
A Proof of Lemma 2

Proof. Let O : En ! Vn be an arbitrary orientation of GU
H. We will show that orientation O implies

a learner AO : (X ⇥ Y)n�1 ! YX with an expected robust risk En�1 that is upper bounded by the
maximum adversarial out-degree of orientation O.

We begin with describing the learner AO. For each input ((x1, y1), . . . , (xn�1, yn�1), z) 2 (X ⇥
Y)n�1⇥X define AO((x1, y1), . . . , (xn�1, yn�1))(z) as follows. Consider the set of vertices v 2 V
that have the multiset {(x1, y1), . . . , (xn�1, yn�1)} and perturbation z with a positive label

P+ = {v 2 V : 9x 2 X s.t. z 2 U(x) ^ v = {(x1, y1), . . . , (xn�1, yn�1), (x,+1)}} ,
and the set of vertices v 2 V that have the multiset {(x1, y1), . . . , (xn�1, yn�1)} and perturbation z
with a negative label

P� = {v 2 V : 9x 2 X s.t. z 2 U(x) ^ v = {(x1, y1), . . . , (xn�1, yn�1), (x,�1)}} .

We define AO((x1, y1), . . . , (xn�1, yn�1))(z) as a function of P+, P�, and the orientation O:

AO((x1, y1), . . . , (xn�1, yn�1))(z) =

8
>><

>>:

y if
�
9y2{±1}

� �
9v2Py

� �
8u2P�y

�
: O(({v, u} , z)) = v.

+1 if P+ 6= ; ^ P� = ;.
�1 if P+ = ; ^ P� 6= ;.
+1 otherwise.

Note that AO is well-defined. Specifically, observe that when P+ 6= ; and P� 6= ;, by definition
of P+ and P� and Equation 8, vertices from P+ and P� form a complete bipartite graph. That is,
for each v 2 P+ and each u 2 P�, ({u, v} , z) 2 E. This implies that there exists at most one
label: either y = +1 or y = �1 such that there is a vertex v 2 Py where all edges ({v, u} , z) 2 E
for u 2 P�y are incident on v according to orientation O: (9!y 2 {±1}) (9v 2 Py) (8u 2 P�y) :
O(({v, u} , z)) = v.

We now proceed with bounding from above the expected robust risk En�1 of learner AO by
the maximum adversarial out-degree of orientation O. Consider an arbitrary multiset S =
{(x1, y1), . . . , (xn, yn)} 2 (X ⇥Y)n that is robustly realizable with respect to (H,U). By definition
S 2 Vn, i.e., S is a vertex in GU

H. By definition of adversarial out-degree (see Equation 10), there ex-
ists T ✓ S where |T | = n�adv-outdeg(S;O) such that for each (x, y) 2 T and for each z 2 U(x):
vertex S will satisfy the condition that if there is any other vertex u 2 Vn where ({S, u} , z) is an
edge: ({S, u} , z) 2 En, the orientation of edge ({S, u} , z) is towards S: O(({S, u} , z)) = S. Thus
by definition of AO above, AO (S \ {(x, y)} , z) = y. This implies that

1

n

nX

i=1

[9z 2 U(xi) : AO (S \ {(xi, yi)}) (z) 6= yi] =
adv-outdeg(S;O)

n
.

To conclude, by definition of En�1(AO;H,U) (see Equation 2),
En�1(AO;H,U) = sup

D2RE(H,U)
E

S⇠Dn�1
RU (AO(S);D)

= sup
D2RE(H,U)

E
S⇠Dn�1

E
(x,y)⇠D

{9z 2 U(x) : AO(S)(z) 6= y}

= sup
D2RE(H,U)

E
S⇠Dn

1

n

nX

i=1

{9z 2 U(xi) : AO(S \ {(xi, yi)})(z) 6= yi}

 maxv2Vn adv-outdeg(v;O)

n
.

B Lemmas and Proofs for Theorem 6

Lemma 11 (Rado’s Selection Principle [25, 34]). Let I be an arbitrary index set, and let {Xi : i 2 I}
be a family of non-empty finite sets. For each finite subset A of I , let fA be a choice function whose

domain is A and such that fA(i) 2 Xi for each i 2 A. Then, there exists a choice function f whose

domain is I with the following property: to every finite subset A of I there corresponds a finite set B,

A ✓ B ✓ I , with f(i) = fB(i) for each i 2 A.
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Lemma 12 (Refined Lowerbound on Error Rate of Learners). For any integer n � 1, let GU
H =

(V2n, E2n) be the global one-inclusion graph as defined in Equation 7 and Equation 8. Then, for

any learner A : (X ⇥Y)⇤ ! YX
and any " 2 (0, 1), there exists an orientation OA : E2n ! V2n of

GU
H such that

En
✏
(A;H,U) � "

2
· maxv2V2n adv-outdeg(v;OA)� 1

n� 1
.

of Lemma 12. Set m = n
" . We begin with describing the orientation OA by orienting edges incident

on each vertex v 2 V2n. Consider an arbitrary vertex v = {(x1, y1), . . . , (x2n, y2n)}. Without loss
of generality, let Pv be a distribution over {(x1, y1), . . . , (x2n, y2n)}, defined as

Pv({(x1, y1)}) = 1� " and Pv({(xt, yt)}) =
"

2n� 1
82  t  2n.

For each 1  t  2n, let
pt(v) = Pr

S⇠Pm
v

[9z 2 U(xt) : A(S)(z) 6= yt|(xt, yt) /2 S] .

For each 1  t  2n such that (xt, yt) 2 v witnesses an edge, i.e. 9u 2 V2n, z 2
X s.t. ({v, u} , z) 2 E2n and (xt, yt) 2 v�u, if pt < 1

2 , then orient all edges incident on (xt, yt)
inward, otherwise orient them arbitrarily. Note that this might yield edges that are oriented outwards
from both their endpoint vertices, in which case, we arbitrarily orient such an edge. Observe also
that we will not encounter a situation where edges are oriented inwards towards both their end-
points (which is an invalid orientation). This is because for any two vertices v, u 2 V2n such that
9z0 2 X where ({u, v} , z0) 2 E2n and v�u = {(xt, yt), (x̃t,�yt)}, we can not have pt(v) <

1
2

and pt(u) <
1
2 , since

pt(v) � Pr
S⇠Pm

v

[A(S)(z0) 6= yt|(xt, yt) /2 S] and pt(u) � Pr
S⇠Pm

u

[A(S)(z0) 6= �yt|(x̃t,�yt) /2 S] ,

and Pv conditioned on (xt, yt) /2 S is the same distribution as Pu conditioned on (x̃t,�yt) /2 S.
This concludes describing the orientation OA. We now bound from above the adversarial out-degree
of vertices v 2 V2n with respect to the orientation OA:

adv-outdeg(v;OA) 
2nX

t=1


pt �

1

2

�
 1 +

2nX

t=2


pt �

1

2

�
 1 + 2

2nX

t=2

pt

= 1 + 2
2nX

t=2

Pr
S⇠Pm

[9z 2 U(xt) : A(S)(z) 6= yt|(xt, yt) /2 S]

= 1 + 2
2nX

t=2

PrS⇠Pm [(9z 2 U(xt) : A(S)(z) 6= yt) ^ (xt, yt) /2 S]

PrS⇠Pm [(xt, yt) /2 S]

(i)
 1 + 2 ·

✓
1� n

2n� 1

◆ 2nX

t=2

Pr
S⇠Pm

[(9z 2 U(xt) : A(S)(z) 6= yt) ^ (xt, yt) /2 S]

= 1 + 2 ·
✓
1� n

2n� 1

◆ 2nX

t=2

E
S⇠Pm

[ [9z 2 U(xt) : A(S)(z) 6= yt] [(xt, yt) /2 S]]

= 1 + 2 ·
✓
1� n

2n� 1

◆
E

S⇠Pm

"
2nX

t=2

[9z 2 U(xt) : A(S)(z) 6= yt] [(xt, yt) /2 S]

#

 1 + 2 ·
✓
1� n

2n� 1

◆
E

S⇠Pm

"
2nX

t=2

[9z 2 U(xt) : A(S)(z) 6= yt]

#

= 1 + 2 ·
✓
1� n

2n� 1

◆
· 2n� 1

"
E

S⇠Pm

"
"

2n� 1

2nX

t=2

[9z 2 U(xt) : A(S)(z) 6= yt]

#

 1 + 2 ·
✓
1� n

2n� 1

◆
· 2n� 1

"
E

S⇠Pm
RU (A(S);P )

 1 + 2 ·
✓
1� n

2n� 1

◆
· 2n� 1

"
Em(A;H,U) = 1 +

2(n� 1)

"
Em(A;H,U),
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where inequality (i) follows from the following:

Pr
S⇠Pm

[(xt, yt) /2 S] =

✓
1� "

2n� 1

◆m

� 1�m · "

2n� 1
= 1� n

"

"

2n� 1
� 1� n

2n� 1
.

Since the above holds for any vertex v 2 V2n, by rearranging terms, we get Em(A;H,U) �
"
2
maxv2V2n adv-outdeg(v;OA)�1

n�1 .

Proof of Lemma 7. We will first start with the upper bound. Let n > DU (H) and let GU
H = (Vn, En)

be the (possibly infinite) one-inclusion graph. Then, by definition of DU (H), for every finite subgraph
G = (V,E) of GU

H there exists an orientation OE : E ! V such that every vertex in the subgraph
has adversarial out-degree at most n

3 : 8v 2 V, adv-outdeg(v;OE)  n
3 .

We next invoke Lemma 11 where En represents our family of non-empty finite sets, and for each
finite subset E ✓ En, we let the orientation OE (from above) represent the choice function. Then,
Lemma 11 implies that there exists an orientation O : En ! Vn of GU

H (i.e., an orientation of the
entire global one-inclusion graph) with the following property: for each finite subset A of En, there
corresponds a finite set E satisfying A ✓ E ✓ En and O(e) = OE(e) for each e 2 A. This implies
that orientation O satisfies the property that 8v 2 Vn, adv-outdeg(v;O)  n

3 . Because, if not, then
we can find a subgraph G = (E, V ) where OE (from above) violates the adversarial out-degree
upper bound of n

3 and that leads to a contradiction.

Now, we use orientation O of GU
H (which has adversarial out-degree at most n

3 ) to construct a learner
AO : (X ⇥ Y)n�1 ⇥ X ! Y as in Lemma 2. Then, Lemma 2 implies that

En�1(H,U)  En�1(AO;H,U)  1

3
.

We now turn to the lower bound. Let 2  n  DU (H)
2 , " 2 (0, 1), and let GU

H = (V2n, E2n) be the
(possibly infinite) one-inclusion graph. Since 2n  DU (H), by definition of DU (H), it follows that
there exists a finite subgraph G = (V,E) of GU

H = (V2n, E2n) such that

8 orientations O : E ! V of subgraph G,max
v2V

adv-outdeg(v;O) � 2n

3
. (13)

Now, let A : (X ⇥ Y)⇤ ! YX be an arbitrary learner. We invoke Lemma 12, which is a refined
statement of Lemma 4 that takes " into account, to orient the subgraph G using learner A. Lemma 12
and Equation 13 above imply that

En
"
(H,U) � En

"
(A;H,U) � "

2

maxv2V adv-outdeg(v;OA)� 2

n� 1
� "

2

(2n)/3� 1

n� 1

=
"

3

2n� 2� 1

2n� 2
=

"

3

✓
1� 1

2n� 2

◆
� "

6
.

Lemma 13 (Sample Compression Robust Generalization – [21]). For any k 2 N and fixed

function � : (X ⇥ Y)k ! YX
, for any distribution P over X ⇥ Y and any m 2 N, for

S = {(x1, y1), . . . , (xm, ym)} iid P -distributed random variables, with probability at least 1� �, if

9i1, . . . , ik 2 {1, . . . ,m} s.t. R̂U (�((xi1 , yi1), . . . , (xik , yik));S) = 0, then

RU (�((xi1 , yi1), . . . , (xik , yik));P )  1

m� k
(k ln(m) + ln(1/�)).

We are now ready to proceed with the proof of Theorem 6.

Proof of Theorem 6. We begin with proving the upper bound. Let m0 = DU (H). By Lemma 7,
there exists a learner A from orienting the global one-inclusion graph GU

H = (Vm0+1, Em0+1) that
satisfies worst-case expected risk

Em0(A;H,U)  1

3
. (14)

Let D 2 RE(H,U) be some unknown robustly realizable distribution. Fix ", � 2 (0, 1) and a sample
size m(", �) that will be determined later. Let S = {(x1, y1), . . . , (xm, ym)} be an i.i.d. sample from
D. Our strategy is to use A above as a weak robust learner and boost its confidence and robust error
guarantee.
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Weak Robust Learner. Observe that, by Equation 14, for any empirical distribution D over S,
ES0⇠Dm0 RU (A(S0);D)  1/3. This implies that for any empirical distribution D over S, there
exists at least one sequence SD 2 (S)m0 such that hD := A(SD) satisfies RU (hD;D)  1/3. We
use this to define a weak robust-learner for distributions D over S: i.e., for any D, the weak learner
chooses hD as its weak hypothesis.

Boosting. Now we run the ↵-Boost boosting algorithm [27, Section 6.4.2] on data set S, but using
the robust loss rather than 0-1 loss. That is, we start with D1 uniform on S. Then for each round
t, we get hDt as a weak robust classifier with respect to Dt, and for each (x, y) 2 S we define a
distribution Dt+1 over S satisfying

Dt+1({(x, y)}) =
Dt({(x, y)})

Zt
⇥

⇢
e�2↵ if [8z 2 U(x) : hDt(z) = y] = 1
1 otherwise

where Zt is a normalization factor, ↵ is a parameter that will be determined below. Following the
argument from [27, Section 6.4.2], after T rounds we are guaranteed

min
(x,y)2S

1

T

TX

t=1

[8z 2 U(x) : hDt(z) = y] � 2

3
� 2

3
↵� ln(|S|)

2↵T
,

so we will plan on running until round T = 1 + 48 ln(|S|) with value ↵ = 1/8 to guarantee

min
(x,y)2S

1

T

TX

t=1

[8z 2 U(x) : hDt(z) = y] >
1

2
,

so that the majority-vote classifier MAJ(hD1 , . . . , hDT ) achieves zero robust loss on the empirical
dataset S, RU (MAJ(hD1 , . . . , hDT );S) = 0.

Furthermore, note that, since each hDt is given by A(SDt), where SDt is an m0-tuple of points in S,
the classifier MAJ(hD1 , . . . , hDT ) is specified by an ordered sequence of m0 ·T points from S. Thus,
the classifier MAJ(h1, . . . , hT ) is representable as the value of an (order-dependent) reconstruction
function � with a compression set size m0T = m0O(logm). Now, invoking Lemma 13, we get the
following robust generalization guarantee: with probability at least 1� � over S ⇠ Dm,

RU (MAJ(h1, . . . , hT );D)  O

✓
m0 log

2 m

m
+

log(1/�)

m

◆
,

and setting this less than " and solving for a sufficient size of m yields the stated sample complexity
bound.

We now turn to proving the lower bound. Let n0 = DU (H)
2 , by invoking Lemma 7, we get that En0/" �

⌦("). Then, by Equation 4, this implies that M"(H,U) � ⌦(1/")n0 � ⌦(1/")DU (H).

C Proofs for Section 6

Definition 3 (Agnostic Robust PAC Learnability). For any ", � 2 (0, 1), the sample complexity of

agnostic robust (", �)�PAC learning of H with respect to perturbation set U , denoted Mag
",�(H,U),

is defined as the smallest m 2 N [ {0} for which there exists a learner A : (X ⇥ Y)⇤ ! YX such
that, for every data distribution D over X ⇥ Y , with probability at least 1� � over S ⇠ Dm,

RU (A(S);D)  inf
h2H

RU (h;D) + ".

If no such m exists, define Mag
",�(H,U) = 1. We say that H is robustly PAC learnable in the

agnostic setting with respect to perturbation set U if 8✏, � 2 (0, 1), Mag
",�(H,U) is finite.

Proof of Lemma 10. The argument follows closely a proof of an analogous result by [12] for non-
robust learning, and [21] for robust learning. Denote by A a realizable learner with sample complexity
Mre

1/3(H,U), and denote m0 = Mre
1/3(H,U).
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Description of agnostic learner B. Given a data set S ⇠ Dm where D is some unknown distribu-
tion, we first do robust-ERM to find a maximal-size subsequence S0 of the data where the robust
loss can be zero: that is, infh2H R̂U (h;S0) = 0. Then for any distribution D over S0, there exists
a sequence SD 2 (S0)m0 such that hD := A(SD) has RU (hD;D)  1/3; this follows since, by
definition of Mre

1/3(H,U), Em0(A;H,U)  1/3 so at least one such SD exists. We use this to define
a weak robust-learner for distributions D over S0: i.e., for any D, the weak learner chooses hD as its
weak hypothesis.

Now we run the ↵-Boost boosting algorithm [27, Section 6.4.2] on data set S0, but using the robust
loss rather than 0-1 loss. That is, we start with D1 uniform on S0.4 Then for each round t, we get
hDt as a weak robust classifier with respect to Dt, and for each (x, y) 2 S0 we define a distribution
Dt+1 over S0 satisfying

Dt+1({(x, y)}) / Dt({(x, y)}) exp{�2↵ [8x0 2 U(x), hDt(x
0) = y]} ,

where ↵ is a parameter we can set. Following the argument from [27, Section 6.4.2], after T rounds
we are guaranteed

min
(x,y)2S0

1

T

TX

t=1

[8x0 2 U(x), hDt(x
0) = y] � 2

3
� 2

3
↵� ln(|S0|)

2↵T
,

so we will plan on running until round T = 1 + 48 ln(|S0|) with value ↵ = 1/8 to guarantee

min
(x,y)2S0

1

T

TX

t=1

[8x0 2 U(x), hDt(x
0) = y] >

1

2
,

so that the classifier ĥ(x) :=
h
1
T

PT
t=1 hDt(x) � 1

2

i
has R̂U (ĥ;S0) = 0.

Furthermore, note that, since each hDt is given by A(SDt), where SDt is an m0-tuple of points in S0,
the classifier ĥ is specified by an ordered sequence of m0T points from S. Altogether, ĥ is a function
specified by an ordered sequence of m0T points from S, and which has

R̂U (ĥ;S)  min
h2H

R̂U (h;S).

Similarly to the realizable case (see the proof of Lemma 13), uniform convergence guarantees for
sample compression schemes [see 15] remain valid for the robust loss, by essentially the same
argument; the essential argument is the same as in the proof of Lemma 13 except using Hoeffding’s
inequality to get concentration of the empirical robust risks for each fixed index sequence, and then a
union bound over the possible index sequences as before. We omit the details for brevity. In particular,
denoting Tm = 1 + 48 ln(m), for m > m0Tm, with probability at least 1� �/2,

RU (ĥ;D)  R̂U (ĥ;S) +

s
m0Tm ln(m) + ln(2/�)

2m� 2m0Tm
.

Let h⇤ = argminh2H RU (h;D) (supposing the min is realized, for simplicity; else we could take an
h⇤ with very-nearly minimal risk). By Hoeffding’s inequality, with probability at least 1� �/2,

R̂U (h
⇤;S)  RU (h

⇤;D) +

r
ln(2/�)

2m
.

By the union bound, if m � 2m0Tm, with probability at least 1� �,

RU (ĥ;D)  min
h2H

R̂U (h;S) +

r
m0Tm ln(m) + ln(2/�)

m

 R̂U (h
⇤;S) +

r
m0Tm ln(m) + ln(2/�)

m

 RU (h
⇤;D) + 2

r
m0Tm ln(m) + ln(2/�)

m
.

4We ignore the possibility of repeats; for our purposes we can just remove any repeats from S0 before this
boosting step.

18



Since Tm = O(log(m)), the above is at most " for an appropriate choice of sample size m =
O
�
m0
"2 log2

�
m0
"

�
+ 1

"2 log
�
1
�

��
. This concludes the upper bound on Mag

",�(B;H,U), and the lower
bound trivially holds from the definition of B.

D Finite Character Property

[4] gave a formal definition of the notion of “dimension” or “complexity measure”, that all previ-
ously proposed dimensions in statistical learning theory comply with. In addition to characterizing
learnability, a dimension should satisfy the finite character property:
Definition 4 (Finite Character). A dimension characterizing learnability can be abstracted as a
function F that maps a class H to N [ {1} and satisfies the finite character property: For every
d 2 N and H, the statement “F (H) � d” can be demonstrated by a finite set X ✓ X of domain
points, and a finite set of hypotheses H ✓ H. That is, “F (H) � d” is equivalent to the existence of a
bounded first order formula �(X ,H) in which all the quantifiers are of the form: 9x 2 X , 8x 2 X
or 9h 2 H, 8h 2 H.

For example, the property “vc(H) � d” is a finite character property since it can be verified with a
finite set of points x1 . . . , xd 2 X and a finite set of classifiers h1, . . . , h2d 2 H that shatter these
points, and a predicate E(x, h) ⌘ x 2 h (i.e., the value h(x)). In our case, in addition to having
a domain X and a hypothesis class H, we also have a relation U . In Claim 14, we argue that our
dimension DU (H) satisfies Definition 4, though unlike VC dimension, we do need 8 quantifiers.
Furthermore, we provably cannot verify the statement DU (H) � d by evaluating the predicate
E(x, h) on finitely many x’s and h’s, but we can verify it using a predicate PU (x, h) ⌘ 8z 2
U(x) : h(z) = h(x) that evaluates the robust behavior of h on x w.r.t. U . The proof is deferred to
Appendix D.
Claim 14. DU (H) satisfies the finite character property of Definition 4.

Proof. By the definition of DU (H) in Equation 12, to demonstrate that DU (H) � d, it suffices to
present a finite subgraph G = (V,E) of GU

H = (Vd, Ed) where every orientation O : E ! V has
adversarial out-degree at least n

3 . Since V is, by definition, a finite collection of datasets robustly
realizable with respect to (H,U) this means that we can demonstrate that DU (H) � d with a finite
set X ✓ X and a finite set of hypotheses H ✓ H that can construct the finite collection V .

Note that in our case, we do not only have X and H, but also a set relation U that specifies for each
x 2 X its corresponding set of perturbations U(x). We can still express DU (H) � d with a bounded
formula using only quantifiers over H and X , though unlike in the case of VC dimension, we do
also need 8 quantifiers. Furthermore, we provably cannot verify the formula by evaluating h(x) only
on finitely many x 2 X , h 2 H, since U(x) can be infinite. But, we can verify it given access to a
predicate PU (h, x) ⌘ 8z 2 U(x) : h(z) = h(x).
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