A Supplementary material for Section J]

We begin by outlining the proof of existence for type II families with k¥ = d + 2 and isotropy
A(S4-1 x Sp) following the strategy in [30, Section 8], and briefly discuss other cases given in
Estimates required for a valid use of the real analytic version of the implicit function

theorem are obtained using two different methods presented in and in

A.1 Fractional power series representation for type Il minima: k = d + 2

Following we restrict the loss £ to the fixed point space M (d + 2, d)*%4-1, which is of
dimension 9 for d > 3. We recall the linear isomorphism = : R?— M (d + 2,d)*%4-1 defined by

§1Zg—1a-1+ &I, &Zi-11
o) &al1,a1 &I . 9
_‘(é)_ €6I1,d71 671'1’1 ’ g_(gla"'agf)) eER

&8T1 g1 &oli1

Regard = as an identification of M (d + 2, d)*54-1 with R and recall from[Section 3|that F} is the
vector field on RY defined as the pullback of VL|M (k, d)*5¢-1 by .

The map = naturally determines a 4 x 2-block decomposition of matrices in M (d + 2, d)*%-1. If a
row w of W € M(d + 2,d)*%-1 lies in row £ of the block decomposition, the row is said to be of
row-type £. Necessarily ¢ € [4]. Clearly there are d — 1-rows of row-type 1 and exactly one row of
row-type £, 2 < ¢ < 4.

Remark 3 The vector fields (VL)|M (k,d)%, V(L|M(k,d)%) on M(k,d)€ are equal, provided
that we use the inner product on M (k,d)“ induced from M (k,d) to define the gradient of
L|M(k,d)€, and so the eigenvalues of the Hessian of L at ¢ corresponding to directions tan-
gent to M (k,d)C will equal the eigenvalues of the Hessian of L|M (k,d)® at c. Indeed, the Jacobian
of (VL)|M(k,d)C (or Fy) is equal to the Hessian of L|M (k,d)€.

Let S5 denote the subgroup of Sy permuting the last three rows of M (d + 2, d). Suppose ¢ is a type
II critical point of L. Since M (d + 2, d)ASd*1 is invariant, but not fixed, by the Ss-action, it follows
by the S;, x Sg-invariance of £ that the S3-orbit of ¢ is a subset of M (d + 2,d)*%4-1 containing at
most six points (|S3|= 6).

We claim that if ¢ is fixed by a non-identity element of S3, then the Hessian of ¢ has to be singular.
This follows since otherwise at least two of the final three rows of ¢ must be parallel and so ¢ lies
in a set of critical points of £|M (k, d)*%4-1 of dimension at least one (seebelow). In
particular, for a regular family, (a) critical points cannot be fixed by a non-identity element of S,
and (b) if € is a regular family in M (d + 2, d)ASdfl, sois o€, o € S3, and their paths do not cross.
Generally, we regard the six type II families that result from this observation as being essentially the
same and focus on just one of them. That choice comes naturally from an order on the critical points
that we discuss shortly. Unlike type I families, the type II family has a rich geometric structure that
plays a significant role in the analysis.

The next step is to give an explicit expression for the gradient vector field of L restricted to M (d +
2,d)A5-1 ~ RY. Given W € M(d + 2,d)?%-1, denote the rows of W by wy, - - -, wg; 2. After
defining norms, dependent only the row-type, we define angles between different rows of W (capital
Greek) and angles between rows of W and rows of V' (lower case Greek). Two subscripts are needed
for angles between rows of different row-type, one subscript suffices for the same row type. For
p € [3], it is often convenient to set d,, = d — p.

For a € [4], let 7, denote the norm of w; € M(d + 2,d)*4-1, where w; is of row-type a and
the norm induced from standard Euclidean inner product on M (d + 2,d). In RY coordinates,

T = VE + do&3 + &, 1o = \/d1E3 + €2, etc.

For i,j € [d — 1], i # j, let ©; denote the angle between rows w; and w; and 6; denote the
angle between row w; and v; (here and below, angles are well-defined independently of 7, j using
symmetry). For a,b € [4], a # b, denote the angle between w, and w;, by A, (that is, the angle
between rows of row-types @ and b, a # b). For a € [4], b € [2], let A, denote the angle between a
W-row of type a and a V-row of type b, where if « = b < 2, we assume W, V are different rows.
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Note that A, is symmetric in a, b but Ay is not; indeed, Ay, is not even defined if @ > 2. Finally, let
(1 denote the angle between w; and v;, where ¢ € [d — 1], and S denote the angle between w, and

vgq. All these angles may be expressed as inverse cosines of expressions in the variable £1, - - -, &9.
For example
d ,,d+2
we, w . [d
A24 = COS_l (< >> = coS 1 <1§4£8_|—§5§9)
T2T4 To Ty

The norms and angles are well defined—depend only row-type—on account of symmetry.

Next we give expressions for the vector field induced on R? by VL|M (d + 2, d)?%4-1. Define

i —si ) csin(Aq.)] — sin(\ o
T (&) d (7'1 Sm(@17)—1 sm(91)> n [2]7&4 7; sin( 1])]7—1 sin(Ajg) — sin(fy)
To(e) = d (n sin(A21) — sin()\21)) N sin(Aa3) + 14 sin(Agg) — sin(Ba)
T2 T
Ty(€) = dy (71 sin(As1) — sin()\31)) + Tosin(Asg) + 74 sin(Agys) — sin(As2)
T3 5
_ 71 sin(Ayq) — sin(Agq) 7o sin(Agz) + 73 sin(Asz) — sin(As2)
e = o : )+ ;

Define nine “angle” terms.

Al = d9©18a + il + Aisée + Aras — b1, A, = (&1 + d3&2)O1 + Mok + Al + Arabs — 0,
Ay = da©1&5 + Aol + Aislr + Arao — A2

AT = (& + da&o) Mo + Aos&s + Aoals — Ao1, A3 = diA12€s + Aozl + Noslo — o

A} = (& + da&o) A1z + Mozl + Asals — As1, AS = diA13€s + Nogés + Agalo — As2

AT = (& + doba)Ars + Naaba + Asale — A, A5 = diA1as + Moads + Asalr — Ao
Finally, define
O = w6 +dale+ &+ &+ & — 1]
Qo = wdi&s+&+ 86+ — 1
Note that €24 is the column sum of any one of the first d — 1 columns of the matrix 7(=(&) — V') and
Q5 is the sum of column d of 7(Z(&) — V).

The components (Fy 1, -, Fq9) of Fy are given by

Fus(8) = 5o (& — A1+ ) Faa() = 516 — A+ )
Fag() = 5-(T1és — A} + )

Fua(®) = 5 (o — A3+ ) Fas() = 5= (0o — A3+ )
Fas(€) = 5-(Tas — AL +01) Far(€) = 5 (Vg — A} + Q)
Fas() = 5- (N — AL +0) Fag(€) = 5Nty — AL+ )

and so the critical point equations on R? are F; ;(€) = 0, ¢ € [9]. That is,

1 1
%(FlﬁlfA%JrQl):O %(F1§2*A1+Q1):0

1

%(Fl&i - A% +QQ) =0

1 1
%(F2§4_A§+91):0 %(H&)—A%‘FQQ:O
1 1
%(FS&S—A?JFQQ:O %(F3§7—A§+Qz):0

1 1
5 (Tads = A1+ Q1) =0 5 (Tao — A3+ €)= 0
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If ¢ € RY determines a type II critical point, then £;— + 1 as d—oo. Numerics also indicate that
for type II one of &5, &7, &g converges to —1 as d—oo. Permuting with an element of S5, we may
and shall hypothesize that {— — 1 as d—o0. It helps to use some geometry concerning the rows
Wy, wgy1 of W =Z(€). Letug = Zie[d_l] v; € R? and F C R? be the 2-dimensional subspace
spanned by v, ug. Observe that wy, wgy1,wy,vq € F and so are coplanar. By the analyticity
properties of regular families, wy and wyy1 cannot be parallel. Hence either B3 < A3z or B2 > Asa:
curves of regular families do not cross. In the first case Aoz = Azo — 32; in the second Aoz = B2 — A3a.
Composing with a unique o € S3, fixing the last row, we may always assume Asz = Azq — Fa.
Numerics indicate that Ags > B2 > 7/2 > Asz > O—but this is not assumed in what follows.

The idea now is to take formal FPS expansions for the components of a type II critical point,
substitute in the critical point equations described above, equate like coefficients and thereby obtain

FPS solutions. Guided by the numerics, we seek a power series in d~2. Granted our hypothesis on
the constant terms in the FPS, knowledge of vanishing coefficients (see[Section A.5)), and an easy
computation comparing like terms giving c3 2, we have

clo=1,¢,;=0i€2], c0;=0,i<3, c3,=0,9<2, c30=2,
Cq5 = 0, 1 <2, C5,0 = 0, C6,i = 0,7 < 2, Cr0 = 0, C8i = 0, 1 <2,
Co,0 = —1.

For notational clarity, we relabel the 9 unknown coefficients c; ; giving the next terms in the FPS so
that we aim to find c3, e4, f3, g2, h1, P2, q1, az, b1 € R such that

EGi=1+dcsd 24 G=egd 24 E=2d" 4 fsd~ 2.

G=gd 4 G=hd T
g6 = pad "+ Cr=qud™% +---
s =agd 4. Co=—1+bd 2+

The condition we gave on angles holds if and only if h1p2 > ga2q:1 (both sides are negative). Set

Ry = /g3 + h3, R3 = \/p2 + ¢3. We derive expressions for the angles Ay, a,b € {2, 3,4} and
find that

Aga =AY +0(d™ %), Apz =A% +0(d" %), Aoy = A3, +0(d ),
where

AY, = sin"!(g2/Ry) € (0,7/2)
AgS = Sin71<(h1p2 — ggql>/(R2R3)) S (0,7‘(’/2) (since hips > ggql)
AY, =sin"*(p2/R3) € (0,7/2)

Using standard trigonometric formulas, we deduce the relationship Ass + Asy = Aoy and, letting
d—00, A5 + A, = A9,. We have similar expressions for 82 and \,2, a € {3,4}:

Bz =33 +0(d7%) Ao = A} + O(d™%) Naz = Ay +O(d"?)

BY =cos ' (hi/Ry) € (m/2,m) A3y =cos ' (q1/R3) € (1/2,7) Ny =7

It follows that Aoy + B2 = M40 and Agy + A2 = 4o, with the same identities holding between
the constant terms by letting d—oc. In particular, all the constant terms for the FPS expansions of
these angles can be expressed in terms of R, AY, and R3, A, (polar coordinates on (gz, hy)- and

(p2, q1)-space).

Equating like coefficients of terms in the equations and noting in particular that the coefficients
7(eq + go + p2 + az) of d~1in Qy, and 7(f3 + hy + p1 + by) of d~3 in Qy are zero, we derive a
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system of nine nonlinear equations that determine cs, ey4, f3, g2, h1,p2,q1, a2, b1:
c3—bi+Ry+R3=0
es+get+p2t+ax=0
fat+hi+q+b=0

cR—2h —b + hias — g2q1 + hip T 2h
o [ 72 g2n1 192 + 22921 P2 ) — A%ypy + AQyan + mey — 22
R3 2 Ry
cR—2h —b192 + h1as — g2q1 + hip T
po (SRS TR TG D RB TP ) — 7Q gy + AYby + f3—*+ az
c3 R? 2pq —bips + qras + p2h1 — g T 2q
. 33 241 —0ip2 122 211 — G192 = A%ygs + AQyas + —ey — 1
R} 2 Rs
cR2—2pq —bips + qras + p2h1 — g T 2p
o 241 —0ip2 122 211 — G192 = ADhy + AYby + —fs — L2 4 ay
R3 2 Rs
T
2 - 564 = (= AS,)g2 + (7 — A3y)p2 + may

T
c3 — *fs +g2+p2=(m— A84)h1 + (7 — Ag4)Q1 + mby

It is possible to reduce to a system of four equatlons in Ry, AY,, Rg,7 AY, (or two in A9,, AJ,), solve
and then express the coefficients cs, ey, - - -, by in terms of R, Aek» Rs, Adk In practice, we either
use Newton-Raphson method on the original system, using an initialization based on numerics, or
eliminate c3, e4, f3 from the 9 equations and solve the resulting nonlinear system of 6 equations using
Newton-Raphson. We used the reduction to a system of six equations, and found that

cz = —0.5748287640041448964... e4 = —1.6165352425422284608...
f3 = 0.2969965493462016520. . .

g2 = 0.7877659431796313120... h; = —1.1161365378487412475...
p2 = 0.1562694812799615923... ¢1 = —0.4248280138040598900...

ax = 0.6724998180826355564... b = 1.2439680023065994855 . . .

Newton’s method was initialized using numerical data for the critical points when d = 10% to get
rough estimates for the coefficients; the original computation was done in long double precision.
The values were compared with those obtained by directly solving FPS equations corresponding to
different orders of the FPS terms (see[Section A.5)), and through a high precision computation of the
critical point for d = 10°2—the values of the components of the gradient at the critical point were
all less than 1074%°0 and matched with those obtained by solutions of the equations above. Note that
for d = 1052, one expects to be able to read off the required coefficients from the computed critical

points to 250 or more decimal places of accuracy (the series is in integer powers of d—2).

Remark 4 Iz is straightforward to check that the Jacobian of the 9 variable system in (c3,- -+, b1)
with respect to (cs, - - -, b1) is non-singular (for this, we need expressions for the angles Agb, a,be
{2,3,4}, a £ b, interms of (c3, - - -, b1)). This is significant for the next and final step.

Having determined c3, ey, - - -, by, we set =% = s and define &;(s), i € [9] by
&1(s) = =1+ 5% (s), &ols )—8 &(s), &ils) =257 +5°

Eals) = 5°€a(s), &s(s) = sEs(s)

€6(s) = 5%6a(s), &r(s) = s65(s)

£8(s) = s%6s(s), Gols) = 1+ sEo(s)

where the values of & (0), . .., £(0) are given by (cs, - - -, by ) respectively. Substitute in the critical
point equations—with d everywhere replaced by 5_2—~and cancel the powers of s that occur in each
equation. The Jacobian of this system with respect to ({1, ..., &) at s = 0 is non-singular (this uses

[Remark 4)). Finally, use the real analytic version of the implicit function theorem to obtain the FPS.

Remark 5 Although the argument only gives the convergence of the FPS for sufficiently large d

(that is, sufficiently small d-2 ), it appears that the series converges for small d, possibly all d for
which the problem is defined. This is similar to what happens when k = d [30)].
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A2 TypelLk=d+1

If £ = d + 1, we can reduce the analysis to solving a single equation p(¢) = 0, where p is a
polynomial in 9, sin(d) and cos(d). We solve p = 0 directly using Newton’s method, initializing
with a value of 9 suggested by numerics. For completeness, we give p explicitly as well as the
coefficients of interest in the associated FPS.

We have dim (M (d + 1,d)?%4-1) = 7. The critical point equations are read off easily from those we
gave for k = d + 2: drop the last two equations and all terms that involve the variables &g, &g or an
angle indexed with a ‘4’. Just as in the case when when k = d + 2, we reduce to finding the initial
coefficients cs, e4, f3, g2, h1, D2, q1 in the FPS expansion

Ei=1+csd 24, Eo=eqd 24+, &3 =2d" 1+ fad % +---,
Ey=god ' -, € =hid™ 2+
Cs=pod '+, fr=—1+qd %+ -

As in the case k = d + 2, we obtain a system of seven nonlinear equations.
c3—by+Ry=0
es+g2+ax=0
fs+hi+b=0

R3 —2g5h —b h 2h
% 341y §92 Ly 192]; 192 ) _ gy + T 1
R3 2

R} —2goshi . —b h 2
h1<03 2 §92 L 192R‘; 1a2>:gf3—R92+19b1+a2
R} 2 ’

™

5644‘24’1992:0
™

03+§f3+92+79h1=0,

where Ry = /g2 + h? and ¥ = AJ; = sin~* (%) €(0,%).

We may reduce to a single equation p(¢#) = 0, where p = AQ — BP and

AW) = QEW :Sin(;ﬁ)u — sin(¥))(9 — g) + sin(9)(1 —sin(ﬁ))Q}
+sin(6) [29 - % 11— Sin;w) (2776 - 1)}
BW) = 2 — | = cos(@)(§ = ) + (§ = 9)(L — sin(9))(2 — sin® ) — cos(¥)(1 — sin(y))?

+

cos(¥)(1 — g) — sin® ﬂ(? - 1)]

49 2sin(29)

4
QW) = 2sin®¥— —sin?¥
™
Using Newton-Raphson, the required solution to p(9) = 0 is given by

¥ = 0.58416413506022510436594641534260755532740719514252671834097577387592202 . . .
with [p/(9)|> 0.4 and |p(9)|< 1072400

We have go = Rasin(¥), hy = —Racos(d) and Ry = —P(9)/A(0). It follows easily that the

remaining coefficients c3, es, - - - , by are uniquely determined by ©J. We find that
c3 = —0.57228787893585490607 ... e4 = —1.61458989052095508224 . . .
f3= 0.29629854644604431015 . ..
gs = 0.91787878976036618322. .. h1 —1.38833511087258399162. . .

as 0.69671110076058889902.. . . by = 1.0920365644265396815 . . .
The existence of the FPS now follows the method for k = d + 2.
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A3 TypeLk=d+1,d+2

We conclude with a brief discussion of the type I family when & = d + 1, d + 2. This behaves rather
differently from type II. For example, no row of a critical point converges to v4 as d—oc. Instead,

one row converges to v,/2, another to —v,/2. Moreover, the fractional power series are in d—i
rather than d~2. As a result, the convergence of critical points as d—o0 is slow. If k£ = d+ 1, explicit
expressions for the critical coefficients are given in Example 1 of [Section 3|(see [Section A.5|for a

detailed derivation). The analysis then proceeds as in the type II case.

If k = d + 2, we again have the constant coefficients 1/2, —1/2 for row-types 2, 3 respectively (if
necessary after a permutation by an element of S3. Here is probably easiest (certainly faster), to
obtain the system of nine equations, as we did for type II, and then solve using Newton-Raphson. In

brief, after some work the critical coefficients for the FPS in d~ 1 are given by

ce = 2.6472714633048307498... e; = —1.0684533932698202809...
fs = —0.8644915139550179823. ..

gs = 0.5342266966349101404... h; = 0.4322457569775089911...
ps = 0.5342266966349101404... ¢ = 0.4322457569775088806...
ay = 1.2534701553854549462... by = —0.8753051450722888701...

Note thatcy = e4 = 2, f4 = 1, g3 = p3 and h; = q1, just as for £ = d + 1. The existence of the
FPS follows as above.

A.4 Hessian spectrum for type I

In Table 2 we give the Hessian spectrum associated to the standard and trivial representations for
type I points when &k = d + 1,d + 2 for d = 10, 100.

Isotypic comp.

E=d+1

k=d+?2

k=d+1

k=d+2

10

10

100

100

0.01859, 0.03574

0.00613,0.01715

0.006647,0.05914

0.006467,0.01348

0.3915,2.9398

0.2630, 0.4559

0.48426,25.478

t 0.08472,0.25925 0.04434, 0.05308 0.20056, 0.27534 0.06335, 0.09132
1.5634,2.90219 0.2309, 0.3080 15.746, 25.4661 0.2697,0.4127
3.3678 1.6453, 3.2022 26.055 15.846,25.74
3.7551 26.395
—0.00230, 0.04343 | —0.03903, 0.00423 0.03178,0.0680 | —0.03432,0.03707
Sd—1 0.1135,0.2324 0.04824, 0.1206 0.09210, 0.24363 0.07250, 0.09303

0.3103,0.5329

3.2410 25.751

Table 2: Type I critical points with isotropy ASg;_; & the Hessian eigenvalues associated to the
trivial and the standard representation to four decimal places when k = d +1,d 4+ 2 and d = 10 and
100. The spectrum associated to the r- and y-representations is strictly positive and not shown.

Referring to the table, the addition of one extra neuron results in the type I critical point becoming a
saddle when d = 10 (it defines a spurious minimum if £ = d = 10) but is a spurious minimum for
d = 100. If we add a second neuron, the type I critical point becomes a saddle for d = 100; most
likely a saddle for all d > 4 (certainly sufficiently large d by our results).

A.5 Type of regular families and derivation of case (3) in

Evaluating formal Puiseux series at critical points gives rise to algebraic relations between the
Puiseux series coefficients, allowing one to argue about the structure of regular families (a-priori,
independently of their existence). We show how these relations can be used to deduce that for
k = d + 1, any regular family of A(Sg_1 x S )-critical points with b = 4 must be either type I, type
II or have all its initial terms vanish. Other isotropy types and pairs of d and k are addressed similarly.
Although only the diagonal of the main (d — 1) x (d — 1)-block is required for determining the type
of a family (see [Definition 2), we evaluate all the entries which belong to the (d — 1) x d-upper block
to low-order terms. This makes the derivation of the eigenvalue expressions given in (Section B. I}
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more transparent, and further serves as a preparation for the detailed derivation below for the type I
A(S4—1 x Sp)-critical points given in|[Example 2

As in the previous sections, denote the FPS coefficients corresponding to &1,&,...,&7 by
¢i, €, fi, 9i, hi, pi, ¢;, and let Fyy ; denote the ¢’th component of the vector field F. Note that regularity
assumptions imply that all coefficients with (strictly) negative index must vanish (e.g., necessarily,
c_1 = 0). We show that for any regular family of critical points in M (d + 1, d)*(Sa-1x51) with
b= 4, it follows that Co = +1 and Cl = €y = €1 = €2 = €3 = f() = f1 = f2 = f3 = 0. The
following notation comes handy when handling expressions involving Puiseux series coefficients.
Given a Puiseux series £/ = 372 . n;d~% where jo € Z, let [d™1]E = n;.

Observe that

[d)Fy1 = 320 and  [d]Fy3 = %

Since the gradient entries vanish at critical points, necessarily, ey = fy = 0. Similarly,

(@ =S and  [ad]F, =2
' 2 ’ 2
imply e; = f; = 0. Assuming momentarily ¢y # 0, we have
Y S —
[d]Fd L= cé+2cge§+e% . Co
’ 2m 2m\/2 + €2’
()

2 27 2 727“/034*6%'

Dividing the first expression by cg and using the resulting expression to simplify the second one gives

e
e, ©€28C08 (c§+e%)

o =0.

If, by way of contradiction, e, is assumed to be non-zero then the preceding equation gives

2
€2
acos( 5 2) =,
cH+ €3

a contradiction, as the argument of arccos

2
, =2, is nonnegative. Hence, e; = 0 and
cotes

1 1
d|Fyq = -
[} Fax = co <27‘r 27r|co|>7

whence ¢o = +1. Evaluating [d%]F 1, [d2]Fy s, [d5]Fy 2 and [d3]F, 5 then yields ¢; = eg = fo =
f3 =0, as required.

The case ¢y = 0 is addressed similarly. We shall only point out a possible course of derivation
rather than provide the full expressions. Recall that ey = e; = fy = f1 = 0 holds regardless of
the value assigned to cy. Evaluating [d%]Fd,g and [d%]Fd,;; gives e; = fo = 0. Evaluating [d%]Fd)g
gives e3 = 0. By [d%}FdA and [d%]Fdﬁ, go = po = 0. Lastly, evaluating [d]F; 5 and [d]F 7 gives
ho = qo = 0, concluding the derivation.

The procedure just presented is based on the direct approach described in [30} Section 8] by which one
extracts coefficients by directly solving the FPS equations, exactly or numerically, to an increasing
order. One proceeds until sufficient information has been obtained so as to establish the existence of
an FPS and estimate the Hessian spectrum to a desired order. Below we give a detailed derivation
of the type I A(S4—1 x S1)-minima in [Example 2|to demonstrate how the approach may be used
in practice.
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A detailed derivation of case (3) in (Notation and assumption as above.) For any
family of A(Sy_1 x Sp)-critical points, co = £landc; = ey =e; =ex =e3 = fo = f1 = fo =
f3 = 0. The family of critical points given in is type I, and so ¢y = —1. The derivation
proceeds as follows.

1. Observe that

es  go  po 1
d)Fy, =449 Po
[d"] Fg,2 Tt T

fa o ho g 1
dO)Fyy =14y 00 B0 2
[d”]Fa,3 T Tt 1

We use these relations to substitute e4 and f, for lower-order terms. That is,

€4 = —go — po + 2,
fa=—ho—qo+ 1.

2. By [d3]Fay = 52 — 52— B2l e = |go| + [pol.

3. We now show that go = po = 0. If gg = 0 (resp. po = 0) then by [d°]Fy 6 = po (3 — 5=) (resp.

[d°]Faq = qo(% — )) po = 0 (resp. go = 0). Assume then, by way of contradiction, that both
go and pg are non- zero i.e., go # 0 and py # 0. Then gy and py must satisfy the following four
equations (effectively two, by symmetry) obtained by evaluating [d°]F,; 4, [d°] Fy 5, [d°] Fy6 and
[dO}Fde

goPo
9o, 9o Golpol pOaCOS(Igollpo\) Do

or T4 27| go| 2m R N
. _g0po
_@+@_ holpo| quc05<‘g Hpo‘> + L -9 ®)
or 4 2m|gol 2m L
_90Po__
_M+@_M_@+@:o ©)
o7 4 271'|po| 2m 4 ’
goPo
_M+@_M_@+@:o (10)
o 4 2mp| 2 4T
If go, po > 0 or go, po < 0, then by
[dO]FdA:*@Jrg*O*piOJr@

2T 4 2T 4’

it follows that gy = —po, a contradiction. If py < 0 < go then by [d°] F; 4 again, py = go, still a
contradiction. The case where gg < 0 < py is treated similarly (and in fact follows by symmetry).
Thus, necessarily, go = pg = 0, and so ¢ = 0 and e4 = 2.

4. Next, we have [di]Fd’l = £ — % _ Ipal gpg [d_i]Fd’g = 2 + 9 4 Bt Solving for c3 and
es shows, by the same argument used in (3)), that any of the four cases concerning the (strict) signs
of g1 and p; yields a contradiction. Thus, g1 = p; = 0, and so c3 = e5 = 0.

/o2 2 /2 2
5. We have [d°]Fy;, = §* — g;:ho - p;:qo — 5. In addition, by [d*i]Fd,g we have f5 =

—h1 — ¢1, and by [di%}Fd,z,ees = —g2 — p2.
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6. Using ¢4 = \/g2 + hZ + \/p3 + g2 + 1, we obtain two (effectively one by symmetry) equations
corresponding respectively to [d°]Fy 5 and [d°] Fy 7:

O 0= _ho N ho  holga n holgap2 + hogo| hov/P3 + 43 n ho
2 4 2m(gi+hE)  2m(g3+hE)  2m\/g3+hE 2m\/g+IF
g2p2 hoqo ho
o aeos <\/g;+hwp3+qa * ¢g§+hwp3+q3) w " (x/g%+h%) 1
- ALY S
2w 4 2w 4
h g2p2 hogo
a 0—— 0 8608 (\/g§+h§\/p%+q§ * \/g§+h3¢p§+q3> Lho V9 +hy a0 L
2w 4 QT A /p% + q% 2 4
acos < L0 2)
~ lpa| qolg2p2 + hogo| 90 n pitas) 1
2r (3 +a3) 23+ a@)  2m/pR+ @l 2m 4
In addition, by [d~2]F, 4,
am o= 92 9 g2|92] +92|92292+hqu| eVt d n g2
2t 4 2m(g5+hg)  2m(g5+hY)  2m\/g4+h2  2m\/gE+ hZ
g2p2 hogo
I (\/gswwpgws i ¢95+h3\/p%+q3) L
2m 4

The system of the FPS equations is symmetric under (g2, ho) <+ (p2,¢o), and so we get the
following symmetrized version of (III),

9g2p2

hoqo
acos +
av) 0= 792 (\/g§+h§\/p§+q§ \/g§+h3\/l’§+q3> + g2 Da\/gi+h3  po

2r 4 27T A /p% + qg 2r

LP2 P2 [p2] P2|g2p2 + hoqol D2
4 2m(p5+q3) 23+ a5)  2m/pE+ @2

7. Our next goal is prove po = go = 0. This step is somewhat more involved. Recall that for the
family described in|Example 2|ho = 1/2 = —qq, and so the following expressions are well-defined,

x:—i—i—l— 92| " |g2p2 + hogo| VPR + a2 + 1

2r 4 2m(gs+hg)  2m(g3+hE)  2m\/g3+hE  2m\/g3+h3
y:7i+17 2| |g2p2 + hogo| NG RN N 1

2r 4 2m(pita)) 20 (PRt @) 2my/p3+d 2m/pR+ @

Z = —

g2p2 hogo
s <¢g§+h3\/p§+qa i \/g§+ha\/ps+qg) 1
+ -

2w 4
Equations (I-IV) now read:

ho
acos
( Vg3+hg > 1

I) 0=hox+qgz+—7—+ — -

2 4’
acos( o 2)
\/ P35+ 1
(ID) 0=hoz+qu+#—Z,

(III) 0 = gox + paz,
(IV) 0= g2z + pay.
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Combining (I) and (IIT) (resp. (II) and (IV)) by solving (I) for x (resp. solving (II) for y) and
substituting yields,

hg
acos
(A) 0= 92 qoz + < gngh%) L
= 0 _ \VT2T0/

ho o - | + D27,

d0
D2 acos (\/p§+q§) 1
B) 0=goz—= | hpz+ ——F— — —
q0 27 4

Summing (A) and (B) we have,

ho 2T 4 qo 2

hg q0
acos acos | —F——
9290 p2ho 92 (\/5’5”3) 1 D2 <V1’3+‘13) 1
O=|p+gp—="—-"—]z

For the derivation so far to be valid only hg, gg # 0 is required. Plugging-in hg = 1/2 = —qq, the
above becomes

1 1
acos acos | —
92 (2 9§+i> go bz ( 2\/1’§+31> D2
0= ~ %2 + 2
T 2 s 2

(11

The function

acacos(2 xlul) -
flx) = -

T 2

is injective, and so g = po by Plugging in this into (A) yields f(g2) = 0. Since
f(0) = 0 we have, by the injectivity of f again, that go = 0, hence hy = 0 as well. Backward
substitution then gives ¢4 = 2, fy = 1, e = 0. The FPS equations encountered in the reminder of
the derivation are simpler.

8. Wehave [d7]Fy5 = — ML 4 B 04 41 hence hy = qy. Therefore, [d~1]Fy; = S — 4 4

implies c5 = 0.

9. By [d2]F;3 = ff + b2 4 2 and [d=2]Fys = —5% + % + 2 hence fg = —hs — g2 and

2
10. By [d 1]Fyp = G+ % + 5, [ Fas =+ £+ 5 B+ 2 [0 1]Faa =G+ %
=T+ 8, er=-2p3, fr =—h3 —jzand g3 = ps.
11. By [d™1]Fy5, ¢7 = ™% — 4ps — "8 and by [d~!|Fy2, es = —ga — pa + 2.
12. We now have

2 1 3
[dfl]FdA_ %+ p3‘p3| 72277+7

4 s 4 2 27’
- gs  2pslps| pa 1 1
dYF;¢=—-2= — -4 —.
[~ 1Fa, T i 2T
Summing the two equations gives
4 2
pslps| 2 _
T ™

The equation has a single root at p3 = g3 = 7“224” Backward substitution then gives e; =

—/ =2+ .
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13. The expression [d_%]Fd,l depends on g3 which has just been determined. Re-evaluating, we have
ha =q2+1,andsocg = 7.

14. By [d"']Fy4. g4 = ps — 2,by [d"'|Fy3, fs = —ha — q4 + =5, and by [d_%]Fd,ls

s

_ —Ampa/ -2+ T —g3(m? +2m) + 4V =2+ 7

h
? m(2—m)
15. Now,
_ ¢ h 2 dpv—-2+71 2vV-2+7 1 1 7 7
R + B Ty
2r 4 m 3m 3 4 2 2r 8 w
c h 2 4 247 2 247 ) T 1
@y = & ey 2 dayVoRET 224 e 5 T 1
2 4 7r 3m 3 4 7 8 2w
Summing the two equations above, we get
1 2 12
41V -2 - )=+ ==0
qlm(3 37T> L2 =0
hence ¢y = hy = 7%?/*_32% (recall that ¢; = hy). Consequently, f5 = — 47:'/%32% .

16. The procedure may be further iterated by observing, e.g., that [d~!]F} 5 implies cg = ”T’“‘ —

dpy — % -5 -1+ “72 + % and so on, if additional coefficients are needed.

For type II critical points, the equations corresponding to Equations (I-IV) above are different, and
we have not been able to solve them exactly. Rather, Newton-Raphson method was used to obtain
numerical estimates. The same procedure was then applied iteratively, with the aid of numerical
methods, giving estimates for higher-order terms. The estimates obtained through this process match
with those obtained by the method described in Other choices of types, k, d and isotropy
were addressed similarly.

A.6 Expected Initial Value
Bounding Eyy, [£(W)] follows by a straightforward computation of the expected loss. We first derive

explicit expressions for the terms used in computation.

|lw|*> d
e (0.1005710°(0,2)] = Bupeio o = 3

1/2 V1 = V2,

Ean(o.12) [0 ((v2, 2))o ({01, 2))] = {1/(277) v1 # Vg,

1 1
Ewnnr0,10) [0 ((w, )] = SEwnno,1 [0 ((w, 2)) | {(w, ) 2 0] + SEwnnr0,10) lo((w, 2)) | {w, ) < 0]
1
= iEwNN(O,Id)[<wvw> ‘ <wvw> > 0]
1
= §Ew~N(O,Id)[w ‘ <w7w> > O]Tw
=l
Vor
1 . 1
Ewnn o1 [0((w, )] = SEwnno1plo((w, ) [w @ 2 0] + SEwnn(o, 10 [0(w, 2)) | {w, @) < 0]
1
= iEwNN(O,Id)[<wvm> ‘ <’LU,(13> > O]
1
= iEwNN(O,Id)[w ‘ (w,a:} > O]Tm
=l
oI
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Bjjzj=1[o((v,2))] = @Ee[@/llvll»@ | {v/[v], ) = 0]

[[v]] 2

~ 2 dBeta((n+1)/2,1/2)

_ ]|
~ dBeta((n+1)/2,1/2)’

Ewrorolo((w, z))o((v, 2))]

= Eantoo | o lello((0,2)

1
V21

= EBjoyes|—=rl0lo((0,10))

1 ol
V27 dBeta((d +1)/2,1/2) "
o]l

" VomBeta((d +1)/2,1/2)°

E(z.0.w)~N(0,1,)23 [0 ((w, ) )o ((v, x))]

_ Eq o]

V2rBeta((d + 1)/2,1/2)
_ 1 L((d+1)/2)
- V7Beta((d +1)/2,1/2)  T(d/2)

1

~ TBeta(d/2, 1)

d
=5

Therefore,

T 1 _ TO’ T 2
E:VNN/\L(’[E,OI;idYIdQ)[(]. U(\/gW{B) 1 (V ))]

= Bld o ((w, ) + 2dld ~ Do ({wn, 2))o((w,)) =200 ((w, 2))o((v,2)) + do* (v, x))

Vd
+d(d = 1)o({v1, z))o((vs, z))]

d d 2d3/? d 1
=gty - VarBew((d+1)/2,1/2) 2" dd =D
dd—1)  V2d*PT(d/2+1)

™ val((d+1)/2)(1/2)

_ 3/2 1/2
§d+d(d 1) _ V2d <(2i)

0 ™
~(1-7)a
s
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where the penultimate transition uses Gautschi’s inequality. The same inequality also gives the
following lower bound,

Bl o (W) - 1To(a) ) > (1- 2 )a+ L@ - VEPajz+ 1))
(1= D)as e(1-y1+3)

(1 1>d+ d*(1 — (1+1/d))

( _

1

\%

1

with the penultimate transition following by the first-order Taylor expansion of /1 + x.

A.7 Adding more than two neurons: beyond non-degenerate critical points

When we add neurons to a shallow network, new critical points appear and old critical points
become simplices with singular Hessian spectrum (at points where the Hessian is defined). This
phenomenon is well-known and not restricted to ReLU networks. We shall refer to this process here
as “fossilization”, as the set of (connected) fossils together, with the discrete critical points, encodes
information about the number of additional neurons involved, and how they were added. Thus the
fossil record generated when p > 1 neurons are added simultaneously may be less informative than
that generated when p neurons are added one-by-one. Moreover, as we show, symmetry plays a
significant role in the description of the fossilized sets; even if the target V' is asymmetric.

The critical points giving the global minimum fossilize when neurons are added. Recall that £ is
always Si-invariant, where Sy, is the group of row permutations of M (k,d). If d = k, we add
the superscript r (resp. c¢) to emphasize row (resp. column) permutations. In our setting, if £ = d,
V = 14, the d! points in the S7;-orbit of V' will be non-degenerate critical points of £ giving the global
minimum zero: these will be the only points in M (d, d) that give the global minimum. If we add
p > 1 neurons, the discrete S);-orbit of V' is replaced by a p-dimensional connected Sqp,-invariant
simplicial complex Z C M (p+ d, d) consisting of all points giving the global minimum. Necessarily,
the Hessian, where defined on Z, will have zero eigenvalues; that does not preclude Z from being an
attractor under gradient descent. Suppose instead that ¢ € M (k, d), k > d, is any (non-degenerate)
critical point of £. The addition of a p neurons will replace ¢ by a connected p-dimensional simplex,
invariant by the action of S;. Often (not always) many new non-degenerate critical points will be
created as biproducts of the fossilization process.

For completeness, we give precise statements and proof of these results, starting with the case when
¢ = V and k = d. We start with an extension of the result on the uniqueness of critical points
defining global minima [30, Prop. 4.14] to the over-parameterized case. See [7] for related results
and discussions.

Assume k > d, setm =k — d,and T' = Sy, x S4. Let S;, = {eq} X S, denote the subgroup of .Sy,
permuting the last m rows of matrices in M (k, d). Define A,,,Sq = {(hg, g) | gS4, h € Sp}. Note
that A,,,Sq =~ ASg X Sy,.

Let £* denote the set of all partitions of [k] such that each L € £* has exactly d parts, K1, - -- Kg4
and j € K, forall j € [d]. If j € [d], then

K0l = {5}, and K; ~ {5} C [K] \ [d].
Clearly, 1 < |K;|<m+ 1forall j € [d].
If K € 8%, let M = [k;;] € M(k,d) be the matrix defined by
kij = 0,i¢K; (12)
= 1l,ieK; (13)
For j € [d], define A;(K) C R* by
Aj(K) = {(tr,---ti) € TTI0.ky] | DY ti=1)

e ieK;
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and, viewing M (k, d) as (Rk)d define
= [ 2;(K) c M(k,d).
J€ld]

Clearly A(K) is a simplicial complex of dimension m and if m = 0, A(K) = {V}. If § € A(K),
then

6" =V¥ =T 4,
where for W € M (k,d), W¥ is the 1 x d-row matrix defined by the column sums of . Define
U A(K). (14)

Ker*

Suppose W € M(k,d) and § € A(K). Define W5 € M (k,d) by
= w; + Z(Sijwj, i>d
J€ld]
Observe that
W =W§.
The case of most interest will be when W = V and so the last m rows of W will be zero.

Lemma 2 (Notation and assumptions as above.)
1. ForallK € 8%,V € A(K).

2. IfK,J € 8, K £ J, then A(K) N A(J) is a simplicial complex which is the union of the
common vertices and faces of A(K) and A(T).

3. A(k,d) is a connected simplicial complex of dimension m.

4. ApSa(A(k,d)) = A(k,d) and A, Sq is the maximal subgroup of T with this property.
5. Ifge S;USS, g#e then gA(k,d)NTV =gV # V.

6. LOW) =0if W € Ak, d).

Statements (1-3) are all immediate from the definitions and the proofs of (4,5) are straightforward
and omitted. It remains to prove (6). Recall that

1 1
W)=3 . flww)— D fwiv) + 3 > flvivy),
i,j€[k] i€[k],j€ld] i,5€[d]

where

1. If v, w € R are non-zero and we set 0, , = cos™! (m), then

f(w,v) = inHHUH(Sin(ew,v) + (T = Ouw,v) €05(0s,0))
2. f(w,v) = 0iff either v or w is zero or Oy, , = 7.
Clearly, f is positively homogeneous:
flaw,bv) = abf(w,v), a,b >0, w,v € RL
If W € A(k,d), then there exist K € £ and § € A(K) such that W = Vs—w; is zero for j > d.

The result follows from the positive homogeneity of f and the formula for £ in terms of f. [

Remark 6 Ifk = d, V is the natural choice for a critical point on the group orbit of critical points
giving the global minima. When k > d, the natural choice—at least from a symmetry perspective—is
the set A(k,d) which is invariant by A, Sq (the isotropy group of V). It follows by (5) of the lemma
that for all g € Sq x Sq, gA(k,d) contains exactly one point in T'V.
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Define A* = T'A(k, d) and note that T[V] C A*.

Theorem 5 (Notation and assumptions as above.)
1. A* is a T-invariant m-dimensional simplicial complex of M (k, d).
2. A* is connected.
3. LOW) =0iff W € A*.

By[Lemma 2| A(k, d) is a connected m-dimensional simplicial complex and it follows easily that
A*Ts a T-invariant m-dimensional simplicial complex, proving (1). 2)If g € T', gA(k,d) N A(k, d)
may be empty. However, given any g € I, it is easy to choose a sequence g1, - - - gn4+1 € Sk such that
such that g, = e, and g;A(k,d) N gj11A(k,d) # 0, j € [n], and gp41A(k,d) N gA(k,d) # 0.
Hence T A(k,d) = A* is connected (see below for more detail). It is straightforward to
check that forall g € T, and K, J € R*, gA(K) N A(J) is a simplicial complex (possibly empty)
and from this it follows that A* is a simplicial complex.

(3) The ‘if* implication is immediate from the T-invariance of £, the connectedness of A* and
6). For the converse, we show that if L(W) = 0, then (a) w;; € [0,1], (¢,7) € [k] x [d]
and Zie[k] w;; = 1, forall j € [d] (and so W* = T; 4). The remainder of the proof follows along
the same lines as that of [30, Prop. 4.14] except that now for each j € [d] we have to allow for several
rows of W being strictly positive multiples of v/ since k > d. OJ

Example 3 Suppose m = 1 and d = 2. We claim that A* is connected. Here the set 8 contains
only two partitions: K = {{1,3},{2}}, J = {{1}, {2, 3}}. Hence there are two families of matrices
in A(3,2)

a 0
X(a,ﬁ):lo 1
8 0
wherea+ =v+0=1,«a,6,7,0 > 0.

Let AO* denote the connected component of AX containing X (that is, the arc X (o, B), a+ B =1,
a, 8 > 0). Use the symbol ~ is signify that two families intersect. For example, X ~ Y since
X(1,0) = Y(1,0). We claim (12)"X € AY¥. This follows since X; = (13)"X ~ X, Xy =
(12)"X; ~ X1, X3 = (23)" Xy ~ Xy and X3 = (12)" X. It is easy to see that A* is isomorphic to
a hexagon: 6 vertices, 6 edges and that AS>(A(3,2)) = A(3,2), where ASy = I'y. See Figurell|
where the vertices, connecting edges and symmetries of AX are shown.

10
, Y(%5)=[0 ’Y],
0 §

The argument is general and applies when k > d—that is, when V- € M (k, d) has at least one row
of zeros. The connection can always be made through row permutations.

Fossilization of critical points, general case.

The phenomenon described above occurs when the network is over-parameterized. In what follows
we assume V' € M (d,d) is a matrix with no zero or parallel rows, and extend in the usual way to
Ve Mk,d),k>d.

Suppose W € M (k,d) is a critical point of £: in particular, assume that £ is C? at W and so W has
no zero rows. Typically, we assume that W is non-degenerate: all the eigenvalues of the Hessian are
non-zero.

Let k > k and &* denote the set of all partitions of [k] such that each KL € £* has exactly k parts,
Ki,---Kpand j € K;, forall j € [K].

Just as we did previously, if € £ and j € [k], we define the simplex A;(K) C R, and simplicial
set A(K) = [[;ep A5 (K) C M(k, k) of dimension k — k. Set A(k, k) = Ugea A(K).

Given W € M(k,d), K € 8 and § € A(K), define W5 € M(k, d) by

’w5 = 6ii'wi, 1€ [k]

Z 5Z-j'wj, 1>k

JE[K]
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10 0 0
(12)
00 ~——10
eey/ 101 0 1] Nuay
10 0 1
0 1 2r 1
0 0 0
13)r s 23)"
" 0 0 01| /&
0 1 (12)"
10

Figure 1: The simplex A* in case k¥ = 3,d = 2. Connecting edges are shown using unbro-
ken lines and are labelled by the row transposition that interchanges vertices. The simplicies
A(3,2),(12)°A(3,2) are both invariant by AS.

As we did above when W = V, we have W;* = W=, 1t follows from the definitions that if
0 € A(K), then >, g w? = w;, forall i € [k].

Given W € M (k,d), define A(k, k)(W) = {Ws | § € A(k, k)} and
AX(W) =TA(k, k)(W) C M(k,d).

Set A** (W) = AX (W) . 0A*X (W)

Proposition 1 (Notation and assumptions as above.)

1. A*(W) is a connected Sy-invariant simplical complex of dimension k—E.

2. Lis C? at all points of A**(W) and VL|A** (W) =0

3. L is constant on A*(W).
The proof of (1) is similar to that of (1,2). Since A*(W) is connected, and £ is continuous,
(3) follows from (2) ((3) may be proved directly as in and then (2) follows using the

regularity of £ on A**(W)). For completeness, we give a direct proof that V£ vanishes on A** (/).
By an obvious induction, we can reduce to showing that if the partition I € &* satisfies |K;|= 1,

i<kand |Kg|-1=n=k—k >1,then VLIA(K) N IA(K) =0. Setm =n+ 1 = |K|.
By standard results on VL [}, W is a critical point of £ if for i € [k]
Isin(Gu; aw, Sin(Oay,; v,
Z (”w] Hbln( whw])wi - gwi,ijj> B Z <bln( w“v])wi - ew,;,vjvj> +7T(W_V)E =0

P AN 2\
15)
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Suppose that U € A(K) ~ OA(K). In order to check whether or not U is a critical point, wy, will
be replaced in by m non-zero parallel rows uy = aywy, where Zée[m] ap = 1and ay > 0,

¢ € [m]. Since the new rows u, are all non-zero and strictly positive multiples of wy,,

(A) Oy w; = Oupow;, J € [K], and Oy, o, = 0 forall £,¢" € [n].
B) [Juel|= cellwgl], € € [m].
(C) Ouyv; = by ;. forall £ € [m], j € [d].

(D) (W = V)* = (U~ V)" (since ¥y, @e = 1.

We have m new expressions replacing the right hand side of (I3)) in case i = k:

||ijSin(9ue wj)
NI\ Tuews ) g w. ) —
Z ( e Up = Oy, w; Wi

J€[k]
Sin (O, v,
Z ((W’vf)up — Qu(,vj’l}j) +71'(U — V)E,
= (e
jelk]
where by > ¢ 5, we mean the sum over wj terms, j € [k — 1], and wy terms, £’ € [m]. If € € [m],

it follows from (A,B) that

[[w;[|si0 (Gasy o0, ) [[w;][si (O 20, )
> (P ) = 30 (P )

FE[R] Jj€ld]
and from (B,C) that
Sin(6y, v, Sin(Oy, v,
3 <(”)w _gumjvj) => (mwi _gwwjvj)
: e : [[w]
JE[K] JE[K]

Noting (D), it follows that U satisfies the critical point equations for £ € [m]. Along the same lines,
but now using the convexity condition ) tem) Q6 = 1, we verify that U satisfies the critical point

equations for ¢ € [k — 1]. Hence U is a critical point of £. [J

B Supplementary material for

We give a brief review of the technique used in this work to compute the Hessian spectrum. The
introduction follows [31}132] verbatim and is provided here for completeness.

Suppose V' C R™ is a linear subspace, with Euclidean inner product induced from R™, and (V, G)
is an orthogonal G-representation.

Lemma 3 (31l Lemma 7, Setion B.1] The representation (V, G) may be written as an orthogonal
direct sum @~ | (DL, Vi;) where Vij C 'V, (Vij, G) is irreducible, and (Vi;, G) is isomorphic to
(Ver, G) iff i = £, and j,k € [p;]. The subspaces ©Y-, Vi; are unique, i € [m].

If p; = 1, for all ¢ € m, the orthogonal decomposition given by the lemma is unique, up to order;
otherwise the decomposition is not unique. In spite of the lack of uniqueness of Lemma/[3] in some
cases there may be natural choices of invariant subspace for the irreducible components. This is
exactly the situation for the isotypic decomposition of (M (k, k), G), G = S, X Sk_p. This naturality
allows us to give natural constructions of the matrices M;, ¢ € [m], used for determining the spectrum
of G-maps A : M (k, k)—M (k, k).

The isotypic decomposition for (M (k, k), Si) is 2t+3s +r+1y, k > 4 (see|Section 4). The subspace
of M (k, k) determined by 2t is the set of all k x k matrices T = {Ty, 5 | a,b € R} where the diagonal

entries of T, ; all equal a and the off-diagonal entries all equal b. There are many ways to write

T as an orthogonal direct sum. For example, 7 = 77 1R @ T%’_ - R. However, there is only

one natural way: 7 = T; oR @ Tp 1R. Define D = T} o, D5 = Ty 1. If we take the standard
realization of (t, Si) to be (R, Si), where Sy, acts trivially on R, then we have natural S;-maps
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a1, a9 1 R—M(k, k) defined by «;(t) = tDF, i = 1,2. If A : M(k,k)—M (k, k) is an Sy-map,
then A restricts to the Si-map A : 7—7 and A uniquely determines a 2 x 2-matrix [a;;] by
A((DF) = a;1D% + a;2D5, i = 1, 2. The eigenvalues (and multiplicities in this case) of A¢ : T—T
are the same as the eigenvalues of [a;;]. If we choose a different orthogonal decomposition of 7, we
get a different 2 x 2-matrix that is similar to [a;;] and so has the same eigenvalues. The computation
of the rest of the eigenvalues follows similarly.

B.1 Proof of

In algebraic relations between the FPS coefficients were shown to reveal important
information on the structure of regular families of critical points. In this section we show how these
relations can be further used to evaluate the ¢- and the y-eigenvalues. The method is illustrated for
regular families with b = 4, k = d 4 1 and isotropy A(Sg—1 x S1).

Referring to notation and results given in[Section A.5] any type I or type I family of A(Sq—1 x S1)-
critical points must satisfy ¢y € {£1}andc; = ey =e; =ex =e3 = fo = f1 = fa = f3 = 0.
Below we shall assume that ¢y = —1. The assumption is not needed, and is only introduced for
ease of presentation. For non-zero gy and 7¢, the Puiseux series of the eigenvalue associated to the
r-representation is given by:

A — _é _ & V95 _ G P N é 1 + 1 pasgn(po) I g2sgn(go) (16)
¥ 2w 2w 2w 2 4Am w4 27T 2w
Lt (e psen(po) | gisenlgo) ) | o1 L Y9 \/ + o).
21 2T 2 27r 2T

Thus, the expression A, depends on FPS coefficients not determined in We show that A,
can be evaluated nonetheless, independently of the unknown coefficients.

With FPS coefficients as above,

Jgo = Do 1 pasgn(po) = g2sgn(go)

0 —_— —_— —_— —_— — — —_—
[d]Fd’l_z +47r+ 4 + TR S F N
1 pisgn(po) | gisgn(go)
dilFy, = —
(% [ Fa 2T . 2 + or
1 Vi f
d2|F — 17
[4*1Fa 27r o+ o T 17
0 _ % 9 , Po
[d]Fd$2—4+4+4.
Substituting into[(16)] gives
1 1 0 0 1 1 1 1 -1
)‘F = Z — % + [d ]Fd 1— CQ[d2]Fd 1 — [d ]Fd’g + [d4]Fd’1d4 + [dQ]F‘d’ld2 + O(d 4). (18)

In particular, \, can be expressed in terms of [d°]Fy 1, [d3]Fy 1, [d2]F,; and [d°]F 5. Therefore,
by continuity, also applies for go = pp = 0. Since gradient entries vanish at critical
points, so do their Puiseux coefficients and so [d°] Fy 1, [d%}FdJ, [d%]FdJ and [d°] F » vanish, giving

Ae=1-L+ O(dw). not only gives the exact value of the r-eigenvalue to O(d 7 )-order

but also describes its sensitivity to variations in the FPS coefficients. For example, it is seen that

varying co accounts for perturbations of order O(d% ). The derivation of the eigenvalue associated to
the y-representation follows along the same lines, giving

1 1 1 1 1 1
Ay = it t [d°)Fy1 — c2[d2]Fyy — [d°]Fys + [d7]Fy1d5 + [d2]Fy, 1d? +0(d" 7). (19)

Similar relations exist between criticality and loss.
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