable human bodies are removed from
FLAIR. Thus, FLAIR is not suitable for any facial recognition or person identification vision tasks.
This filtering also reduced the size of the dataset, and may have impacted the distributions of the
number of images per user. In addition, FLAIR does not contain bounding boxes or pixel-level
annotations for the objects presented in the images and thus is not suitable for vision tasks such as
object detection and image segmentation.

More generally, Federated Learning applications are diverse and various heterogeneity properties
can vary a lot across applications. Any single dataset thus will not accurately represent all relevant
properties of a specific application. Evaluating algorithms on a collection of datasets is thus important.

7 Conclusions

In this work, we presented FLAIR, a large-scale image dataset suitable for federated learning. We
compared FLAIR with existing federated learning image datasets and discussed the advantages
of FLAIR. We described how the images in FLAIR were curated and annotated. We provided
reproducible benchmarks for centralized, federated and differentially private settings. We have
open-sourced both the FLAIR dataset and the benchmark code for the community to use with the aim
of in advancing the research in federated learning.
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