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Abstract

Recently there is a large amount of work devoted to the study of Markov chain
stochastic gradient methods (MC-SGMs) which mainly focus on their convergence
analysis for solving minimization problems. In this paper, we provide a compre-
hensive generalization analysis of MC-SGMs for both minimization and minimax
problems through the lens of algorithmic stability in the framework of statistical
learning theory. For empirical risk minimization (ERM) problems, we establish the
optimal excess population risk bounds for both smooth and non-smooth cases by
introducing on-average argument stability. For minimax problems, we develop a
quantitative connection between on-average argument stability and generalization
error which extends the existing results for uniform stability [38]. We further de-
velop the first nearly optimal convergence rates for convex-concave problems both
in expectation and with high probability, which, combined with our stability results,
show that the optimal generalization bounds can be attained for both smooth and
non-smooth cases. To the best of our knowledge, this is the first generalization
analysis of SGMs when the gradients are sampled from a Markov process.

1 Introduction
Stochastic gradient methods (SGMs) have been the workhorse behind the success of many machine
learning (ML) algorithms due to their simplicity and high efficiency. As opposed to the deterministic
(full) gradient methods, SGMs only require a small batch of random example(s) to update the model
parameters at each iteration, making them amenable for solving large-scale problems.

There are mainly two notable types of SGMs which are inherent for different learning problems. In
particular, stochastic gradient descent (SGD) is widely used for solving the empirical risk min-
imization (ERM) problem and the theoretical convergence has been extensively studied [e.g.,
5, 17, 21, 37, 42, 43, 53, 57, 73, 80, 82, 86]. Concomitantly, the minimax problems instantiate
many ML problems such as Generative Adversarial Networks (GANs) [2, 30], AUC maximization
[29, 45, 81], and algorithmic fairness [16, 41, 52, 51]. Stochastic gradient descent ascent (SGDA) is
an off-the-shelf algorithm for solving minimax problems. The convergence of SGDA and its variants
is also widely studied in the literature [e.g., 44, 49, 54, 56].

On the other important front, the ultimate goal of learning is to achieve good generalization from the
training data to the unknown test data. Along this line, generalization analysis of SGMs has attracted
considerable attention using the algorithmic stability approach [11, 24]. In particular, stability and
generalization of SGD have been studied using the uniform argument stability [6, 7, 13, 32, 36]
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and on-average stability [39, 40]. In [25, 38, 85], different stability and generalization measures are
investigated for SGDA under both convex-concave and non-convex-non-concave settings. A critical
assumption in most of the above studies about SGD and SGDA is the i.i.d. sampling scheme where
the randomly sampled mini-batch or datum at each iteration is i.i.d. drawn from the given training
data, guaranteeing that the stochastic gradient is an unbiased estimator of the true gradient.

Markov chain naturally appears in many important problems, such as decentralized consensus
optimization, which finds applications in various areas including wireless sensor networks, smart
grid implementations and distributed statistical learning [4, 14, 23, 48, 50, 58, 61, 63] as well as
pairwise learning [78] which instantiates AUC maximization [1, 29, 46, 81, 87] and metric learning
[35, 75, 76, 79]. A common example is a distributed system in which each node stores a subset of
the whole data, and one aims to train a global model based on these data. We let a central node
that stores all model parameters walk randomly over the system, in which case the samples are
accessed according to a Markov chain. Several works studied this kind of model [33, 34, 48, 50, 58].
Markov chains also arise extensively in thermodynamics, statistical mechanics dynamic systems
and so on [59, 67]. In addition, it was observed in [69, 78] that SGD with Markov chain sampling
(MC-SGD) performs more efficiently than SGD with the common i.i.d. sampling scheme in various
cases. Hence, studying the performance of MC-SGMs has certain theoretical and application values.
The key difference from the i.i.d. sampling scheme is that the stochastic gradient at each iteration is
sampled on the trajectory of a Markov chain, in which the stochastic gradient estimators are neither
unbiased nor independent. Recent studies [4, 18, 22, 33, 34, 58, 68] overcame this technical hurdle
and provided the convergence rates of MC-SGD. However, to the best of our knowledge, there is no
work on the generalization performance of SGMs with Markov sampling.

Main contribution: In this paper, we provide a comprehensive study of the stability and generaliza-
tion for both SGD and SGDA with Markov sampling in the framework of statistical learning theory
[72, 10]. Our main contribution can be summarized as follows.

• We develop stability and generalization results of MC-SGD for solving ERM problems in both
smooth and non-smooth cases. In particular, we show that MC-SGD can achieve competitive stability
results as SGD with i.i.d. sampling scheme. By trading off the generalization and optimization
errors appropriately, we establish the first-ever-known excess generalization bound O(1/

√
n) for

MC-SGD where n is the size of training data. The key idea for handling Markov sampling structure
of MC-SGD is to use the concept of on-average argument stability.

• We first establish the connection between on-average argument stability and generalization for
minimax optimization algorithms, which extends the existing work on uniform argument stability
[38]. We further develop stability bounds of SGDA with Markov sampling (MC-SGDA) for both
smooth and non-smooth cases and obtain the nearly optimal convergence rates Õ(1/

√
T ) for convex-

concave problems in the form of both expectation and high probability, where T is the number of
iterations, from which its optimal population risk bound is established. Specifically, we consider
several measures of generalization performance and show that the optimal population risk bounds
O(1/

√
n) can be derived even in the non-smooth case.

• To the best of our knowledge, this is the first-ever-known work on stability and generalization of
SGD and SGDA under the Markov chain setting. Our results show that, despite the stochastic gradient
estimator is biased and dependent across iterations due to the Markov sampling scheme, the general-
ization performance of MC-SGD and MC-SGDA enjoys the same optimal excess generalization rates
as the i.i.d. sampling setting.

Organization of the paper: We discuss the related work in Subsection 1.1 and formulate the
problem in Section 2. Section 3 presents the stability and generalization results of MC-SGD for both
smooth and non-smooth losses. Section 4 develops the first nearly optimal convergence rates for
convex-concave problems of MC-SGDA, and show that the optimal risk bounds can be derived in
both smooth and non-smooth cases. Section 5 concludes the paper.

1.1 Related Work
In this subsection, we review some further works which are closely related to our paper.

Algorithmic Stability. Algorithmic stability characterizes the sensitivity of a learning algorithm
when the inputs to the algorithm are slightly perturbed. The framework of algorithmic stability
was established in a seminal paper [11] for the exact minimizer of the ERM problem, where the
uniform stability was established for strongly convex objective functions. Recent work [12, 27, 28]
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derived sharper generalization bounds for uniformly stable algorithms with high probability. Several
other stability measures were later developed for studying the generalization of different learning
algorithms including the hypothesis stability [11], on-average stability [64], argument stability [47]
and total variation stability [8, 71].

Stability and Generalization Analysis of SGMs. [32] established generalization error bounds of
order O(1/

√
n) in expectation for SGD for convex and smooth problems using uniform stability.

The on-average variance of stochastic gradients was used to refine the generalization analysis of SGD
for non-convex problems [88]. The results were improved and refined by [36] using a data-dependent
notion of algorithmic stability for SGD. [39] introduced on-average argument stability and studied the
stability and generalization of SGD for a general class of non-smooth convex losses, i.e., the gradient
of the loss function is α-Hölder continuous. They also established fast generalization bounds O(1/n)
for smooth convex losses in a low-noise setting. The same authors also extended the analysis to the
non-convex loss functions in [40]. Meanwhile, [6] addressed uniform argument stability of SGD with
Lipschitz-continuous convex losses. Optimal generalization bounds were also developed for SGD
in different settings [6, 7, 26, 74, 77]. Stability and generalization for SGMs have been studied for
pairwise learning [65, 78] where the loss involves a pair of examples. In particular, [78] introduced a
simple MC-SGD algorithm for pairwise learning where pairs of examples form a special Markov
chain {ξt = (zit , zit−1) : t ∈ N}. Here, zit and zit−1 are i.i.d. sampled from the training data of
size n at time t and t− 1, respectively. The uniform argument stability and generalization have been
established (see more discussion on the difference between our work and [78] in Remark 8 below).

For minimax problems, [85] studied the weak generalization and strong generalization bounds in the
strongly-convex-concave setting. [25] established the optimal generalization bounds for proximal
point method, while gradient descent ascent (GDA) is not guaranteed to have a vanishing excess
risk in convex-concave case. [38] proved that SGDA can achieve the optimal excess risk bounds
of order O(1/

√
n) for both smooth and non-smooth problems in the convex-concave setting. They

also extended their work to the nonconvex-nonconcave problems. However, all the above studies the
stability and generalization of SGD and SGDA under the assumption of the i.i.d. sampling scheme.

Convergence Analysis of MC-SGMs. The convergence analysis of SGD and its variants when the
gradients are sampled from a Markov chain have been studied in different settings [3, 18, 19, 22,
34, 58, 66, 69, 70]. Specifically, [34, 58] studied the Markov subgradient incremental methods in a
distributed system under time homogeneous and time non-homogeneous settings, respectively. [22]
studied the convergence of stochastic mirror descent under the ergodic assumption. [69] established
the convergence rate O(1/T 1−q) with some q ∈ (1/2, 1) for convex problems. They also developed
the convergence result for non-convex problems. In addition, decentralized SGD methods with the
gradients sampled from a non-reversible Markov chain have been studied in [68]. [18] considered
an accelerated ergodic Markov chain SGD for both convex and non-convex problems. [19] further
studied the convergence rates without the bounded gradient assumption. All these studies focused on
the convergence analysis of MC-SGD for solving the ERM problems.

2 Problem Setting and Target of Analysis
In this section, we introduce the SGD for ERM and SGDA for solving minimax problems with
Markov Chain, and describe the target of generalization analysis for both optimization algorithms.
Target of Generalization Analysis. Let W be a parameter space in Rd and D be a population
distribution defined on a sample space Z . Let f : W × Z → [0,∞) be a loss function. In the
standard framework of Statistical Learning Theory (SLT) [10, 72], one aims to minimize the expected
population risk, i.e., F (w) := Ez[f(w; z)], where the model parameter w belongs to W , and the
expectation is taken with respect to (w.r.t.) z according to D. However, the population distribution is
often unknown. Instead, we have access to a training dataset S = {zi ∈ Z}ni=1 with size n, where zi
is independently drawn from D. Then consider the following ERM problem

min
w∈W

{
FS(w) :=

1

n

n∑
i=1

f(w; zi)
}
. (1)

For a randomized algorithm A to solve the above problem, let A(S) be the output of algorithm A
based on the dataset S. Then its statistical generalization performance (prediction ability) is measured
by its excess population risk F (A(S))− F (w∗), i.e., the discrepancy between the expected risks of
the model A(S) and the best model w∗ ∈ W . We are interested in studying the excess population risk.
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Let ES,A[·] denote the expectation w.r.t. both the randomness of data S and the internal randomness
of A. To analyze the excess population error, we use the following error decomposition

ES,A[F (A(S))]− F (w∗) = ES,A[F (A(S))− FS(A(S))] + ES,A[FS(A(S))− FS(w
∗)]. (2)

The first term is called the generalization error of the algorithm A measuring the difference between
the expected risk and empirical one, for which we will handle using stability analysis as shown soon.
The second term is the optimization error, which is induced by running the randomized algorithm A
to minimize the empirical objective. It can be estimated by tools from optimization theory.

As discussed in the introduction, many machine learning problems can be formulated as min-
imax problems including adversarial learning [30], reinforcement learning [15, 20] and AUC
maximization [29, 46, 81, 87]. We are also interested in solving this type of problem. Let
W and V be parameter spaces in Rd. Let D be a population distribution defined on a sample
space Z , and f : W × V × Z → [0,∞). We consider the minimax optimization problems:
minw∈W maxv∈V

{
F (w,v) := Ez∼D[f(w,v; z)]}. In practice, we only have a training dataset

S = {z1, . . . , zn} independently drawn from D and hence the minimax problem is reduced to the
following empirical version:

min
w∈W

max
v∈V

{
FS(w,v) :=

1

n

n∑
i=1

f(w,v; zi)
}
. (3)

Since minimax problems involve the primal variable and dual variable, we have different measures
of generalization [38, 85]. For a randomized algorithm A(S) solving the problem (3), we denote
the output of A as A(S) = (Aw(S),Av(S)) for notation simplicity. Let E[·] denote the expectation
w.r.t. the randomness of both A and S. We are particularly interested in the following two metrics.
Definition 1 (Weak Primal-Dual (PD) Risk). The weak Primal-Dual population risk of A(S),
denoted by △w(Aw,Av), is defined as maxv∈V E

[
F (Aw(S),v)

]
−minw∈W E

[
F (w,Av(S))

]
.

The corresponding (expected) weak PD empirical risk, denoted by △w
emp(Aw,Av), is de-

fined by maxv∈V E
[
FS(Aw(S),v)

]
−minw∈W E

[
FS(w,Av(S))

]
. We refer to △w(Aw,Av) −

△w
emp(Aw,Av) as the weak PD generalization error of the model (Aw(S),Av(S)).

Definition 2 (Primal Risk). The primal population and empirical risks of A(S) are respectively
defined by R(Aw(S)) = maxv∈V F (Aw(S),v), and RS(Aw(S)) = maxv∈V FS(Aw(S),v). We
refer to R(Aw(S)) − RS(Aw(S)) as the primal generalization error of the model Aw(S), and
R(Aw(S))−minw∈W R(w) as the excess primal population risk.

SGD and SGDA with Markov Sampling. One often considers SGD to solve the ERM problem (1).
Specifically, let W ⊆ Rd be convex, ProjW(·) denote the projection to W , and ∂f(w; z) denote a
subgradient of f(w; z) at w. Let w0 ∈ W be an initial point, and {ηt} is a stepsize sequence. For
any t ∈ N, the update rule of SGD is given by

wt = ProjW
(
wt−1 − ηt∂f(wt−1; zit)

)
, (4)

where {it} is generated from [n] = {1, 2, . . . , n} with some sampling scheme. A typically sampling
scheme is the uniform i.i.d. sampling, i.e., it is drawn randomly from [n] according to a uniform
distribution with/without replacement.

In this paper, we are particularly interested in the case when it ∈ [n] is drawn from a Markov Chain
which is widely used in practice [3, 4, 18, 22, 34, 66, 69, 70]. Let P be an n × n-matrix with
real-valued entries. We say a Markov chain {Xk} with finite state [n] and transition matrix P is
time-homogeneous if, for k ∈ N, i, j ∈ [n], and i1, . . . , ik−1 ∈ [n], there holds Pr(Xk+1 = j|X1 =
i1, . . . , Xk = i) = Pr(Xk+1 = j|Xk = i) = [P ]i,j . Likewise, the SGDA algorithm with Markov
sampling scheme is defined as follows. Specifically, let ∂wf and ∂vf denote the subgradients of f
w.r.t. the arguments w and v, respectively. We initialize (w0,v0) ∈ W × V , for any t ∈ N, let {it}
is drawn from [n] according to a Markov Chain. The update rule of SGDA is given by{

wt = ProjW
(
wt−1 − ηt∂wf(wt−1,vt−1; zit)

)
vt = ProjV

(
vt−1 + ηt∂vf(wt−1,vt−1; zit)

)
.

(5)

For brevity, we refer to the above algorithms as Markov chain-SGD (MC-SGD) and Markov chain-
SGDA (SGDA), respectively. There are two types of randomness in MC-SGD/MC-SGDA. The first
randomness is due to training dataset S which is i.i.d. from the population distribution D. The other
randomness arises from the internal randomness of the MC-SGD/MC-SGDA algorithm, i.e., the
randomness of the indices {it}, which is a Markov chain.
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Remark 1. Convergence analysis mainly considers the empirical optimization gap, i.e., the dis-
crepancy between FS(A(S)) and FS(w

∗). Here, we are mainly interested in the generalization
error which measures the prediction ability of the trained model on the test (future) data. As such,
the purpose of this paper is to provide a comprehensive generalization analysis of MC-SGD and
MC-SGDA in the framework of statistical learning theory. Specifically, given a finite training data S,
let A(S) be the output of the MC-SGD for solving the ERM problem (1). Our target is to analyze
the excess population risk ES,A[F (A(S))]− F (w∗). Let A(S) = (Aw(S),Av(S)) be the output
of MC-SGDA for solving the empirical minimax problem (3), our aim is to analyze the weak PD
population risk △w(Aw,Av) and the excess primal population risk R(Aw(S))−minw∈W R(w).
In both cases, the generalization analysis will be conducted using the algorithmic stability [11, 32].
As we show soon below, the final rates are obtained through trade-offing the optimization error
(convergence rate) and the generalization error (stability results).

Properties of Markov Chain. Denote the probability distribution of Xk as the non-negative row
vector πk = (πk(1), πk(2), . . . , πk(n)), i.e., Pr(Xk = j) = πk(j). Further, we have

∑n
i=1 π

k(i) =
1. For the time-homogeneous Markov chain, it holds πk = πk−1P = · · · = π1P k−1 for all k ∈ N.
Here, π1 is an initial distribution and P k denotes the k-th power of P . A Markov chain is irreducible
if, for any i, j ∈ [n], there exists k such that [P k]i,j > 0. That is, the Markov process can go from
any state to any other state. State i ∈ [n] is said to have a period τ if [P k]i,i = 0 whenever k is not a
multiple of τ and τ is the greatest integer with this property. If τ = 1 for every state i ∈ [n], then
we say the Markov chain is aperiodic. We say a Markov chain with stationary distribution Π∗ is
reversible if Π∗(i)[P ]i,j = Π∗(j)[P ]j,i for all i, j ∈ [n].

We need the following assumption for studying optimization error of MC-SGMs.
Assumption 1. Assume the Markov chain {it} with finite state [n] is time-homogeneous, irreducible
and aperiodic. It starts from an initial distribution π1, and has transition matrix P and stationary
distribution Π∗ with Π∗(i) = 1

n for any i ∈ [n], i.e., limk→∞ P k = 1
n1n1

⊤
n , where 1n ∈ Rn is the

vector with each entry being 1 and 1⊤
n denotes its transpose.

Remark 2. Our assumptions on Markov chains listed above are standard in the literature [18, 34, 50,
69, 68, 78]. For instance, Markov chain-type SGD was proposed for pairwise learning which can
apply to various learning task such as AUC maximization and bipartite ranking [1, 83, 87, 29, 46] and
metric learning [35, 75, 76, 79]. This pairwise learning algorithm forms pairs of examples following
a special Markov chain {ξt = (zit , zit−1

) : t ∈ N} where zit and zit−1
are i.i.d. sampled from the

training data of size n at time t and t− 1, respectively and, at time t, the model parameter is updated
using gradient descent based on ξt. As mentioned in Remark 3 of [78], {ξt : t ∈ N} is a Markov
Chain satisfying all of our assumptions. Another notable example is the decentralized consensus
optimization in a multi-agent network, where the samples are accessed according to a Markov chain
and the number of states of the Markov chain equals the number of nodes in the network, which is
finite. One always considers the same transition matrix P for each node and assumes the Markov
chain is irreducible and aperiodic [50, 84].

3 Results for Markov Chain SGD
In this section, we present the stability and generalization results of MC-SGD. Our analysis requires
the following definition and assumptions. Let G,L > 0 and ∥ · ∥2 denote the Euclidean norm.
Definition 3. We say f is convex w.r.t. the first argument if, for any z ∈ Z and w,w′ ∈ W , there
holds f(w; z) ≥ f(w′; z) + ⟨∂f(w′; z),w −w′⟩.
Assumption 2. Assume f is G-Lipschitz continuous, i.e., for any z ∈ Z and w,w′ ∈ W , there
holds |f(w; z)− f(w′; z)| ≤ G∥w −w′∥2.
Assumption 3. Assume f is L-smooth, i.e., for any z ∈ Z and w,w′ ∈ W , there holds f(w; z)−
f(w′; z) ≤ ⟨∂f(w′; z),w −w′⟩+ L

2 ∥w −w′∥22.

3.1 Stability and Generalization of MC-SGD

Let w∗ = argminw∈W F (w) be the best model in W and w̄T =
∑T

j=1 ηjwj/
∑T

j=1 ηj be the
output of MC-SGD with T iterations. We will use algorithmic stability to study the generalization
errors, which measures the sensitivity of the output model of an algorithm. Below we give the
definition of on-average argument stability [39].
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Definition 4. (On-average argument stability) Let S = {z1, . . . , zn} and S̃ = {z̃1, . . . , z̃n} be drawn
independently from D. For any i ∈ [n], define S(i) = {z1, . . . , zi−1, z̃i, zi+1, . . . , zn} as the set
formed from S by replacing the i-th element with z̃i. We say a randomized algorithm A is on-average
ϵ-argument-stable if ES,S̃,A

[
1
n

∑n
i=1 ∥A(S)−A(S(i))∥2

]
≤ ϵ.

To obtain on-average argument stability bounds of MC-SGD, our idea is to first write the stability as
a deterministic function according to whether the different data point is selected, and then take the
expectation w.r.t. the randomness of the algorithm. The detailed proofs are given in Appendix B.1.

Theorem 1 (Stability bounds). Suppose f is convex and Assumption 2 holds. Let W = Rd and let
A be MC-SGD with T iterations.

(a) (Smooth case) Suppose Assumption 3 holds and ηj ≤ 2/L. Then A is on-average ϵ-argument-
stable with ϵ ≤ 2G

n

∑T
j=1 ηj .

(b) (Non-smooth case) A is on-average ϵ-argument-stable with ϵ ≤ 2G
√∑T

j=1 η
2
j +

4G
n

∑T
j=1 ηj .

Remark 3. Without any assumption on Markov chain, Theorem 1 shows that argument stability
bounds of MC-SGD are in the order of O(Tη/n) and O(

√
Tη+Tη/n) with a constant stepsize η for

smooth and non-smooth losses, respectively. Both of them match the corresponding bounds for SGD
with i.i.d. sampling [6, 32, 39, 74], which imply that stability of MC-SGD is at least not worse than
that of the i.i.d. sampling case. The technical novelty here is to observe that, in the sense of on-average
argument stability, we can use the calculation of EA[

∑n
i=1 I[it=i]] to replace that of EA[I[it=i]], where

I[·] is the indicator function. This key step avoids the complicated calculations about EA[I[it=i]].
Taking the uniform stability as example, we need to consider neighboring datasets differing by the i-th
data, and can get EA[∥wt −w′

t∥2] = O(η
∑t

j=1 EA[Iij=i]) = O(η
∑t

j=1

∑n
k=1[P

j−1]k,iπ
1(k)),

which depends on the transition matrix P and is not easy to control. In contrast, with the on-average
stability we get stability bounds depending on

∑n
i=1 I[it=i], which is always 1, i.e., the on-average

stability allows us to ignore the effect of sampling process.

The following theorem presents generalization bounds for MC-SGD in both smooth and non-smooth
cases, which directly follows from Lemma A.4 and Theorem 1.

Theorem 2 (Generalization error bounds). Suppose f is convex and Assumption 2 holds. Let
W = Rd and let A be MC-SGD with T iterations.

(a) (Smooth case) Suppose Assumption 3 holds and let ηj ≡ η ≤ 2/L. Then there holds
ES,A[F (w̄T )− FS(w̄T )] ≤ 2G2Tη

n .

(b) (Non-smooth case) If ηj ≡ η, then there holds ES,A[F (w̄T )− FS(w̄T )] = O
(√

Tη + Tη
n

)
.

3.2 Excess Population Risk of MC-SGD

In this subsection, we present excess population risk bounds for MC-SGD in both smooth and
non-smooth cases. The proofs are given in Appendix B.3. We use the notation B ≍ B̃ if there exist
universal constants c1, c2 > 0 such that c1B̃ ≤ B ≤ c2B̃. Let λi(P ) be the i-th largest eigenvalue
of the transition matrix P and λ(P ) = (max{|λ2(P )|, |λn(P )|} + 1)/2 ∈ [1/2, 1). Let KP be
the mixing time and CP be a constant depending on P and its Jordan canonical form (detailed
expressions are given in Lemma A.1). We assume supz∈Z f(0; z) and ∥w∗∥2 are bounded.

Assumption 4. Assume the Markov chain {it} is reversible with P = P⊤.

Theorem 3 (Excess population risk for smooth losses). Suppose f is convex and Assumptions 1,
2, 3 and 4 hold. Let W ∈ Rd. Let A be MC-SGD with T iterations, and {wj}Tj=1 be produced
by A with w0 = 0 and ηj ≡ η ≤ 2/L. If we select T ≍ n and η = (T log(T ))−1/2, then
ES,A[F (w̄T )]− F (w∗) = O

(√
log(n)/(

√
n log(1/λ(P )))

)
.

Remark 4. A term KP /
(
M0n

3
4 log

1
4 (n)

)
with M0 = min{

√
n log(n)CPnλ(P )KP , 1} appears

in the excess risk bound of MC-SGD (see the proof of Theorem 3), which will be worse than√
log(n)/

√
n when KP is large. Note Lemma A.1 implies that this term will disappear if P is

symmetric. Hence, we introduce Assumption 4 to get the nearly optimal rate.
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Theorem 4 (Excess population risk for non-smooth losses). Suppose f is convex and Assumptions 1, 2,
4 hold. Let W ∈ Rd. Let A be MC-SGD with T iterations, and {wj}Tj=1 be produced by A with ηj ≡
η. If we select T ≍ n2 and η = T−3/4, then ES,A[F (w̄T )]− F (w∗) = O

(
1/
(√

n log(1/λ(P ))
))
.

Remark 5. To estimate the excess population risk, we need the convergence rates of MC-SGD
which can be found in Appendix B.2. [69] established a convergence rate of O(1/T 1−q) with some
q ∈ (1/2, 1) under the bounded parameter domain assumption. We remove this assumption by
showing ∥wt∥22 = O(

∑T
k=1 ηk) and obtain the nearly optimal convergence rate Õ(1/

√
T ) with a

careful choice of η = 1/
√
T log(T ). To understand the variation of the algorithm, we present a

confidence-based bound for optimization error, which matches the bound in expectation up to a
constant factor. We also provide the convergence analysis for non-convex problems in Appendix B.2.
Remark 6. Theorems 3 and 4 show, after carefully selecting the iteration number T and stepsize
η, that the excess population risk rate O(1/

√
n) is achieved in both smooth and non-smooth cases.

Note [6, 32, 39] show that the excess population risk rate O(1/
√
n) is optimal for the i.i.d. sampling

case. Therefore, our results for MC-SGD are also optimal since the i.i.d. sampling is a special case
of Markov sampling. Our results imply that despite the gradients are biased and dependent across
iterations in Markov sampling, the generalization performance of SGD is competitive with the i.i.d.
sampling case. Theorems 3 and 4 also show the impact of the smoothness in achieving the optimal
rate. The rate for the non-smooth case in Theorem 4 looks slightly better than the smooth case
(Theorem 3) with a logarithmic term. However, the optimal rate can be achieved with a linear gradient
complexity (i.e., the total number of computing the gradient) for smooth losses, while Theorem 4
implies that gradient complexity O(n2) is required for non-smooth losses.
Remark 7. According to Theorems 3 and 4, we can further observe how the transition matrix
P affects the excess population risks. Indeed, the excess population risk rates are monotonically
increasing w.r.t λ(P ). Particularly, the closer λ(P ) is to 1/2, the better the rate is. Let us consider two
extreme examples. Suppose the Markov chain starts from the uniform distribution and has transition
matrix P = 1

n1n1
T
n . MC-SGD degenerates to SGD with i.i.d. sampling in this case. The excess

population risk rate O(1/
√
n) is obtained from Theorem 4 with λ(P ) = 1/2. For a Markov chain

moving on a circle (i.e., if the chain is currently at state i, then it goes to states i+ 1, i and i− 1 with
equal probability), we can verify that λ(P ) = O(1− 1/n2), which implies a bad rate in this case.
Remark 8. [78] proposed a simple MC-SGD algorithm for pairwise learning associated with a
pairwise loss f(w, z, z′). Specifically, at iteration t, the algorithm update the model parameter as
follows: wt = wt−1 − ηt∇wf(wt−1, zit , zit−1

) where zit and zit−1
are i.i.d. sampled from the

training data of size n at time t and t − 1, respectively. In Remark 3 of [78], it was shown that
{ξt = (it, it−1) ∈ [n] × [n]} does form a time-homogeneous, irreducible and aperiodic Markov
chain. There are two key differences between our work and [78]. Firstly, the work [78] used uniform
stability directly due to EA[Iit=i] = 1/n, while this term is not easy to control in our general setting
(see Remark 3 for details). To overcome this hurdle, we resort to the on-average stability and show
that MC-SGD achieves the optimal excess risk rate. Secondly, the proofs there critically rely on
the fact f(wt−1; zit , zit−1) = f(wt−2; zit , zit−1) + O(ηt−1) and the independence of wt−2 w.r.t.
it and it−1. However, these specially tailored techniques for pairwise learning do not apply to the
general Markov setting as we considered here.

4 Results for Markov Chain SGDA

In this section, we study the generalization analysis of MC-SGDA for minimax optimization problems.
Let (w̄T , v̄T ) be the output of MC-SGDA with T iterations, where

w̄T =

T∑
j=1

ηjwj

/ T∑
j=1

ηj and v̄T =

T∑
j=1

ηjvj

/ T∑
j=1

ηj . (6)

We first introduce some necessary definitions and assumptions.
Definition 5. Let ρ ≥ 0 and g : W × V 7→ R. We say g is ρ-strongly-convex-strongly-concave
(ρ-SC-SC) if, for any v ∈ V , the function w 7→ g(w,v) is ρ-strongly-convex and, for any w ∈ W ,
the function v 7→ g(w,v) is ρ-strongly-concave. We say g is convex-concave if g is 0-SC-SC.
The following two assumptions are standard [25, 85]. Assumption 5 amounts to saying f is Lipschitz
continuous w.r.t. both w and v, while Assumption 6 considers smoothness conditions.
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Assumption 5. Assume for all w ∈ W,v ∈ V and z ∈ Z ,
∥∥∂wf(w,v; z)

∥∥
2

≤
G and

∥∥∂vf(w,v; z)
∥∥
2
≤ G.

Assumption 6. For any z, assume the function (w,v) 7→ f(w,v; z) is L-smooth, i.e., the following
inequality holds for all w ∈ W,v ∈ V and z ∈ Z∥∥∥∥(∂wf(w,v; z)− ∂wf(w′,v′; z)

∂vf(w,v; z)− ∂vf(w
′,v′; z)

)∥∥∥∥
2

≤L

∥∥∥∥(w−w′

v−v′

)∥∥∥∥
2

.

4.1 Stability and Generalization Measures

We use algorithmic stability to study the generalization of minimax learners. To this end, we first
introduce the stability for minimax optimization problems.

Definition 6 (Argument stability for minimax problems). Let S, S̃ and S(i) be defined as Definition 4.
Let A be a randomized algorithm and ϵ > 0. We say A is on-average ϵ-argument-stable for minimax
problems if 1

n

∑n
i=1 E

[
∥Aw(S(i))−Aw(S)∥2 + ∥Av(S

(i))−Av(S)∥2
]
≤ ϵ.

The following theorem establishes a connection between stability and generalization. Part (a) shows
that on-average argument stability implies generalization measured by the weak PD risk, while Part
(b) shows that on-average argument stability guarantees a strong notion of generalization in terms of
the primal risk under a strong concavity assumption. Theorem 5 will be proved in Appendix C.1.
Theorem 5 (Generalization via argument stability). Let A be a randomized algorithm and ϵ > 0.

(a) If A is on-average ϵ-argument-stable and Assumption 5 holds, then there holds △w(Aw,Av)−
△w

emp(Aw,Av) ≤ Gϵ.

(b) If A is on-average ϵ-argument-stable, the function v 7→ F (w,v) is ρ-strongly-concave and
Assumptions 5, 6 hold, then we have ES,A

[
R(Aw(S))−RS(Aw(S))

]
≤
(
1 + L/ρ

)
Gϵ.

In the following theorem we develop stability bounds for MC-SGDA applied to convex-concave
problems. The proof is given in Section C.1 of the Appendix.
Theorem 6 (Stability bounds). Assume for all z, the function (w,v) 7→ f(w,v; z) is convex-concave.
Let W = Rd and Assumption 5 hold, and let A be MC-SGDA with T iterations.

(a) (Smooth case) If Assumption 6 holds and
∑T

j=1 η
2
j ≤ 1/(2L2), then A is on-average ϵ-argument

stable with ϵ ≤ 4G
(
1
n

∑T
j=1 η

2
j

)1/2
+ 8

√
2G
n

∑T
j=1 ηj .

(b) (Non-smooth case) A is on-average ϵ-argument stable with ϵ≤2G
√

2
∑T

j=1η
2
j+

4
√
2G
n

∑T
j=1ηj .

Remark 9. For convex-concave and Lipschitz problems, the stability bound of the order O(η(
√
T +

T/n)) was established for SGDA with a constant stepsize under the uniformly i.i.d. sampling
setting. Under a further smoothness assumption, the stability bound was improved to the order of
O(ηT/n) [38]. Our stability bounds in Theorem 6 match these results up to a constant factor and
extend them to the Markov sampling case.

Remark 10. Let {(w(i)
t ,v

(i)
t )} be the SGDA sequence based on S(i). The existing stability anal-

ysis [38] builds a recursive relationship for EA
[
∥wt − w

(i)
t ∥22 + ∥vt − v

(i)
t ∥22

]
, which crucially

depends on the i.i.d. sampling property of it ∈ [n]. This strategy does not apply to MC-SGDA since
the conditional expectation over it is in a much complex manner due to the Markov Chain sampling.
We bypass this difficulty by building a recursive relationship for ∥wt −w

(i)
t ∥22 + ∥vt − v

(i)
t ∥22 in

terms of a sequence of random variables I[it=i]. A key observation is that the effect of randomness
would disappear if we consider on-average argument stability since

∑n
i=1 I[it=i] = 1 for any t ∈ N.

We can combine the stability bounds in Theorem 6 and Theorem 5 to develop generalization bounds.
We first establish weak PD risk bounds in Theorem 7, and then move on to primal population risk
bounds in Theorem 8. The proofs are given in Section C.1 of the Appendix.
Theorem 7 (Weak PD risk bounds). Suppose Assumption 5 holds. Assume for all z, the function
(w,v) 7→ f(w,v; z) is convex-concave. Let W = Rd and {wj ,vj}Tj=1 be produced by MC-SGDA
with ηj ≡ η. Let A be defined by Aw(S) = w̄T and Av(S) = v̄T for (w̄T , v̄T ) in (6). Denote
ϵwgen := △w(w̄T , v̄T )−△w

emp(w̄T , v̄T ).
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(a) (Smooth case) If Assumption 6 holds and
∑T

j=1 η
2
j ≤ 1/(2L2), then ϵwgen ≤

4G2
(
1
n

∑T
j=1 η

2
j

)1/2
+ 8

√
2G2

n

∑T
j=1 ηj .

(b) (Non-smooth case) The weak PD risk satisfies ϵwgen ≤ 2
√
2G2

(∑T
j=1 η

2
j

)1/2
+ 2

√
2G2

n

∑T
j=1 ηj .

Theorem 8 (Primal risk bounds). Suppose Assumption 5 holds. Assume for all z, the function
(w,v) 7→ f(w,v; z) is convex-concave, and the function v 7→ F (w,v) is ρ-strongly-concave.
Let W = Rd and let {wj ,vj}Tj=1 be produced by MC-SGDA with ηj ≡ η. Let A be defined by
Aw(S) = w̄T and Av(S) = v̄T for (w̄T , v̄T ) in (6). Denote ϵpgen := ES,A

[
R(w̄T )−RS(w̄T )

]
.

(a) (Smooth case) If Assumption 6 holds and
∑T

j=1 η
2
j ≤ 1/(2L2), then ϵpgen ≤ 4G2(1 +

L/ρ)
((

1
n

∑T
j=1 η

2
j

) 1
2 + 2

√
2

n

∑T
j=1 ηj

)
.

(b) (Non-smooth case) The primal population risk satisfies ϵpgen ≤ 2
√
2G2(1 +

L/ρ)
((∑T

j=1 η
2
j

)1/2
+ 2

n

∑T
j=1 ηj

)
.

4.2 Population Risks of MC-SGDA

Now we establish the population risk bounds for MC-SGDA. The following theorem establishes the
weak PD population risk of MC-SGDA for both smooth and non-smooth problems. Let Dw and Dv

be the diameters of W and V . The proof for Theorem 9 is provided in Appendix C.3.
Theorem 9 (Weak PD population risk). Suppose Assumptions 1, 4 and 5 hold. Assume for all z, the
function (w,v) 7→ f(w,v; z) is convex-concave. Let {wj ,vj}Tj=1 be produced by MC-SGDA with
ηj ≡ η. Let A be defined by Aw(S) = w̄T and Av(S) = v̄T for (w̄T , v̄T ) in (6).

(a) (Smooth case) Let Assumption 6 hold. If T ≍ n and η ≍ (T log(T ))−
1
2 , then △w(w̄T , v̄T ) =

O
(
log(n)/

(√
n log(1/λ(P ))

))
.

(b) (Non-smooth case) If we select T ≍ n2 and η ≍ T− 3
4 , then we have △w(w̄T , v̄T ) =

O
(
1/
(√

n log(1/λ(P ))
))

.

Remark 11. The above excess population risk bounds are obtained through the trade-off between
the optimization errors (convergence analysis) and stability results of MC-SGDA. The convergence
rates Õ(1/

√
T ) of MC-SGDA for minimax problems in both expectation and high probability are

provided in Theorem C.3 and C.4 in Appendix C.2. With gradient complexity O(n), the minimax
optimal excess risk bound O(1/

√
n) for SGDA with uniform sampling for smooth problems was

established in [38]. We show SGDA with Markov sampling can achieve the nearly optimal bound
with the same gradient complexity. For non-smooth problems, part (b) shows that the optimal excess
risk bound can be exactly achieved with the gradient complexity O(n2).

Finally, we establish the following bounds for excess primal population risk under a strong concavity
condition on v 7→ F (w,v), which measures the performance of the primal variable. The proof for
Theorem 10 is provided in Appendix C.3.
Theorem 10 (Excess primal population risk). Suppose Assumptions 1, 4, 5 and 6 hold. Assume
for all z, the function (w,v) 7→ f(w,v; z) is convex-concave. Assume v 7→ F (w,v) is ρ-strongly-
concave. Let {wj ,vj}Tj=1 be produced by MC-SGDA with ηj ≡ η. Let A be defined by Aw(S) =

w̄T and Av(S) = v̄T for (w̄T , v̄T ) in (6). If we choose T ≍ n, η ≍ (T log(T ))−1/2, then
ES,A[R(w̄T )]−minw∈W R(w) = O

(
(L/ρ)

√
log(n)/(

√
n log(1/λ(P )))

)
.

Remark 12. We show MC-SGDA attains population risk bounds of the order Õ(1/
√
n) with a linear

gradient complexity O(n), which are minimax optimal up to a logarithmic factor. This implies that
considering sampling with a Markov chain does not weaken the learnability. Theorems 9 and 10 also
show the effect of P on the population risk rates, i.e., the rates get better as λ(P ) decreases.

5 Conclusion
We develop the first-ever-known stability and generalization analysis of Markov chain stochastic
gradient methods for both minimization and minimax objectives. In particular, we establish the
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optimal excess population bounds O(1/
√
n) for MC-SGD for both smooth and non-smooth cases.

We also develop the first nearly optimal convergence rates Õ(1/
√
T ) for convex-concave problems

of MC-SGDA, and show that the optimal risk bounds O(1/
√
n) can be derived even in the non-

smooth case. Although the gradients from Markov sampling are biased and not independent across
the iterations, we show the performance of MC-SGMs is competitive compared to SGMs with the
classical i.i.d. sampling scheme. An interesting direction is to consider other variants of SGMs with
variance reduction techniques and differentially private SGMs under the Markov sampling scheme.
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Appendix for “Stability and Generalization of Markov Chain
Stochastic Gradient Methods”

A Technical Lemmas

Starting from a deterministic and arbitrary initialization w0, the iteration of MC-SGMs is illustrated
by the following diagram:

zi1 −−−−→ zi2 −−−−→ zi3 −−−−→ . . .y y y
w0 −−−−→ w1 −−−−→ w2 −−−−→ w3 −−−−→ . . .

The Jordan normal form of transition matrix P [55] is

P = U


1

J2
. . .

Jm

U−1,

where m is the number of the blocks, di ≥ 1 is the dimension of the i-th block submatrix Ji,
i = 2, 3, . . . ,m, which satisfy

∑m
i=1 di = n, and matrix Ji := λi(P ) · Idi

+ D(−1, di) with

D(−1, di) :=


0 1

. . . . . .
. . . 1

0


di×di

. Here Idi is the identity matrix of size di. In particular, if P

is symmetric, then it is double stochastic and there holds di = 1 for any i ∈ [m].

To establish the optimization error for MC-SGMs, we need the following lemma which gives the
mixing time of a Markov chain.
Lemma A.1 ([69]). Suppose Assumption 1 holds. Let λi(P ) be the i-th largest eigenvalue of
P , λ(P ) = max{|λ2(P )|,|λn(P )|}+1

2 ∈ [1/2, 1), CP =
(∑m

i=2 d
2
i

)1/2∥U∥F ∥U−1∥F and KP =

max
{
max1≤i≤m

{⌈ 2di(di−1)(log(
2di

|λ2(P )|·log(λ(P )/|λ2(P )|) )−1)

(di+1) log(λ(P )/|λ2(P )|)
⌉}

, 0
}
. For any j ≥ KP , there holds∥∥Π∗ − P j

∥∥
∞ ≤ CP ·

(
λ(P )

)j
.

In addition, if P is symmetric, then KP = 0 and∥∥Π∗ − P j
∥∥
∞ ≤ n3/2 ·

(
λ(P )

)j
, for any j ≥ 0.

The following lemma shows the non-expansive behavior for the gradient mapping w 7→ w −
η∂f(w; zi) associated with a smooth function.
Lemma A.2 ([31]). Suppose the loss f is convex and L-smooth w.r.t. the first argument. Then for all
η ≤ 2/L and z ∈ Z there holds

∥w − ∂f(w; z)−w′ + η∂f(w′; z)∥2 ≤ ∥w −w′∥2.
Lemma A.3 ([62]). Assume that the non-negative sequence {ut : t ∈ N} satisfies the following
recursive inequality for all t ∈ N,

u2
t ≤ St +

t−1∑
τ=1

ατuτ .

where {Sτ : τ ∈ N} is an increasing sequence, S0 ≥ u2
0 and ατ ≥ 0 for any τ ∈ N. Then, the

following inequality holds true:

ut ≤
√

St +

t−1∑
τ=1

ατ .

15



The connection between on-average argument stability for Lipschitz continuous losses and its
generalization error has been studied in [39].

Lemma A.4 (Generalization via argument stability). Let S, S̃ and S(i) be defined as Definition 4.
If A is on-average ϵ-argument-stable and Assumption 2 holds, then there holds

∣∣ES,A
[
F (A(S))−

FS(A(S))
]∣∣ ≤ Gϵ.

Finally, we introduce the following lemma on concentration inequality of martingales.
Lemma A.5 ([9]). Let z1, . . . , zn be a sequence of random variables. Consider a sequence of
functionals ξk(z1, . . . , zk), k ∈ [n]. Assume |ξk − Ezk [ξk]| ≤ bk for each k. Let γ ∈ (0, 1). With
probability at least 1− γ, there holds

n∑
k=1

Ezk [ξk]−
n∑

k=1

ξk ≤
(
2 log(1/γ)

n∑
k=1

b2k

)1/2
.

B Proofs of Markov Chain SGD

B.1 Proof of Theorem 1

Proof of Theorem 1. For any i ∈ [n], define S(i) = {z1, . . . , zi−1, z̃i, zi+1, . . . , zn} as the set
formed from S by replacing the i-th element with z̃i. Let {wt} and {w(i)

t } be produced by MC-SGD
based on S and S(i), respectively. For simplicity, we denote by δ

(i)
t = ∥wt −w

(i)
t ∥2 here. Note that

the projection step is nonexpansive.

We first prove part (a). Consider the following two cases.

Case 1. If it ̸= i, then it follows from the L-smoothness of f and Lemma A.2 that

δ
(i)
t ≤ ∥wt−1 − ηt∂f(wt−1; zit)−w

(i)
t−1 + ηt∂f(w

(i)
t−1; zit)∥2 ≤ δ

(i)
t−1.

Case 2. If it = i, then it follows from the Lipschitz continuity of f that

δ
(i)
t ≤ ∥wt−1 − ηt∂f(wt−1; zit)−w

(i)
t−1 + ηt∂f(w

(i)
t−1; z̃it)∥2

≤ δ
(i)
t−1 + ηt∥∂f(wt−1; zi)− ∂f(w

(i)
t−1; z̃i)∥2 ≤ δ

(i)
t−1 + 2Gηt.

Combining the above two cases together, we know

δ
(i)
t ≤ δ

(i)
t−1 + 2GηtI[it=i],

where I[it=i] is the indicator function, i.e., I[it=1] = 1 if it = i and 0 else. Now, applying the above
inequality recursively we have

δ
(i)
t ≤ 2G

t∑
j=1

ηjI[ij=i],

By the convexity of ∥ · ∥2, there holds

∥w̄t − w̄
(i)
t ∥2 ≤ 1

t

t∑
j=1

δ
(i)
j ≤ 2G

t∑
j=1

ηjI[ij=i].

Taking an average over i yields

1

n

n∑
i=1

∥w̄t − w̄
(i)
t ∥2 ≤ 2G

n

t∑
j=1

ηj

n∑
i=1

I[ij=i] ≤
2G

n

t∑
j=1

ηj ,

where the last inequality used the fact that
∑n

i=1 I[ij=i] = 1 for any j ∈ [t]. Taking expectation w.r.t.
A, we have

EA

[ 1
n

n∑
i=1

∥w̄t − w̄
(i)
t ∥2

]
≤ 2G

n

t∑
j=1

ηj ,
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which completes the proof of Part (a).

Now, we turn to the non-smooth case. Similar as before, we consider the following two cases.

Case 1. If it ̸= i, then we have(
δ
(i)
t

)2 ≤ ∥wt−1 − ηt∂f(wt−1; zit)−w
(i)
t−1 + ηt∂f(w

(i)
t−1; zit)∥22

=
(
δ
(i)
t−1

)2
+ η2t ∥∂f(wt−1; zit)− ∂f(w

(i)
t−1; zit)∥22 − 2ηt⟨wt−1 −w

(i)
t−1, ∂f(wt−1; zit)− ∂f(w

(i)
t−1; zit)⟩

≤
(
δ
(i)
t−1

)2
+ 2η2t (∥∂f(wt−1; zit)∥22 + ∥∂f(w(i)

t−1; zit)∥22)

≤
(
δ
(i)
t−1

)2
+ 4G2η2t ,

where in the last second inequality we used ⟨wt−1 −w
(i)
t−1, ∂f(wt−1; zit) − ∂f(w

(i)
t−1; zit)⟩ ≥ 0

due to the convexity of f , and the last inequality follows from the Lipschitz continuity of f .

Case 2. If it = i, then

(δ
(i)
t )2 ≤ ∥wt−1 − ηt∂f(wt−1; zi)−w

(i)
t−1 + ηt∂f(w

(i)
t−1; z̃i)∥22

= (δ
(i)
t−1)

2 + η2t ∥∂f(wt−1; zi)− ∂f(w
(i)
t−1; z̃i)∥22 − 2ηt⟨wt−1 −w

(i)
t−1, ∂f(wt−1; zi)− ∂f(w

(i)
t−1; z̃i)⟩

≤ (δ
(i)
t−1)

2 + 2η2t
(
∥∂f(wt−1; zi)∥22 + ∥∂f(w(i)

t−1; z̃i)∥22
)
+ 2ηtδ

(i)
t−1

(
∥∂f(wt−1; zi)∥2 + ∥∂f(w(i)

t−1; z̃i)∥2
)

≤ (δ
(i)
t−1)

2 + 4G2η2t + 4Gηtδ
(i)
t−1, (B.1)

where the last inequality holds since f is G-Lipschitz.

Combining Case 1 and Case 2 together, we have

(δ
(i)
t )2 ≤ (δ

(i)
t−1)

2 + 4G2η2t + 4Gηtδ
(i)
t−1I[it=i].

Note that δ(i)0 = ∥w0 −w
(i)
0 ∥2 = 0, we get the following recursive inequality

(δ
(i)
t )2 ≤ 4G2

t∑
j=1

η2j + 4G

t∑
j=1

ηjδ
(i)
j−1I[ij=i] = 4G2

t∑
j=1

η2j + 4G

t−1∑
j=1

ηj+1δ
(i)
j I[ij+1=i].

Lemma A.3 with ut = δ
(i)
t implies

δ
(i)
t ≤ 2G

√√√√ t∑
j=1

η2j + 4G

t−1∑
j=1

ηj+1I[ij+1=i].

By the convexity of ∥ · ∥2, it follows

∥w̄t − w̄
(i)
t ∥2 ≤ 1

t

t∑
j=1

δ
(i)
j ≤ 2G

√√√√ t∑
j=1

η2j + 4G

t−1∑
j=1

ηj+1I[ij+1=i].

Taking an average over i, we have

1

n

n∑
i=1

∥w̄t − w̄
(i)
t ∥2 ≤ 2G

√√√√ t∑
j=1

η2t +
4G

n

t−1∑
j=1

ηj+1

n∑
i=1

I[ij+1=i]

≤ 2G

√√√√ t∑
j=1

η2t +
4G

n

t∑
j=1

ηj ,

where the last inequality used the fact that
∑n

i=1 I[ij+1=i] = 1. Taking the expectation w.r.t. A
completes the proof.
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B.2 Optimization Error of MC-SGD for Convex Problems

In this subsection, we establish the convergence rates of MC-SGD for convex and non-convex
problems. We consider both upper bounds in expectation and with high probability.

Recall w∗ = argminw∈W F (w). Let λi(P ) be the i-th largest eigenvalue of transition matrix P
and λ(P ) = (max{|λ2(P )|, |λn(P )|}+ 1)/2 ∈ [1/2, 1). Let KP be the mixing time and CP be a
constant depending on P and its Jordan canonical form (detailed expressions are given in Lemma A.1
in the Appendix).

Theorem B.1 gives optimization error bounds in expectation for MC-SGD in the convex case.

Theorem B.1 (Convex case). Suppose f is convex and Assumptions 1, 2 hold. Let A be MC-SGD with
T iterations, and {wj}Tj=1 be produced by A with w0 = 0 and ηj ≡ η ≤ 2/L. Let D0 = ∥w∗∥2,

D =
(
(G2 + 2 supz∈Z f(0; z))

∑T
k=1 ηk

)1/2
+D0 and

kj=min
{
max

{⌈ log(2CPDnj)

log(1/λ(P ))

⌉
,KP

}
, j
}
, j ∈ [T ]. (B.2)

Then the following inequality holds

EA[FS(w̄T )−FS(w
∗)]≤

D0+G
(
4D
∑KP−1

j=1 ηj+
∑T

j=KP

ηj

j +G
∑T

j=1(4ηj
∑j

k=j−kj+1 ηk + η2j )
)

2
∑T

j=1 ηj
.

Furthermore, suppose Assumption 4 holds. Then selecting ηj ≡ η = 1/
√

T log(T ) implies
EA[FS(w̄T )− FS(w

∗)] = O
(√

log(T )/(
√
T log(1/λ(P ))

)
.

Remark B.1. For all j ∈ [T ], kj can be seen as the mixing time such that the distance between the
distribution of the current state of the Markov chain and that of the stationary distribution can be
controlled by O(1/(nj)).

Now, we give the proof of Theorem B.1.

Proof of Theorem B.1. By the convexity of f and Jensen’s inequality,

( T∑
j=1

ηj

)
EA[FS(w̄t)− FS(w

∗)]

≤
T∑

j=1

ηjEA[FS(wj)− FS(w
∗)]

=

T∑
j=1

ηjEA
[
FS(wj)− FS(wj−kj )

]
+

T∑
j=1

ηjEA
[
FS(wj−kj )− FS(w

∗)
]
, (B.3)

where kj = min
{
max

{⌈
log(2CPDnj)
log(1/λ(P ))

⌉
,KP

}
, j
}

.

Consider the first term
∑T

j=1 ηjEA
[
FS(wj)− FS(wj−kj

)
]

in (B.3). By Lipschitz continuity of f ,
we have

T∑
j=1

ηjEA
[
FS(wj)− FS(wj−kj )

]
≤ G

T∑
j=1

ηjEA
[
∥wj −wj−kj∥2

]
≤ G2

T∑
j=1

ηj

j∑
k=j−kj+1

ηk,

(B.4)

where the last inequality used the fact that ∥wj −wj−kj
∥2 ≤

∑j
k=j−kj+1 ηk∥∂f(wk−1; zik)∥2 ≤

G
∑j

k=j−kj+1 ηk.
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Next, we estimate the term
∑T

j=1 ηjEA[FS(wj−kj )− F (w∗)] in (B.3). Note that

Eij [f(wj−kj
; zij )−f(w∗; zij )|w0, . . . ,wj−kj

, zi1 , . . . , zij−kj
]

=

n∑
i=1

[f(wj−kj
; zi)− f(w∗; zi)] · Pr(ij = i|ij−kj

)

=

n∑
i=1

[f(wj−kj
; zi)− f(w∗; zi)] · [P kj ]ij−kj

,i

=
1

n

n∑
i=1

[f(wj−kj
; zi)− f(w∗; zi)] +

n∑
i=1

(
[P kj ]ij−kj

,i −
1

n

)
· [f(wj−kj

; zi)− f(w∗; zi)]

=
(
FS(wj−kj

)− FS(w
∗)
)
+

n∑
i=1

(
[P kj ]ij−kj

,i −
1

n

)
· [f(wj−kj

; zi)− f(w∗; zi)]. (B.5)

Rearranging the above equality and taking total expectation give us

EA[FS(wj−kj )− FS(w
∗)] =EA[f(wj−kj ; zij )− f(w∗; zij )]

+ EA

[ n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)(
f(wj−kj

; zi)− f(w∗; zi)
)]
.

Summing over j yields
T∑

j=1

ηjEA[FS(wj−kj
)− FS(w

∗)] =

T∑
j=1

ηjEA[f(wj−kj
; zij )− f(w∗; zij )]

+

T∑
j=1

ηjEA

[ n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
[f(wj−kj

; zi)− f(w∗; zi)]
]
.

(B.6)

Now, we estimate the term
∑T

j=1 ηjEA[f(wj−kj
; zij )− f(w∗; zij )] in (B.6). According to update

rule (4), for any j and 1 ≤ kj ≤ j

∥wj −w∗∥22
≤ ∥wj−1 − ηj∂f(wj−1; zij )−w∗∥22
= ∥wj−1 −w∗∥22 − 2ηj⟨wj−1 −w∗, ∂f(wj−1; zij )⟩+ η2j ∥∂f(wj−1; zij )∥22
≤ ∥wj−1 −w∗∥22 − 2ηj

(
f(wj−1; zij )− f(w∗; zij )

)
+G2η2j

= ∥wj−1 −w∗∥22 − 2ηj
(
f(wj−kj ; zij )− f(w∗; zij )

)
+ 2ηj

(
f(wj−kj ; zij )− f(wj−1; zij )

)
+G2η2j

≤ ∥wj−1 −w∗∥22−2ηj
(
f(wj−kj ; zij )−f(w∗; zij )

)
+2G2ηj

j∑
k=j−kj+1

ηk+G2η2j ,

where the second inequality is due to the convexity of f , and the last inequality used the fact f is
G-Lipschitz and ∥wj−kj

−wj−1∥2 ≤
∑j

k=j−kj+1 ηk∥∂f(wk; zik)∥2 ≤ G
∑j

k=j−kj+1 ηk. Taking
a summation of the both sides over j and noting w0 = 0, we get

T∑
j=1

ηj
(
f(wj−kj

; zij )− f(w∗; zij )
)
≤

∥w∗∥22 +G2
∑T

j=1

(
2ηj

∑j
k=j−kj+1 ηk + η2j

)
2

. (B.7)

Then we turn to estimate
∑T

j=1 ηj
∑n

i=1

(
1
n − [P kj ]ij−kj

,i

)
[f(wj−kj

; zi)− f(w∗; zi)]. Recall that

kj = min
{
max

{⌈
log(2CPDnj)
log(1/λ(P ))

⌉
,KP

}
, j
}

. For j ≥ KP , according to Lemma A.1, we know for
any i, i′ ∈ [n] ∣∣∣ 1

n
− [P kj ]i,i′

∣∣∣ ≤ CP

(
λ(P )

)kj
= CP e

kj log(λ(P )) ≤ 1

2Dnj
.
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According to the update rule (4) we know

∥wt∥22 ≤ ∥wt−1−ηt∂f(wt−1; zit)∥22 ≤ ∥wt−1∥22+η2t ∥∂f(wt−1; zit)∥22−2ηt⟨∂f(wt−1; zit),wt−1⟩.

The convexity of f implies

ηt∥∂f(wt−1; zit)∥22 − 2⟨∂f(wt−1; zit),wt−1⟩ ≤ ηt∥∂f(wt−1; zit)∥22 + 2
(
f(0; zit)− f(wt−1; zit)

)
≤ G2 + 2 sup

z∈Z
f(0; z),

where we used ηt < 1 and Lipschitz continuity and non-negativity of f . Combining the above two
inequalities together, we get

∥wt∥22 ≤ ∥wt−1∥22 +
(
G2 + 2 sup

z∈Z
f(0; z)

)
ηt.

Applying the above inequality recursively and noting that w0 = 0, we get

∥wt∥22 ≤
(
G2 + 2 sup

z∈Z
f(0; z)

) t−1∑
k=1

ηk ≤
(
G2 + 2 sup

z∈Z
f(0; z)

) T∑
k=1

ηk.

Recall that D0 = ∥w∗∥2 and D =
(
(G2 + 2 supz∈Z f(0; z))

∑T
k=1 ηk

)1/2
+ D0, it then follows

that
T∑

j=KP

ηj

n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
[f(wj−kj

; zi)− f(w∗; zi)]

≤ GD

T∑
j=KP

ηj

n∑
i=1

∣∣∣ 1
n
− [P kj ]ij−kj

,i

∣∣∣ ≤ T∑
j=KP

Gηj
2j

, (B.8)

where the first inequality used |f(wt; zi)−f(w∗; zi)| ≤ G∥wt−w∗∥2 ≤ G(∥wt∥2+∥w∗∥2) ≤ GD
for any t ∈ [T ]. On the other hand, note that [P kj ]i,i′ ≥ 0 for any i, i′ ∈ [n] and kj , then

n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
[f(wj−kj

; zi)− f(w∗; zi)]

≤
n∑

i=1

( 1
n
+ [P kj ]ij−kj

,i

)
|f(wj−kj ; zi)− f(w∗; zi)| ≤ 2G∥wj−kj −w∗∥2 ≤ 2GD,

where the last second inequality used Lipschitz continuity of f and
∑n

j=1[P
x]i,j = 1 for any fixed

i ∈ [n] and x ≥ 1. Therefore, there holds

KP−1∑
j=1

ηj

n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
[f(wj−kj ; zi)− f(w∗; zi)] ≤ 2GD

KP−1∑
j=1

ηj .

Combining the above inequality and (B.8) together, we get

T∑
j=1

ηj

n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
[f(wj−kj

; zi)− f(w∗; zi)] ≤
T∑

j=KP

Gηj
2j

+ 2GD

KP−1∑
j=1

ηj . (B.9)

Putting (B.7) and (B.9) back into (B.6), we obtain

T∑
j=1

ηjEA[FS(wj−kj
)− FS(w

∗)]

≤
∥w∗∥22 + 4GD

∑KP−1
j=1 ηj

2
+

G2
∑T

j=1

(
2ηj

∑j
k=j−kj+1 ηk + η2j

)
2

+
G
∑T

j=KP
ηj/j

2
.

(B.10)

20



Now, plugging (B.4) and (B.10) back into (B.3), we have

EA[FS(w̄t)− FS(w
∗)] ≤

∥w∗∥22 + 4GD
∑KP−1

j=1 ηj +G2
∑T

j=1

(
4ηj

∑j
k=j−kj+1 ηk + η2j

)
2
∑T

j=1 ηj

+
G
∑T

j=KP
ηj/j

2
∑T

j=1 ηj
.

Furthermore, choosing ηj ≡ η = 1√
T log(T )

and noting D = O(
√
ηT ) = O

(
(T/ log(T ))1/4

)
, we

have

EA[FS(w̄T )− FS(w
∗)] = O

(1 +KP η
3
2

√
T + Tη2 +

∑T
j=1 kjη

2

Tη

)
(B.11)

= O
(√log(T )

(
1 +

∑T
j=1 kjη

2
)

√
T

+
KP

√
η

√
T

)
.

Recall that kj = min
{
max

{⌈
log(2CPDnj)
log(1/λ(P ))

⌉
,KP

}
, j
}

. Let K = 1
2CPDnλ(P )KP

. If j ≤ K, we
have kj ≤ KP and

K∑
j=1

kjη
2 ≤ KKP η

2 =
KP

T
5
4 log

3
4 (T )2CPnλ(P )KP

.

If j > K, there holds kj ≤
⌈
log(2CPDnj)
log(1/λ(P ))

⌉
. Then we have

T∑
j=K+1

kjη
2 ≤ 1

log(1/λ(P ))

[ T∑
j=K+1

log(2CPD)η2 +

T∑
j=K+1

log(n)η2 +

T∑
j=K+1

log(j)η2
]
+ Tη2

= O
( log(n) + log(T )

log(1/λ(P )) log(T )
+ 1
)
= O

( 1

log(1/λ(P ))

)
.

Here, we use a reasonable assumption n = O(T ). Combining the above two cases, we get

T∑
j=1

kjη
2 = O

( KP

T
5
4 log

3
4 (T )CPnλ(P )KP

+
1

log(1/λ(P ))

)
. (B.12)

Putting (B.12) back into (B.11) yields

EA[FS(w̄T )−FS(w
∗)] = O

( √
log(T )√

T log(1/λ(P ))
+

KP

T
3
4 log

1
4 (T )min{

√
T log(T )CPnλ(P )KP , 1}

)
.

Note Assumption 4 implies KP = 0, then

EA[FS(w̄T )− FS(w
∗)] = O

( √
log(T )√

T log(1/λ(P ))

)
,

which completes the proof.

To understand the variation of the algorithm, we present a confidence-based bound for optimization
error, which matches the bound in expectation up to a constant factor.
Theorem B.2 (High-probability bound). Suppose f is convex and Assumptions 1, 2 and 4 hold. Let
A be MC-SGD with T iterations and {wj}Tj=1 be produced by A with ηj ≡ η = 1/

√
T log(T ).

Assume supz∈Z f(w; z) ≤ B for some B > 0. Let γ ∈ (0, 1), then with probability at least 1− γ

FS(w̄T )−FS(w
∗)=O

(√log(T )
(

1
log(1/λ(P ))+B

√
log( 1γ )

)
√
T

)
.
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Proof of Theorem B.2. We decompose the optimization error as follows
T∑

j=1

ηj [FS(w̄t)− FS(w
∗)] ≤

T∑
j=1

ηj [FS(wj)− FS(wj−kj
)] +

T∑
j=1

ηj [FS(wj−kj
)− FS(w

∗)]

≤ G

T∑
j=1

ηj∥wj −wj−kj
∥2 +

T∑
j=1

ηj [FS(wj−kj
)− FS(w

∗)]

≤ G2
T∑

j=1

ηj

j∑
k=j−kj+1

ηk +

T∑
j=1

ηj [FS(wj−kj )− FS(w
∗)], (B.13)

where the last second inequality used the Lipschitz continuity of f and the last inequality follows
from the update rule (4).

Consider the second term in (B.13). Let ξj = ηj [f(wj−kj
; zij ) − f(w∗; zij )]. Observe that |ξj −

Eij [ξj ]| ≤ 2Bηj . Then, applying Lemma A.5 implies, with probability at least 1− γ, that
T∑

j=1

Eij [ξj ]−
T∑

j=1

ξj ≤ 2B
(
2

T∑
j=1

η2j log(1/γ)
)1/2

. (B.14)

Note (B.5) implies
T∑

j=1

ηj [FS(wj−kj
)− FS(w

∗)] +

T∑
j=1

ηj

n∑
i=1

(
[P kj ]ij−kj

,i −
1

n

)
[f(wj−kj

; zi)− f(w∗; zi)]

=

T∑
j=1

Eij [ηjf(wj−kj
; zij )− f(w∗; zij )|w0, . . . ,wj−kj

, zi1 , . . . , zij−kj
],

which combines with (B.14) yields
T∑

j=1

ηj [FS(wj−kj
)− FS(w

∗)] +

T∑
j=1

ηj

n∑
i=1

(
[P kj ]ij−kj

,i −
1

n

)
[f(wj−kj

; zi)− f(w∗; zi)]

≤
T∑

j=1

ηj [f(wj−kj
; zij )− f(w∗; zij )] + 2B

(
2

T∑
j=1

η2j log(1/γ)
)1/2

.

Putting (B.7) and (B.9) back into the above inequality, we obtain
T∑

j=1

ηj [FS(wj−kj
)− FS(w

∗)]

≤
T∑

j=1

ηj

n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
[f(wj−kj

; zi)− f(w∗; zi)]

+

T∑
j=1

ηj [f(wj−kj
; zij )− f(w∗; zij )] + 2B

(
2

T∑
j=1

η2j log(1/γ)
)1/2

≤
C +G2

∑T
j=1

(
2ηj

∑j
k=j−kj+1 ηk + η2j

)
2

+
G
∑T

j=KP
ηj/j + 4B

(
2
∑T

j=1 η
2
j log(1/γ)

)1/2
2

,

(B.15)

where C = ∥w∗∥22 + 4GD
∑KP−1

j=1 ηj .

Now, plugging (B.15) back into (B.13), with probability at least 1− γ, there holds
T∑

j=1

ηj [FS(w̄t)− FS(w
∗)] ≤

C +G2
∑T

j=1

(
4ηj

∑j
k=j−kj+1 ηk + η2j

)
2

+
G
∑T

j=KP
ηj/j + 4B

(
2
∑T

j=1 η
2
j log(1/γ)

)1/2
2

.
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By Jensen’s inequality, there holds

FS(w̄t)− FS(w
∗) ≤

C +G2
∑T

j=1

(
4ηj

∑j
k=j−kj+1 ηk + η2j

)
2
∑T

j=1 ηj

+
G
∑T

j=KP
ηj/j + 4B

(
2
∑T

j=1 η
2
j log(1/γ)

)1/2
2
∑T

j=1 ηj
.

Similar as the discussion in Theorem B.1, by choosing ηj ≡ η = 1/
√

T log(T ), there holds

FS(w̄T )− FS(w
∗) = O

(√log(T )
(
log−1(1/λ(P )) +B

√
log(1/γ)

)
√
T

+
KP

T
3
4 log

1
4 (T )min{

√
T log(T )CPnλ(P )KP , 1}

))
.

If we further assume the Markov chain is reversible with P = P⊤, then we have

FS(w̄T )− FS(w
∗) = O

(√log(T )
(

1
log(1/λ(P )) +B

√
log( 1γ )

)
√
T

)
.

The proof is completed.

The following theorem provides the convergence analysis for non-convex problems. Since the
convergence in terms of objective values cannot be given, we only measure the convergence rate in
terms of gradient norm. The proof follows from [69].
Theorem B.3 (Non-convex case). Suppose Assumptions 1, 2 and 3 hold. Let A be MC-SGD with T
iterations and {wj}Tj=1 be produced by A. Let D be the diameter of W , and

kj=min
{
max

{⌈ log(2CPDnj)

log(1/λ(P ))

⌉
,KP

}
, j
}
, j ∈ [T ].

Then

min
1≤j≤T

EA
[
∥∂FS(wj)∥22] ≤

C +
∑T

j=KP
ηj/j

2
∑T

j=1 ηj
+

G2L
∑T

j=1(η
2
j + kj

∑j
k=j−kj

η2k + 6ηj
∑j

k=j−kj
ηk)

2
∑T

j=1 ηj
,

where C = 2(FS(w0)+2G2
∑KP−1

j=1 ηj). Furthermore, suppose Assumption 4 holds. Selecting ηj ≡
η = 1/

(
log(T )

√
T
)

implies min1≤j≤T EA
[
∥∂FS(wj)∥22] = O

(
log(T )/(

√
T log2(1/(λ(P )))

)
.

Proof of Theorem B.3. Let kj = min
{
max

{⌈
log(2CPDnj)
log(1/λ(P ))

⌉
,KP

}
, j
}

. Consider the following
decomposition
T∑

j=1

ηjEA
[
∥∂FS(wj)∥22] =

T∑
j=1

ηjEA
[
∥∂FS(wj)∥22 − ∥∂FS(wj−kj

)∥22
]
+

T∑
j=1

ηjEA
[
∥∂FS(wj−kj

)∥22
]
.

(B.16)
Note that

T∑
j=1

ηjEA
[
∥∂FS(wj)∥22 − ∥∂FS(wj−kj )∥22

]
≤

T∑
j=1

ηjEA
[(
∥∂FS(wj)∥2 + ∥∂FS(wj−kj )∥2

)
(∥∂FS(wj)∥2 − ∥∂FS(wj−kj )∥2

)]
≤ 2G

T∑
j=1

ηjEA[∥∂FS(wj)− ∂FS(wj−kj )∥2] ≤ 2GL

T∑
j=1

ηjEA
[
∥wj −wj−kj∥2

]
≤ 2G2L

T∑
j=1

ηj

j∑
k=j−kj

ηk, (B.17)
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where the second inequality used the fact that f is G-Lipschitz, the third inequality follows from the
smoothness of f , and the last inequality used the update rule (4). The first term in (B.16) is bounded.

Now, we turn to estimate the second term in (B.16). Note that

Eij

[
⟨∂f(wj−kj

; zij ), ∂FS(wj−kj
)⟩|w0, . . . ,wj−kj

, i1, . . . , ij−kj

]
=

n∑
i=1

⟨∂f(wj−kj ; zi), ∂FS(wj−kj )⟩ · Pr(ij = i|ij−kj )

=

n∑
i=1

⟨∂f(wj−kj ; zi), ∂FS(wj−kj )⟩ · [P kj ]ij−kj
,i

=
1

n

n∑
i=1

⟨∂f(wj−kj
; zi), ∂FS(wj−kj

)⟩+
n∑

i=1

(
[P kj ]ij−kj

,i −
1

n

)
⟨∂f(wj−kj

; zi), ∂FS(wj−kj
)⟩

= ∥∂FS(wj−kj
)∥22 +

n∑
i=1

(
[P kj ]ij−kj

,i −
1

n

)
⟨∂f(wj−kj

; zi), ∂FS(wj−kj
)⟩. (B.18)

Taking total expectations on both sides and summing over j yields

T∑
j=1

ηjEA
[
∥∂FS(wj−kj

)∥22
]
=

T∑
j=1

ηjEA
[
⟨∂f(wj−kj

; zij ), ∂FS(wj−kj
)⟩
]

+

T∑
j=1

ηjEA

[ n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
⟨∂f(wj−kj

; zi), ∂FS(wj−kj
)⟩
]
.

(B.19)

Consider the first term in (B.19). By the smoothness of f , we have

FS(wj) ≤ FS(wj−1) + ⟨wj −wj−1, ∂FS(wj−1)⟩+
L

2
∥wj −wj−1∥22

≤ FS(wj−1) + ⟨wj −wj−1, ∂FS(wj−kj
)⟩+ ⟨wj −wj−1, ∂FS(wj−1)− ∂FS(wj−kj

)⟩

+
L

2
∥wj −wj−1∥22

≤ FS(wj−1) + ⟨wj −wj−1, ∂FS(wj−kj
)⟩+ 1

2
∥wj −wj−1∥22

+
1

2
∥∂FS(wj−1)− ∂FS(wj−kj

)∥22 +
LG2η2j

2

≤ FS(wj−1) + ⟨wj −wj−1, ∂FS(wj−kj
)⟩+

(L+ 1)G2η2j
2

+
L2∥wj −wj−kj∥22

2

≤ FS(wj−1) + ⟨wj −wj−1, ∂FS(wj−kj
)⟩+

(L+ 1)G2η2j
2

+
G2L2kj

∑j
k=j−kj

η2k

2
,

where the third inequality used ab ≤ a2/2 + b2/2, and the last inequality follows from ∥wj −
wj−kj

∥22 = ∥
∑j

k=j−kj
ηk∂f(wk−1; zik−1

)∥22 ≤ kjG
2
∑j

k=j−kj
η2k. Rearrangement of the above

inequality and taking expectation over A give us

EA[⟨wj−1 −wj , ∂FS(wj−kj
)⟩] ≤EA[FS(wj−1)− FS(wj)] +

(L+ 1)G2η2j
2

+
G2L2kj

∑j
k=j−kj

η2k

2
. (B.20)
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Note that

EA
[
⟨wj−1 −wj , ∂FS(wj−kj )⟩

]
= ηjEA

[
⟨∂f(wj−1; zij ), ∂FS(wj−kj

)⟩
]

= ηjEA
[
⟨∂f(wj−kj

; zij ), ∂FS(wj−kj
)⟩
]
+ ηjE

[
⟨∂f(wj−1; zij )− ∂f(wj−kj

; zij ), ∂FS(wj−kj
)⟩
]

≥ ηjEA
[
⟨∂f(wj−kj

; zij ), ∂FS(wj−kj
)⟩
]
−G2Lηj

j∑
k=j−kj

ηk.

Combining (B.20) with the above inequality together, we obtain

ηjEA
[
⟨∂f(wj−kj

; zij ), ∂FS(wj−kj
)⟩
]

≤ EA[FS(wj−1)− FS(wj)] +
G2L(η2j + Lkj

∑j
k=j−kj

η2k + 2ηj
∑j

k=j−kj
ηk) +G2η2j

2
.

(B.21)

Summing over j yields

T∑
j=1

ηjEA[⟨∂f(wj−kj
; zij ), ∂FS(wj−kj

)⟩]

≤ FS(w0) +
G2L

∑T
j=1(η

2
j + kj

∑j
k=j−kj

η2k + 2ηj
∑j

k=j−kj
ηk) +G2

∑T
j=1 η

2
j

2
. (B.22)

Now, we consider the second term in (B.19). Similar as the proof of Theorem B.1, it is easy to obtain
the following bound by using Lemma A.1

T∑
j=1

ηjEA

[ n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
⟨∂f(wj−kj ; zij ), ∂FS(wj−kj )⟩

]

≤ G2
KP−1∑
j=1

ηj

n∑
i=1

( 1
n
+ [P kj ]ij−kj

,i

)
+G2

T∑
j=KP

ηj

n∑
i=1

∣∣∣ 1
n
− [P kj ]ij−kj

,i

∣∣∣
≤ 2G2

KP−1∑
j=1

ηj +

T∑
j=KP

ηj/2j. (B.23)

Plugging (B.22) and (B.23) back into (B.19), we have

T∑
j=1

ηjEA
[
∥∂FS(wj−kj )∥22

]
≤

2(FS(w0) + 2G2
∑KP−1

j=1 ηj) +
∑T

j=KP
ηj/j +G2

∑T
j=1 η

2
j

2

+
G2L

∑T
j=1(η

2
j + Lkj

∑j
k=j−kj

η2k + 2ηj
∑j

k=j−kj
ηk)

2
. (B.24)

Finally, putting (B.17) and (B.24) back into (B.16), we obtain

T∑
j=1

ηj min
1≤j≤T

EA
[
∥∂FS(wj)∥22] ≤

T∑
j=1

ηjEA
[
∥∂FS(wj)∥22]

≤
2(FS(w0) + 2G2

∑KP−1
j=1 ηj) +

∑T
j=KP

ηj/j +G2
∑T

j=1 η
2
j

2

+
G2L

∑T
j=1(η

2
j + Lkj

∑j
k=j−kj

η2k + 6ηj
∑j

k=j−kj
ηk)

2
.
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Dividing both sides of the above inequality by
∑T

j=1 ηj yields

min
1≤j≤T

EA
[
∥∂FS(wj)∥22] ≤

2(FS(w0) + 2G2
∑KP−1

j=1 ηj) +
∑T

j=KP
ηj/j +

∑T
j=1 G

2η2j

2
∑T

j=1 ηj

+
G2L

∑T
j=1(η

2
j + Lkj

∑j
k=j−kj

η2k + 6ηj
∑j

k=j−kj
ηk)

2
∑T

j=1 ηj
.

If we set ηj ≡ η = 1√
T log(T )

, then

min
1≤j≤T

EA
[
∥∂FS(wj)∥22]=O

(KP

T
+

1

Tη
+η+

∑T
j=1 k

2
j η

2

Tη

)
=O

(KP

T
+
log(T )

(
1 +

∑T
j=1 k

2
j η

2
)

√
T

)
.

It suffices to estimate
∑T

j=1 k
2
j η

2. Recall that kj = min
{
max

{⌈
log(2CPDnj)
log(1/λ(P ))

⌉
,KP

}
, j
}

. Let

K = 1
2CPDnλ(P )KP

. If j ≤ K, we have kj ≤ KP and

K∑
j=1

k2j η
2 ≤ KK2

P η
2 =

K2
P

T log(T )2CPDnλ(P )KP
.

If j > K, there holds kj ≤
⌈
log(2CPDnj)
log(1/λ(P ))

⌉
. Then with a reasonable assumption n = O(T ) we have

T∑
j=K+1

k2j η
2 ≤ 6

log2(1/λ(P ))

[ T∑
j=K+1

(
log(2CPD)

)2
η2 +

T∑
j=K+1

log2(n)η2 +

T∑
j=K+1

log2(j)η2
]

+ 2Tη2

= O
( 1

log2(1/λ(P ))

)
.

Combining the above two cases together yields
T∑

j=1

k2j η
2 = O

( K2
P

T log(T )CPnλ(P )KP
+

1

log2(1/λ(P ))

)
.

Therefore,

min
1≤j≤T

EA
[
∥∂FS(wj)∥22] = O

(KP

T
+

log(T )√
T

( K2
P

T log(T )CPnλ(P )KP
+

1

log2(1/λ(P ))

))
.

The stated bound then follows from KP = 0.

B.3 Proofs of Theorem 3 and Theorem 4

Proof of Theorem 3. Let ηj ≡ η. According to Part (a) in Theorem 2 and (B.11), we know

ES,A[F (w̄T )− FS(w
∗)] = ES,A[F (w̄T )− FS(w̄T )] + EA[FS(w̄T )− FS(w

∗)]

= O
(Tη

n
+

1 +
(
T +

∑T
j=1 kj

)
η2

Tη
+

KP
√
η

√
T

)
.

Setting η = 1√
T log(T )

and choosing T ≍ n, we have

ES,A[F (w̄T )− FS,A(w
∗)]

= O
(√T

n
+

√
log(T )√

T log(1/λ(P ))
+

KP

T
3
4 log

1
4 (T )min{

√
T log(T )CPnλ(P )KP }

)
= O

( √
log(n)√

n log(1/λ(P ))
+

KP

n
3
4 log

1
4 (n)min{

√
n log(n)CPnλ(P )KP , 1}

)
,
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where the first equality follows from Eq.(B.12). Note that KP = 0 when P = P⊤, we immediately
obtain

ES,A[F (w̄T )− FS,A(w
∗)] = O

( √
log(n)√

n log(1/λ(P ))

)
.

Proof of Theorem 4 . Part (b) in Theorem 2 and (B.11) implies

ES,A[F (w̄T )− FS(w
∗)] = ES,A[F (w̄T )− FS(w̄T )] + EA[FS(w̄T )− FS(w

∗)]

= O
(√

Tη +
Tη

n
+

1 + (T +
∑T

j=1 kj)η
2

Tη
+

KP
√
η

√
T

)
. (B.25)

Selecting η = T− 3
4 . Similar as the discussion in Theorem B.1, we know

T∑
j=1

kjη
2 =

K∑
j=1

kjη
2 +

T∑
j=K+1

kjη
2

≤ KKP η
2 +

1

log(1/λ(P ))

( T∑
j=K+1

log(2CPD)η2 +

T∑
j=K+1

log(n)η2 +

T∑
j=K+1

log(j)η2
)

+ Tη2

= O
( log(T )√

T log(1/λ(P ))
+

KP

T 13/8CPnλ(P )KP

)
,

where K = 1
2CPDnλ(P )KP

and D = O(
√
ηT ). Note transition matrix P is symmetric implies

KP = 0. Plugging the above estimation with KP = 0 back into (B.25) and choosing T ≍ n2, we get

ES,A[F (w̄T )]− F (w∗) = O
( 1√

n log(1/λ(P ))

)
.

The above results The proof is completed.

C Proofs of Markov Chain SGDA

In this section, we present the proof on MC-SGDA. Let (w∗,v∗) be a saddle point of F , i.e., for any
w ∈ W,v ∈ V , there holds F (w∗,v) ≤ F (w∗,v∗) ≤ F (w,v∗).

C.1 Proofs of Theorem 5-Theorem 8

We first prove Theorem 5 on the connection between stability and generalization for minimax
problems.

Proof of Theorem 5. We follow the argument in [38] to prove Theorem 5. For any function g, g̃, we
have the basic inequalities

sup
w

g(w)− sup
w

g̃(w) ≤ sup
w

(
g(w)− g̃(w)

)
inf
w

g(w)− inf
w

g̃(w) ≤ sup
w

(
g(w)− g̃(w)

)
.

(C.1)

According to Eq. (C.1), we know

△w(Aw(S),Av(S))−△w
emp(Aw(S),Av(S)) ≤ sup

v′∈V
E[F (Aw(S),v′)− FS(Aw(S),v′)]

+ sup
w′∈W

E[FS(w
′,Av(S))− F (w′,Av(S))].
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Recall that S = {z1, . . . , zn}, S̃ = {z̃1, . . . , z̃n} and S(i) = {z1, . . . , zi−1, z̃i, zi+1, . . . , zn}. Ac-
cording to the symmetry between zi and z̃i we know

E[F (Aw(S),v′)− FS(Aw(S),v′)] =
1

n

n∑
i=1

E[F (Aw(S(i)),v′)]− E[FS(Aw(S),v′)]

=
1

n

n∑
i=1

E
[
f(Aw(S(i)),v′; zi)− f(Aw(S),v′; zi)

]
≤ G

n

n∑
i=1

E
[
∥Aw(S(i))−Aw(S)∥2

]
,

where the second identity holds since zi is not used to train Aw(S(i)) and the last inequality holds
due to the Lipschitz continuity of f . In a similar way, we can prove

E[FS(w
′,Av(S))− F (w′,Av(S))] ≤

G

n

n∑
i=1

E
[
∥Av(S

(i))−Av(S)∥2
]
.

As a combination of the above three inequalities we get

△w(Aw(S),Av(S))−△w
S (Aw(S),Av(S))≤

G

n

n∑
i=1

E
[
∥Aw(S(i))−Aw(S)∥2+∥Av(S

(i))−Av(S)∥2
]
.

This proves Part (a). Part (b) was proved in [38]. The proof is completed.

To prove our stability bounds, we first introduce two useful lemmas. The first lemma is due to [60],
while the second lemma is elementary.

Lemma C.1 ([60]). Let f be ρ-SC-SC with ρ ≥ 0. For any (w,v) and (w′,v′), then〈(
w −w′

v − v′

)
,

(
∂wf(w,v)− ∂wf(w′,v′)
∂vf(w

′,v′)− ∂vf(w,v)

)〉
≥ ρ

∥∥∥∥(w −w′

v − v′

)∥∥∥∥2
2

. (C.2)

Lemma C.2. Let b, c ≥ 0. If x2 ≤ bx+ c, then x ≤ b+
√
c.

Proof of Theorem 6. For any i ∈ [n], define S(i) = {z1, . . . , zi−1, z̃i, zi+1, . . . , zn} as the set
formed from S by replacing the i-th element with z̃i. Let (w(i)

t ,v
(i)
t ) be produced by MC-SGDA

based on S(i) for i ∈ [n]. Note that the projection step is nonexpansive.

We first prove Part (a). We consider two cases at the t-th iteration.

Case 1. If it ̸= i, then it follows from the L-smoothness of f and Lemma C.1 with ρ = 0 that∥∥∥∥∥
(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

2

≤

∥∥∥∥∥
(
wt−1 − ηt∂wf(wt−1,vt−1; zit)−w

(i)
t−1 + ηt∂wf(w

(i)
t−1,v

(i)
t−1; zit)

vt−1 + ηt∂vf(wt−1,vt−1; zit)− v
(i)
t−1 − ηt∂vf(w

(i)
t−1,v

(i)
t−1; zit)

)∥∥∥∥∥
2

2

=

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

2

+ η2t

∥∥∥∥∥
(
∂wf(wt−1,vt−1; zit)− ∂wf(w

(i)
t−1,v

(i)
t−1; zit)

∂vf(wt−1,vt−1; zit)− ∂vf(w
(i)
t−1,v

(i)
t−1; zit)

)∥∥∥∥∥
2

2

− 2ηt

〈(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)
,

(
∂wf(wt−1,vt−1; zit)− ∂wf(w

(i)
t−1,v

(i)
t−1; zit)

∂vf(w
(i)
t−1,v

(i)
t−1; zit)− ∂vf(wt−1,vt−1; zit)

)〉

≤ (1 + L2η2t )

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

2

. (C.3)
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Case 2. If it = i, then it follows from the Lipschitz continuity of f that∥∥∥∥∥
(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

2

≤

∥∥∥∥∥
(
wt−1 − ηt∇wf(wt−1,vt−1; zi)−w

(i)
t−1 + ηt∇wf(w

(i)
t−1,v

(i)
t−1; z̃i)

vt−1 + ηt∇vf(wt−1,vt−1; zi)− v
(i)
t−1 − ηt∇vf(w

(i)
t−1,v

(i)
t−1; z̃i)

)∥∥∥∥∥
2

2

=

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

2

+ η2t

∥∥∥∥∥
(
∂wf(wt−1,vt−1; zi)− ∂wf(w

(i)
t−1,v

(i)
t−1; z̃i)

∂vf(wt−1,vt−1; zi)− ∂vf(w
(i)
t−1,v

(i)
t−1; z̃i)

)∥∥∥∥∥
2

2

+ 2ηt

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

∥∥∥∥∥
(
∂wf(wt−1,vt−1; zi)− ∂wf(w

(i)
t−1,v

(i)
t−1; z̃i)

∂vf(w
(i)
t−1,v

(i)
t−1; z̃i)− ∂vf(wt−1,vt−1; zi)

)∥∥∥∥∥
2

≤

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

2

+ 8η2tG
2 + 4

√
2Gηt

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

(C.4)

We can combine the above two inequalities together and get the following inequality∥∥∥∥∥
(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

2

≤(1 + L2η2t )

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

2

+ 8η2tG
2I[it=i]

+ 4
√
2Gηt

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

I[it=i].

We can apply the above inequality recursively and derive∥∥∥∥∥
(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

2

≤L2
t−1∑
j=1

η2j

∥∥∥∥∥
(
wj −w

(i)
j

vj − v
(i)
j

)∥∥∥∥∥
2

2

+ 8G2
t∑

j=1

η2j I[ij=i]

+ 4
√
2G

t∑
j=1

ηj

∥∥∥∥∥
(
wj−1 −w

(i)
j−1

vj−1 − v
(i)
j−1

)∥∥∥∥∥
2

I[ij=i]

For simplicity, we let

δ
(i)
t = max

j∈[t]

∥∥∥∥∥
(
wj −w

(i)
j

vj − v
(i)
j

)∥∥∥∥∥
2

. (C.5)

Then we have

(
δ
(i)
t

)2 ≤ L2
(
δ
(i)
t

)2 t−1∑
j=1

η2j + 8G2
t∑

j=1

η2j I[ij=i] + 4
√
2Gδ

(i)
t

t∑
j=1

ηjI[ij=i]

≤
(
δ
(i)
t

)2
2

+ 8G2
t∑

j=1

η2j I[ij=i] + 4
√
2Gδ

(i)
t

t∑
j=1

ηjI[ij=i],

where we have used
∑t

j=1 η
2
j ≤ 1/(2L2). It then follows that

(
δ
(i)
t

)2 ≤ 16G2
t∑

j=1

η2j I[ij=i] + 8
√
2Gδ

(i)
t

t∑
j=1

ηjI[ij=i].

We can apply Lemma C.2 with x = δ
(i)
t to show that∥∥∥∥∥

(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

≤ δ
(i)
t ≤ 4G

( t∑
j=1

η2j I[ij=i]

) 1
2

+ 8
√
2G

t∑
j=1

ηjI[ij=i].
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It then follows from the concavity of the function x 7→
√
x that

1

n

n∑
i=1

∥∥∥∥∥
(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

≤ 4G

n

n∑
i=1

( t∑
j=1

η2j I[ij=i]

) 1
2

+
8
√
2G

n

n∑
i=1

t∑
j=1

ηjI[ij=i]

≤ 4G
( 1
n

n∑
i=1

t∑
j=1

η2j I[ij=i]

) 1
2

+
8
√
2G

n

n∑
i=1

t∑
j=1

ηjI[ij=i]

= 4G
( 1
n

t∑
j=1

η2j

) 1
2

+
8
√
2G

n

t∑
j=1

ηj ,

where we have used the identity
∑n

i=1 I[ij=i] = 1. Finally, the convexity of the norm implies

1

n

n∑
i=1

∥∥∥∥∥
(
w̄T − w̄

(i)
T

v̄T − v̄
(i)
T

)∥∥∥∥∥
2

≤ 4G

n

n∑
i=1

( t∑
j=1

η2j I[ij=i]

) 1
2

+
8
√
2G

n

n∑
i=1

t∑
j=1

ηjI[ij=i]

≤ 4G
( 1
n

n∑
i=1

t∑
j=1

η2j I[ij=i]

) 1
2

+
8
√
2G

n

n∑
i=1

t∑
j=1

ηjI[ij=i]

= 4G
( 1
n

t∑
j=1

η2j

) 1
2

+
8
√
2G

n

t∑
j=1

ηj ,

The proof of part (a) is completed.

We now move to the nonsmooth case. In a similar way, we consider the following two cases.

Case 1. If it ̸= i, analogous to Eq. (C.3), we can use the Lipschitz continuity of f to derive∥∥∥∥∥
(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

2

≤

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

2

+ 8G2η2t .

Case 2. For the case it = i, we have Eq. (C.4).

We can combine the above two cases together and derive∥∥∥∥∥
(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

2

≤

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

2

+ 8G2η2t + 4
√
2Gηt

∥∥∥∥∥
(
wt−1 −w

(i)
t−1

vt−1 − v
(i)
t−1

)∥∥∥∥∥
2

I[it=i].

We apply the above inequality recursively and derive∥∥∥∥∥
(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

2

≤ 8G2
t∑

j=1

η2j + 4
√
2G

t∑
j=1

ηj

∥∥∥∥∥
(
wj−1 −w

(i)
j−1

vj−1 − v
(i)
j−1

)∥∥∥∥∥
2

I[ij=i]

Let δ(i)t be defined in Eq. (C.5). It then follows that(
δ
(i)
t

)2 ≤ 8G2
t∑

j=1

η2j + 4
√
2Gδ

(i)
t

t∑
j=1

ηjI[ij=i].

We can apply Lemma C.2 with x = δ
(i)
t to show that∥∥∥∥∥

(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

≤ δ
(i)
t ≤ 2

√
2G
( t∑

j=1

η2j

) 1
2

+ 4
√
2G

t∑
j=1

ηjI[ij=i].

We can take an average over i to derive

1

n

n∑
i=1

∥∥∥∥∥
(
wt −w

(i)
t

vt − v
(i)
t

)∥∥∥∥∥
2

≤ 2
√
2G

n

n∑
i=1

( t∑
j=1

η2j

) 1
2

+
4
√
2G

n

n∑
i=1

t∑
j=1

ηjI[ij=i]

= 2
√
2G
( t∑

j=1

η2j

) 1
2

+
4
√
2G

n

t∑
j=1

ηj .
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It follows from the convexity of a norm that

1

n

n∑
i=1

∥∥∥∥∥
(
w̄T − w̄

(i)
T

v̄T − v̄
(i)
T

)∥∥∥∥∥
2

≤ 2
√
2G

n

n∑
i=1

( t∑
j=1

η2j

) 1
2

+
4
√
2G

n

n∑
i=1

t∑
j=1

ηjI[ij=i]

= 2
√
2G
( t∑

j=1

η2j

) 1
2

+
4
√
2G

n

t∑
j=1

ηj .

The proof is completed.

Now, we can combine the stability bounds in Theorem 6 and Theorem 5 to develop generalization
bounds for weak PD risk bounds and primal population risk bounds.

Proof of Theorem 7. (a) Note Theorem 6 shows, for smooth case, that MC-SGDA is on-average ϵ-
argument stable with ϵ ≤ 4G

(
1
n

∑T
j=1 η

2
j

)1/2
+ 8

√
2G
n

∑T
j=1 ηj . We can combine the above stability

bound with Part (a) in Theorem 5 and get the desired result. Part (b) can be proved in a similar way
by combining Part (b) in Theorem 6 and Part (a) in Theorem 5.

Proof of Theorem 8. (a) For smooth case, Theorem 6 implies that MC-SGDA is on-average ϵ-
argument stable with ϵ ≤ 4G

(
1
n

∑T
j=1 η

2
j

)1/2
+ 8

√
2G
n

∑T
j=1 ηj . Plugging this stability bound

back into Part (b) in Theorem 5 yields the desired result. Part (b) can be directly proved by combining
Part (b) in Theorem 6 and Part (b) in Theorem 5.

C.2 Optimization Error for MC-SGDA

We now develop convergence rates on MC-SGDA for convex-concave problems. We
consider bounds both in expectation and with high probability. To this aim, we de-
compose maxv∈V FS(w̄T ,v) − minw∈W FS(w, v̄T ) into two parts: 1

T

∑T
j=1 FS(wj ,vj) −

minw∈W FS(w, v̄T ) and maxv∈V FS(w̄T ,v) − 1
T

∑T
j=1 FS(wj ,vj), which are estimated sepa-

rately.
Theorem C.3. Suppose Assumptions 1 and 5 hold. Assume for all z, the function (w,v) 7→
f(w,v; z) is convex-concave. Let A be MC-SGDA with T iterations, and {wj ,vj}Tj=1 be the
sequence produced by MC-SGDA with ηj ≡ η. Let Dw and Dv be the diameter of W and V
respectively, and D = Dw +Dv. For any j ∈ [T ], let

kj=min
{
max

{⌈ log(2CPDnj2)

log(1/λ(P ))

⌉
,KP

}
, j
}
. (C.6)

Then the following inequality holds

EA
[
max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )
]
≤ G2η +

D2

2Tη

+
2GKPD + 12G2η

∑T
j=1 kj +G

∑T
j=KP

1/j2

T
.

Furthermore, suppose Assumption 4 holds. Then selecting η ≍ (T log(T ))−1/2 implies

EA
[
max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )
]
= O

(√
log(T )/

(√
T log(1/λ(P ))

))
.

Proof of Theorem C.3. To estimate EA
[
maxv∈V FS(w̄T ,v)−minw∈W FS(w, v̄T )

]
, we use the

following decomposition

EA
[
max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )
]

= EA

[ 1
T

T∑
j=1

FS(wj ,vj)− min
w∈W

FS(w, v̄T )
]
+ EA

[
max
v∈V

FS(w̄T ,v)−
1

T

T∑
j=1

FS(wj ,vj)
]
.

(C.7)
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Consider the first term in (C.7). Let kj = min
{
max

{⌈
log(2CP (Dw+Dv)nj

2)
log(1/λ(P ))

⌉
,KP

}
, j
}

and w∗
S =

argminw∈W FS(w, v̄T ). The concavity of FS(w, ·) implies

EA

[ 1
T

T∑
j=1

FS(wj ,vj)− FS(w
∗
S , v̄T )

]

≤ EA

[ 1
T

T∑
j=1

(
FS(wj ,vj)− FS(w

∗
S ,vj)

)]

=EA

[ 1
T

T∑
j=1

(
FS(wj ,vj)−FS(wj−kj

,vj)
)]
+EA

[ 1
T

T∑
j=1

(
FS(wj−kj

,vj)−FS(wj−kj
,vj−kj

)
)]

+EA

[ 1
T

T∑
j=1

(
FS(wj−kj

,vj−kj
)−FS(w

∗
S ,vj−kj

)
)]
+EA

[ 1
T

T∑
j=1

(
FS(w

∗
S ,vj−kj

)−FS(w
∗
S ,vj)

)]

≤ 3G2η

T

T∑
j=1

kj + EA

[ 1
T

T∑
j=1

(
FS(wj−kj

,vj−kj
)− FS(w

∗
S ,vj−kj

)
)]
, (C.8)

where the last inequality used the Lipschitz continuity of f(·,v; z) and f(w, ·; z) and the fact that
∥wj −wj−kj

∥2 ≤ Gηkj and ∥vj − vj−kj
∥2 ≤ Gηkj .

Now, we turn to estimate the term EA
[
1
T

∑T
j=1

(
FS(wj−kj ,vj−kj )− FS(w

∗
S ,vj−kj )

)]
. Note that

Eij

[
f(wj−kj

,vj−kj
; zij )− f(w∗

S ,vj−kj
; zij )|(w0,v0), . . . , (wj−kj

,vj−kj
), zi1 , . . . , zij−kj

]
=

n∑
i=1

[
f(wj−kj ,vj−kj ; zi)− f(w∗

S ,vj−kj ; zi)
]
· [P kj ]ij−kj

,i

=
(
FS(wj−kj ,vj−kj )− FS(w

∗
S ,vj−kj )

)
+

n∑
i=1

(
[P kj ]ij−kj

,i −
1

n

)
·
[
f(wj−kj ,vj−kj ; zi)− f(w∗

S ,vj−kj ; zi)
]
. (C.9)

Summing over j and taking total expectation we have

T∑
j=1

EA
[
FS(wj−kj

,vj−kj
)− FS(w

∗
S ,vj−kj

)
]

=

T∑
j=1

EA
[
f(wj−kj

,vj−kj
; zij )− f(w∗

S ,vj−kj
; zij )

]
+

T∑
j=1

EA

[ n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
·
[
f(wj−kj

,vj−kj
; zi)− f(w∗

S ,vj−kj
; zi)

]]
. (C.10)

Similar to before, according to MC-SGDA update rule (5), for any j and 1 ≤ kj ≤ j

∥wj −w∗
S∥22

≤ ∥wj−1 − η∂wf(wj−1,vj−1; zij )−w∗
S∥22

= ∥wj−1 −w∗
S∥22 − 2η⟨wj−1 −w∗

S , ∂wf(wj−1,vj−1; zij )⟩+ η2∥∂wf(wj−1,vj−1; zij )∥22
≤ ∥wj−1 −w∗

S∥22 − 2η
(
f(wj−1,vj−1; zij )− f(w∗

S ,vj−1; zij )
)
+G2η2

= ∥wj−1 −w∗
S∥22 − 2η

(
f(wj−kj ,vj−kj ; zij )− f(w∗

S ,vj−kj ; zij )
)

+ 2η
(
f(wj−kj

,vj−kj
; zij )− f(wj−kj

,vj−1; zij )+f(wj−kj
,vj−1; zij )− f(wj−1,vj−1; zij )

)
+ 2η

(
f(w∗

S ,vj−1; zij )− f(w∗
S ,vj−kj

; zij )
)
+G2η2

≤ ∥wj−1 −w∗
S∥22 − 2η

(
f(wj−kj

,vj−kj
; zij )− f(w∗

S ,vj−kj
; zij )

)
+ 6G2η2kj +G2η2,
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where the second inequality is due to the convexity of f(·,v; z), and the last inequality used the fact
that ∥wj−kj −wj−1∥2 ≤ Gηkj and ∥vj−kj − vj−1∥2 ≤ Gηkj . Rearranging the above inequality
and taking a summation of both sides over j, we get

T∑
j=1

(
f(wj−kj ,vj−kj ; zij )− f(w∗

S ,vj−kj ; zij )
)
≤

D2
w + 6G2η2

∑T
j=1 kj + TG2η2

2η
. (C.11)

Now, we consider the second term in (C.10). Recall that kj =

min
{
max

{⌈
log(2CP (Dw+Dv)nj

2)
log(1/λ(P ))

⌉
,KP

}
, j
}

. If j ≥ KP , then according to Lemma A.1,
for any i, i′ ∈ [n] we have ∣∣∣∣ 1n − [P kj ]i,i′

∣∣∣∣ ≤ 1

2(Dw +Dv)nj2
.

Combining this with Assumption 5 we get
T∑

j=KP

n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
·
[
f(wj−kj ,vj−kj ; zi)− f(w∗

S ,vj−kj ; zi)
]

≤ GDw

T∑
j=KP

n∑
i=1

∣∣∣[P kj ]ij−kj
,i −

1

n

∣∣∣ ≤ G

T∑
j=KP

1

2j2
. (C.12)

For j < KP , there holds
KP∑
j=1

n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
·
[
f(wj−kj

,vj−kj
; zi)− f(w∗

S ,vj−kj
; zi)

]
≤ 2GKPDw, (C.13)

where we use
∑n

i=1[P
kj ]ij−kj

,i = 1 and the Lipschitz continuity of f(·,v). Combining (C.12) and
(C.13) together, we get

T∑
j=1

n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
·
[
f(wj−kj ,vj−kj ; zi)− f(w∗

S ,vj−kj ; zi)
]

≤ 2GKPDw +G

T∑
j=KP

1

2j2
. (C.14)

Putting (C.11) and (C.14) back into (C.10), we obtain
T∑

j=1

EA
[
FS(wj−kj

,vj−kj
)− FS(w

∗
S ,vj−kj

)
]

≤
D2

w + 6G2η2
∑T

j=1 kj + TG2η2

2η
+ 2GKPDw +G

T∑
j=KP

1

2j2
.

Finally, plugging the above inequality back into (C.8), we have

EA

[ 1
T

T∑
j=1

FS(wj ,vj)− min
w∈W

FS(w, v̄T )
]

≤
6G2η

∑T
j=1 kj

T
+

2GKPDw +G
∑T

j=KP

1
2j2

T
+

D2
w

2Tη
+

G2η

2
.

In a similar way, we can show

EA

[
max
v∈V

FS(w̄T ,v)−
1

T

T∑
j=1

FS(wj ,vj)
]

≤
6G2η

∑T
j=1 kj

T
+

2GKPDv +G
∑T

j=KP

1
2j2

T
+

D2
v

2Tη
+

G2η

2
.
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Combining the above two bounds together, we get

EA

[
max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )
]

≤ G2η +
(Dw +Dv)

2

2Tη
+

2GKP (Dw +Dv) + 12G2η
∑T

j=1 kj +G
∑T

j=KP

1
j2

T
.

The first part of theorem is proved. Now, we turn to the second part of theorem. Let K =
1√

2CP (Dw+Dv)nλ(P )KP
and η ≍ 1/

√
T log(T ). If j < K, we have

K−1∑
j=1

kjη
2 ≤ KKP η

2 =
KP

T log(T )
√
2CP (Dw +Dv)nλ(P )KP

.

If j ≥ K, there holds

T∑
j=K

kjη
2 ≤ 1

log(1/λ(P ))

[ T∑
j=K

log(2CP (Dw +Dv))η
2+

T∑
j=K

log(n)η2 + 2

T∑
j=K

log(j)η2
]
+Tη2

= O
( 1

log(1/λ(P ))

)
.

Combining the above two cases together, we get

T∑
j=1

kjη
2 = O

( KP

T log(T )
√

CPnλ(P )KP

+
1

log(1/λ(P ))

)
. (C.15)

Then we obtain

EA

[
max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )
]

= O
(KP

T
+

1 +
∑T

j=1 kjη
2

Tη
+ η
)

= O
( √

log(T )√
T log(1/λ(P ))

+
KP

T min{1,
√

CPnλ(P )KP T log(T )}

)
.

Note Assumption 4 implies KP = 0. Then we get

EA

[
max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )
]
= O

( √
log(T )√

T log(1/λ(P ))

)
.

This completes the proof.

Theorem C.4 (High-probability bound). Suppose Assumptions 1, 4 and 5 hold. Assume for all z,
the function (w,v) 7→ f(w,v; z) is convex-concave. Let {wj ,vj}Tj=1 be produced MC-SGDA with
ηj ≡ η ≍ 1/

√
T log(T ). Assume supz∈Z f(w,v; z) ≤ B with some B > 0 for any w ∈ W and

v ∈ V . Let γ ∈ (0, 1). Then with probability 1− γ

max
v∈V

FS(w̄T ,v) − min
w∈W

FS(w, v̄T ) = O
(√log(T )√

T

( 1

log(1/λ(P ))
+ B

√
log(1/γ)

))
.

Proof of Theorem C.4. Note that

max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )

=
[ 1
T

T∑
j=1

FS(wj ,vj)− min
w∈W

FS(w, v̄T )
]
+
[
max
v∈V

FS(w̄T ,v)−
1

T

T∑
j=1

FS(wj ,vj)
]
. (C.16)
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Consider the first term in (C.16). Let kj = min
{
max

{⌈
log(2CP (Dw+Dv)nj

2)
log(1/λ(P ))

⌉
,KP

}
, j
}

and
w∗

S = argminw∈W FS(w, v̄T ). Similar to (C.8), we can show

1

T

T∑
j=1

FS(wj ,vj)− FS(w
∗
S , v̄T ) ≤

3G2η

T

T∑
j=1

kj +
1

T

T∑
j=1

(
FS(wj−kj ,vj−kj )− FS(w

∗
S ,vj−kj )

)
.

(C.17)

Let ξj = f(wj−kj ,vj−kj ; zij ) − f(w∗
S ,vj−kj ; zij ). Observe that |ξj − Eij [ξj ]| ≤ 2B. Then,

applying Lemma A.5 implies, with probability at least 1− γ/2, that

T∑
j=1

Eij [ξj ]−
T∑

j=1

ξj ≤ 2B
√
2T log(2/γ). (C.18)

Combining (C.9) and (C.18) together, we get

T∑
j=1

[FS(wj−kj ,vj−kj )−FS(w
∗
S ,vj−kj )]+

T∑
j=1

n∑
i=1

(
[P kj ]ij−kj

,i−
1

n

)
[f(wj−kj ,vj−kj ; zi)−f(w∗

S ,vj−kj ; zi)]

=

T∑
j=1

Eij [f(wj−kj ,vj−kj ; zij )−f(w∗
S ,vj−kj ; zij )|{w0,v0}, . . . , {wj−kj ,vj−kj}, zi1 , . . . , zij−kj

]

≤
T∑

j=1

[f(wj−kj ,vj−kj ; zij )− f(w∗
S ,vj−kj ; zij )] + 2B

√
2T log(2/γ)

with probability at least 1− γ/2. Putting (C.11) and (C.14) back into the above inequality, we obtain

T∑
j=1

[FS(wj−kj
,vj−kj

)− FS(w
∗
S ,vj−kj

)]

≤
T∑

j=1

n∑
i=1

( 1
n
− [P kj ]ij−kj

,i

)
[f(wj−kj

,vj−kj
; zi)− f(w∗

S ,vj−kj
; zi)]

+

t∑
j=1

[f(wj−kj
,vj−kj

; zij )− f(w∗
S ,vj−kj

; zij )] + 2B
√

2T log(2/γ)

≤
D2

w + 6G2η2
∑T

j=1 kj + TG2η2

2η
+ 2GKPDw +G

T∑
j=KP

1

2j2
+ 2B

√
2T log(2/γ). (C.19)

Now, plugging (C.19) back into (C.17), with probability at least 1− γ/2, there holds

1

T

T∑
j=1

FS(wj ,vj)− min
w∈W

FS(w, v̄T )

≤
6G2η

∑T
j=1 kj + 2GKPDw +G

∑T
j=KP

1
2j2

T
+

D2
w

2Tη
+

G2η

2
+

2B
√

2 log( 2γ )
√
T

.

In a similar way, we can show, with probability at least 1− γ/2, that

max
v∈V

FS(w̄T ,v)−
1

T

T∑
j=1

FS(wj ,vj)

≤
6G2η

∑T
j=1 kj + 2GKPDv +G

∑T
j=KP

1
2j2

T
+

D2
v

2Tη
+

G2η

2
+

2B
√
2 log( 2γ )
√
T

.
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Combining the above two inequalities together, with probability at least 1− γ, we get

max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )

≤
12G2η

∑T
j=1 kj+2GKP (Dw+Dv)+G

∑T
j=KP

1
j2

T
+
(Dw +Dv)

2

2Tη
+G2η+

4B
√

2 log( 2γ )
√
T

.

Further, if we select η ≍ 1/
√
T log(T ), according to Eq.(C.15) we have

max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )

= O
(KP

T
+ η +

1 +
∑T

j=1 kjη
2

Tη
+

B
√
log(1/γ)√
T

)
= O

(√log(T )√
T

( 1

log(1/λ(P ))
+B

√
log(1/γ)

)
+

KP

T min{1,
√
CPnλ(P )KP T log(T )}

)
= O

(√log(T )√
T

( 1

log(1/λ(P ))
+B

√
log(1/γ)

))
,

where in the last equality we used KP = 0 due to P = P⊤. This completes the proof.

C.3 Proofs of Theorem 9 and Theorem 10

Proof of Theorem 9. We can choose η such that Tη2 ≤ 1/(2L2) and therefore Theorem 7 applies.
According to part (a) of Theorem 7 we have

△w(w̄T , v̄T )−△w
emp(w̄T , v̄T ) ≤

4G2
√
Tη√

n
+

8
√
2G2Tη

n
.

Combining the above inequality with Theorem C.3 together, we get

△w(w̄T , v̄T ) = △w(w̄T , v̄T )−△w
emp(w̄T , v̄T )

≤ 4G2
√
Tη√

n
+

8
√
2G2Tη

n
+G2η +

D2

2Tη
+

2GKPD + 12G2η
∑T

j=1 kj +G
∑T

j=KP
1/j2

T

where D = Dw +Dv. If we choose T ≍ n and η ≍ (T log(T ))−
1
2 , according to (C.15) we get

△w(w̄T , v̄T ) = O
( log(n)√

n log(1/λ(P ))
+

KP

nmin{1, n
√

log(n)CPλ(P )KP }

)
.

Note Assumption 4 implies KP = 0, the proof of part (a) is completed.

Part (b) can be proved in a similar way (e.g., by combining part (b) of Theorem 7 and Theorem C.3
together). We omit the proof for brevity.

Proof of Theorem 10. We use the following decomposition

R(w̄T )−R(w∗) =
(
R(w̄T )−RS(w̄T )

)
+
(
RS(w̄T )− FS(w

∗, v̄T )
)

+
(
FS(w

∗, v̄T )− F (w∗, v̄T )
)
+
(
F (w∗, v̄T )−R(w∗)

)
.

Note that F (w∗, v̄T ) ≤ F (w∗,v∗). Then we have

R(w̄T )−R(w∗) ≤
(
R(w̄T )−RS(w̄T )

)
+
(
RS(w̄T )− FS(w

∗, v̄T )
)

+
(
FS(w

∗, v̄T )− F (w∗, v̄T )
)
.

Taking the expectation on both sides gives

ES,A[R(w̄T )−R(w∗)] ≤ES,A[R(w̄T )−RS(w̄T )] + ES,A[RS(w̄T )− FS(w
∗, v̄T )]

+ ES,A[FS(w
∗, v̄T )− F (w∗, v̄T )]. (C.20)
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According to part (a) of Theorem 8 we know

ES,A[R(w̄T )−RS(w̄T )] ≤ 4G2(1 + L/ρ)
(√Tη√

n
+

2
√
2Tη

n

)
.

Similarly, the stability bound in Theorem 6 also implies

ES,A[FS(w
∗, v̄T )− F (w∗, v̄T )] ≤ 4G2(1 + L/ρ)

(√Tη√
n

+
2
√
2Tη

n

)
.

According to Theorem C.3, we know

ES,A[RS(w̄T )− FS(w
∗, v̄T )] ≤ EA

[
max
v∈V

FS(w̄T ,v)− min
w∈W

FS(w, v̄T )
]

≤ G2η +
D2

2Tη
+

2GKPD + 12G2η
∑T

j=1 kj +G
∑T

j=KP
1/j2

T
,

where D = Dw +Dv. Putting the above three inequalities back into Eq. (C.20), we obtain

ES,A[R(w̄T )−R(w∗)] ≤8G2(1 + L/ρ)
(√Tη√

n
+

2
√
2Tη

n

)
+G2η +

D2

2Tη

+
2GKPD + 12G2η

∑T
j=1 kj +G

∑T
j=KP

1/j2

T
.

If we choose T ≍ n and η ≍ (T log(T ))−1/2, combining the above estimation with (C.15) implies

ES,A[R(w̄T )−R(w∗)] = O
( (L/ρ) log(n)√

n log(λ(P ))
+

KP

nmin{1, n
√

log(n)CPλ(P )KP }

)
.

The above result combines with KP = 0 complete the proof.
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