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Abstract

Dynamic pricing is a fast-moving research area in machine learning and operations
management. A lot of work has been done for this problem with known noise.
In this paper, we consider a contextual dynamic pricing problem under a linear
customer valuation model with an unknown market noise distribution F . This
problem is very challenging due to the difficulty in balancing three tangled tasks of
revenue-maximization, estimating the linear valuation parameter θ0, and learning
the nonparametric F . To address this issue, we develop a novel Explore-then-UCB
(ExUCB) strategy that includes an exploration for θ0-learning and a followed UCB
procedure of joint revenue-maximization and F -learning. Under Lipschitz and
2nd-order smoothness assumptions on F , ExUCB is the first approach to achieve
the Õ(T 2/3) regret rate. Under the Lipschitz assumption only, ExUCB matches the
best existing regret of Õ(T 3/4) and is computationally more efficient. Furthermore,
for regret lower bounds under the nonparametric F , not much work has been done
beyond only assuming Lipschitz. To fill this gap, we provide the first Ω̃(T 3/5)
lower bound under Lipschitz and 2nd-order smoothness assumptions.

1 Introduction

Dynamic pricing is a process of continuously adjusting the prices by learning from the customers’
feedback. The feedback usually depends on the pricing action. To maximize the overall revenues
in a sales horizon, a pricing policy should well balance between learning the customers’ demands
(exploration) and setting revenue-maximizing prices based on the current knowledge (exploitation).
There is a rich literature on this information-regret tradeoff under different settings [7, 27, 16, 12, 19].

In this paper, we consider an important setting in dynamic pricing where some contextual information
is available in each time period. It is interesting and challenging to improve the revenues by well
exploiting the sales-relevant contextual information such as product features and market environments.

To model the influence of the contextual information, we adopt a binary feedback model which
incorporates a comparison between the customer’s valuation and the seller’s price [3, 25, 47, 35, 20].
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Table 1: Regret bounds under different smoothness assumptions on noise.
Smoothness Assumptions on

Unknown Noise CDF F Upper Bound Lower Bound

m(≥ 2) times continuously
differentiable Õ(T

2m+1
4m−1 )[20]

Arbitrary Õ(T
3
4 ) [48]

Ω̃(T
2
3 )[48]

Lipschitz Õ(T
3
4 ) (This work)

Lipschitz and
2nd-order smoothness

Õ(T
2
3∨(1−α))[35]

Ω̃(T
3
5 ) (This work)

Õ(T
2
3 ) (This work)

Specifically, in the selling time period t with the associated context xt ∈ Rd0 , the customer’s
valuation vt of the product is assumed to be linear with repect to xt, together with some noise zt,
i.e., vt = v(xt) = x>t θ0 + zt. Here the noises {zt}t∈[T ] across the time horizon [T ] = {1, . . . , T}
are independent and identically distributed (i.i.d.) from a Cumulative Distribution Function (CDF)
F . Then under the seller’s price pt, a binary feedback yt = 1{vt≥pt} representing the customer’s
purchasing decision is observed by the seller. Namely, the purchase at time period t happens if and
only if the customer’s valuation vt is greater than or equal to the seller’s price pt. The seller then
collects the current feedback yt which can help the pricing decision at the next time period. Note
that the binary feedback structure yt = 1{vt≥pt} is critical to this online pricing problem’s bandit
nature. We cannot observe the full information vt at each time period. Instead, we can only observe
the partial information yt = 1{vt≥pt} which varies with different pricing action pt.

At each time period t, the expected reward of any price p is E
(
p1{vt≥p}

)
. Thus, the optimal pricing

depends on the distribution of the valuation vt = v(xt) = x>t θ0 + zt. We assume both unknown
parameter θ0 and unknown noise CDF F at the beginning of the horizon. Therefore, the seller
needs to gradually learn both θ0 and F for better pricing. In this paper, we investigate two different
smoothness assumptions for the noise CDF F . The first one assumes Lipschitz continuity and
2nd-order smoothness, while the second only assumes Lipschitz.

To tackle these two sub-problems under different noise smoothness assumptions, we propose two
sub-policies unified under a single pricing policy framework, namely Explore then Upper Confidence
Bound (ExUCB). In particular, our proposed ExUCB first estimates θ0 through some random pricing
exploration phase, and then uses this estimate to drive a Upper Confidence Bound (UCB) procedure
that well balances revenue-maximizing and F -learning.

The same pricing problem has been investigated in the literature [35, 20, 48] under a variety of
smoothness assumptions on the noise. The existing regret bounds are presented in Table 1 along with
our new regret results in this paper. In summary, our theoretical contributions are threefold.

1. Under the Lipschitz and 2nd-order smoothness assumptions, our proposed ExUCB policy
is the first procedure to achieve Õ(T 2/3) regret rate. We prove valid θ0 estimation accuracy
and quantify its influence on the regret of the UCB procedure driven by the θ0-estimate. This
helps us determine an optimal balance between random pricing exploration and the followed
UCB phase. Our Õ(T 2/3) regret improves the existing regret bound of Õ(T 2/3∨(1−α)) in
[35] which has an indeterministic α. It also improves the Õ(T 5/7) regret in [20] which
assumes a stronger smoothness assumption of twice continuously differentiable F .

2. Under the Lipschitz and 2nd-order smoothness assumptions, we obtain the lower bound
of Ω̃(T 3/5) by constructing the instances such that any policy cannot perform well on
all of them. To our limited knowledge, this is the first lower bound result under such
smoothness assumptions. To construct instances that satisfy this smoothness assumption,
the core step is to build “bump towers” by piling up an infinite series of “quadratically
shrinking” basic bump functions. Note that the Ω̃(T 2/3) lower bound in [48] only applies
to the Lipschitz assumption since their constructed instances do not satisfy the 2nd-order
smoothness assumption.

3. Under the Lipschitz assumption, ExUCB can match the best existing upper bound of
Õ(T 3/4) in [48] and is computationally more efficient. This shows the adaptivity of ExUCB
to different noise smoothness levels.
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Our improved regret over existing results in [35, 20] demonstrates the methodological novelty of
the proposed Explore-then-UCB strategy. In [35], the authors implemented the UCB idea but did
not apply random pricing explorations. Thus they can only use adaptive data to estimate θ0, which
results in an indeterministic α in their regret of Õ(T 2/3∨(1−α)). In contrast, by using a random
exploration phase, ExUCB achieves the exact regret of Õ(T 2/3). In [20], the authors proposed an
Explore-then-Commit type of policy that first estimates θ0 and F in an exploration phase and then
commits to these estimates for pricing in the exploitation phase. In comparison, ExUCB imposes
a UCB procedure to adaptively balance between revenue-maximizing and F -learning. The regret
advantage of ExUCB indicates the importance of our UCB procedure after the exploration.

2 Related Works

In this section, we discuss how our work relates to the literature of dynamic pricing, bandits and
contextual search..

Non-Contextual Dynamic Pricing. Extensive investigations have been conducted on dynamic
pricing problems without contextual information [7, 9, 46, 8, 14]. Form-th smooth demand functions,
[44] applied the UCB idea with local-bin approximations to achieve an Õ(T (m+1)/(2m+1)) regret,
and proved a matching lower bound. The UCB approach has also been adopted in [29, 37]. However,
these methods are not able to utilize the potential contextual information for better pricing.

Contextual Dynamic Pricing. There are significant interests among researchers in contextual
dynamic pricing [41, 24, 36, 38, 6, 43, 5, 18, 45, 26, 13, 15]. With nonparametric revenue functions,
[13] designed a policy with Õ(T (d0+2)/(d0+4)) regret based on the adaptive binning idea from
nonparametric contextual bandit [40]. Note that their proved Ω(T 3/5) regret lower bound for the
one-dimensional case does not apply to our setting since their constructed revenue functions are
beyond our revenue function class. In [43], the authors adopted a log-linear valuation model and
proposed a pricing algorithm with Õ(T 1/2) regret. Some recent literature [25, 22, 23, 47, 35, 20, 48]
adopted the same linear valuation model as in this work. By assuming a known noise distribution,
[25, 47] designed algorithms with O(log T ) regret. For noise in a known parametric family, [25]
proposed a policy with O(T 1/2) regret. In [23], the authors assumed a known ambiguity set that
contains the noise distribution and proposed an algorithm with a Õ(T 2/3) regret with respect to a
robust benchmark. With unknown noise distribution, the ambiguity set would be extremely large and
the robust benchmark can be far from the true optimal one. In [22], the authors considered unknown
noise with “full information” feedbacks and proposed an algorithm with Õ(T 1/2) regret.

The most related works to ours are [35, 20, 48], which considered binary cencored feedback and
unknown noise distributions under different smoothness assumptions. In [20], the authors proposed
an Explore-then-Commit policy with an Õ(T

2m+1
4m−1 ) regret under m(≥ 2) times continuously differen-

tiable F . The m = 2 case would imply our Lipschitz and 2nd-order smoothness assumptions. Thus
ExUCB can achieve a lower Õ(T 2/3) regret than the Õ(T 5/7) rate in [20] even under weaker smooth-
ness assumptions. In [35], the authors proved an Õ(T 2/3∨(1−α)) regret. The value of α depends on
the convergence rate of their θ0 estimates. However, α is indeterministic and no rigorous justifications
has been made. In comparison, our ExUCB policy achieves an exact regret of Õ(T 2/3). In [48],
the authors developed an adaptive pricing policy that achieved an Õ(T 3/4) regret for adversarial
contexts and arbitrary bounded noise distributions. Our ExUCB policy matches the Õ(T 3/4) regret
under a Lipschitz F and can improve the regret to Õ(T 2/3) with an additional 2nd-order smoothness
assumption. In addition, since the EXP4-based policy in [48] requires exponential computations w.r.t.
the covariate dimension d0, ExUCB is computationally more efficient with a time complexity that is
polynomial with d0.

Bandit Algorithms. Bandit-type feedback structure is natural in dynamic pricing [29, 13, 48]. The
bandit literature provides a significant variety of methods to resolve the exploration-exploitation
tradeoff that arises with the bandit feedback [10, 31]. A key tool we used in this paper is the perturbed
linear bandit (PLB) [35]. It is related to the misspecified linear bandits [32, 39, 21] and non-stationary
linear bandits [17, 42, 49]. In addition, dynamic pricing is closely related to continuum-armed bandit
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[2, 28, 4, 11]. The lower bound we proved borrows the “needle in haystack” idea that is widely
applied in continuum-armed bandits [28, 48].

Contextual Search. Contextual pricing with binary feedback can be formulated into the contextual
search problem [34, 33, 30]. However, different noises are considered other than our stochastic
valuation ones. [34] is noiseless and only small-variance noises are handled in [30]; A “flipping”
noise on customers’ decisions are investigated in [33].

3 Preliminaries

Problem Setting. The sales time horizon is [T ] = {1, . . . , T} with the initial time period t = 1.
We present the online pricing procedure as follows.

1. At time period t, the seller observes a context xt ∈ Rd0 .

2. The customer valuates the product at vt = x>t θ0 + zt, where zt
i.i.d.∼ F .

3. The seller sets a price pt based on xt and the past sales data {(xs, ps, ys)}s≤t−1.
4. The seller observes the binary feedback yt = 1{vt≥pt} and collects the revenue ptyt.
5. Let t = t+ 1 and go back to Step 1.

Regret Definition. Given the context xt, the probability of a purchase is 1− F (pt − x>t θ0) and
thus the expected reward of setting the price pt is pt

(
1 − F (pt − x>t θ0)

)
. Define the optimal

price given the context x as p∗(x) = arg maxp≥0 p
(
1− F (p− x>θ0)

)
. Then the regret rt at time

period t is defined as the expected revenue loss with respect to the optimal price p∗t = p∗(xt), i.e.,
rt = p∗t

(
1− F (p∗t − x>t θ0)

)
− pt

(
1− F (pt − x>t θ0)

)
.

Definition 1 The cumulative regret across the horizon is defined as

RT =

T∑
t=1

rt =

T∑
t=1

[
p∗t
(
1− F (p∗t − x>t θ0)

)
− pt

(
1− F (pt − x>t θ0)

)]
.

The expected cumulative regret E(RT ) is obtained from taking expectation over the potential ran-
domness of the data and the pricing policy. Our goal is to minimize E(RT ) by dynamically setting
the price pt under unknown θ0 and F .

Technical Assumptions. We now present our main assumptions. Assumptions 1 – 2 are standard
in dynamic pricing [25, 13, 23, 35, 20, 48].

Assumption 1 (Bounded contexts and parameter) The covariates xt are bounded as ||xt||∞ ≤ 1.
The `1 norm ||θ0||1 of θ0 is bounded by a known constant W .

Assumption 2 (i.i.d. contexts) The covariates xt
i.i.d.∼ Px with the support X and the matrix Σ =

E
(
(1, x>t )>(1, x>t )

)
satisfies that Σ− c0I is positive-definite for some positive constant c0.

Assumption 3 (Bounded valuations) The customers’ valuations vt ∈ [0, B] for a known constant B.

Assumption 3 assumes a known upper bound for the customers’ valuations [23, 20], which is
reasonable for real-life products. Note that Assumption 3 indicates a known upper bound pmax = B
for the optimal prices. In addition, Assumptions 1 and 3 imply an upper bound U = W + B
for the noise absolute value. In the following, we further introduce two smoothness assumptions.
The Lipschitz condition in Assumption 4 is basic and was considered in [35, 48]. Assumption 5
assumes the 2nd-order smoothness of the expected revenue functions around the optimal prices and
has also been imposed in [13, 35]. It is satisfied with bounded second derivatives of F [35] but
fits for a broader class of F . Both Assumptions 4 – 5 are satisfied by m(≥ 2) times continuously
differentiablility of F as considered in [20].

Assumption 4 (Lipschitz Continuity) The noise CDF F is Lipschitz continuous with a constant L,
i.e., |F (x)− F (y)| ≤ L|x− y|,∀x, y ∈ R.
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Assumption 5 (2nd-order Smoothness) Define the general expected revenue functions associated
with the noise distribution F as fq(p) = p(1− F (p− q)). There exists a positive constant C such
that for any x ∈ X and q = x>θ0, we have fq(p∗(x))− fq(p) ≤ C(p∗(x)− p)2,∀p ∈ [0, pmax].

In this paper, we investigate two smoothness levels on the unknown noise distribution F , i.e., Case
(A): Lipschitz and 2nd-order smoothness; Case (B): Lipschitz-only. For these two scenarios, we
design respective algorithms that are unified under a single ExUCB policy framework.

4 Algorithm

We first propose the general ExUCB policy in Algorithm 1. Without the knowledge of the horizon
length T , we utilize the doubling trick [31] to cut the horizon into episodes. Each episode consists
of an exploration phase and a followed UCB phase. Denote the first episode length as α1 and the
number of episodes as n(T, α1). The schematic of ExUCB is displayed in Figure 1.

Figure 1: Schematic Representation of Explore-then-UCB Policy.

Algorithm 1 Explore-then-UCB (ExUCB)

1: Input: (at time 0) pmax, B, α1, C1, C2, β, γ, λ
2: Input: (arrives over time) covariates {xt}t∈[T ]

3: For episodes k = 1, 2, . . . , n(= n(T, α1)), do
4: Set the (projected) length of the k-th episode as `k = 2k−1α1.
5: (Exploration Phase)
6: For time t ∈ Ek := {

∑k−1
i=1 `i + 1, . . . ,

∑k−1
i=1 `i + dC1`

β
ke}, do

7: Set a price pt uniformly randomly from (0, B).
8: Receive a binary response yt.
9: Calculate the θ0-estimate θ̂k by

(µ̂k, θ̂k) = arg min
µ,θ

1

|Ek|
∑
t∈Ek

(
Byt − (1, x>t )(µ, θ>)>

)2
.

10: (UCB Phase)
11: For time t ∈ Uk := {

∑k−1
i=1 `i + dC1`

β
ke+ 1, . . . ,

∑k−1
i=1 `i + `k}, do

12: Apply the Inner UCB Algorithm on the coming sequential covariates {xt}t∈Uk with the
θ0-estimate θ̂k, the discretization number dk = dC2(`k − dC1`

β
ke)γe, the optimal price

bound pmax, the projected length (`k − dC1`
β
ke), and the regularization parameter λ.

In the exploration phase, we conduct random pricing and finally obtain a θ0 estimate. In the followed
UCB phase, we implement a UCB procedure that uses the θ0 estimate to drive the balance between
F -learning and revenue-maximizing. We discuss the two components in the following.

Estimation of θ0. At the beginning of each episode, we impose a random pricing exploration phase
to generate data for θ0 estimation. The exploration phase length dC1`

β
ke is set as some β order of the

episode length `k. By uniformly random pricing in (0, B), there arises a linear regression structure
[23, 20] involving the signal of θ0. Specifically, we have

E(Byt|xt) = BE
(
E(1{pt≤x>t θ0+zt}|xt, zt)|xt

)
= BE(

x>t θ0 + zt
B

|xt) = (1, x>t )(µ, θ>0 )>.

Thus we are able to provide guarantees for θ̂k using classical analysis techniques on linear regression.
In contrast, [35] applied a linear classification method on the adaptive data of the previous episode to
obtain a θ0-estimate, which lacks theoretical guarantees for the estimation accuracy.
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θ̂k-driven UCB Procedure. In the UCB phase of episode k, we use the obtained linear regression
estimate θ̂k to drive a UCB procedure that balances between F -learning and revenue-maximizing.
Different from [35], our UCB procedure does not start at the beginning of each episode. In addition,
we offer a different source of θ0 estimate that is independent of previous episodes and allow more
general discretizations tuned by a parameter γ.

Algorithm 2 Inner UCB Algorithm

1: Input: (arrives over time) covariates {xt}t∈[T0]; θ0-estimate θ̂; discretization number d; optimal
price bound pmax; projected length T0; regularization parameter λ in the UCB formulation 1

2: Cut the F -learning interval G(θ̂) = [−||θ̂||1, pmax + ||θ̂||1] into d same-length sub-intervals with
their midpoints denoted as m1, . . . ,md.

3: For time t = 1, . . . , T0, do
4: Construct the candidate price set St = {mj + x>t θ̂|j ∈ [d],mj + x>t θ̂ ∈ (0, pmax)}.
5: Determine the available arm set Bt = {j ∈ [d] : mj + x>t θ̂ ∈ (0, pmax)}.
6: Calculate UCBt(1− F (mj)) for j ∈ Bt as in (1).
7: Calculate jt ∈ arg maxj∈Bt(mj + x>t θ̂)UCBt(1− F (mj)).
8: Set the price pt = mjt + x>t θ̂ and receive a binary response yt.

The Inner UCB Algorithm is explicitly presented as Algorithm 2. In summary, the knowledge of
F is continuously updated and the prices are set accordingly. Since any potential optimal price
p ∈ (0, pmax), we only need to explore those F -values on the potential range of p − x>t θ0, i.e.,
[−||θ0||1, pmax + ||θ0||1]. Thus we first restrict our F -learning attention to the interval G(θ̂) =

[−||θ̂||1, pmax+||θ̂||1]. Now we borrow the discretization approach in [35]. Specifically, we discretize
G(θ̂) into d sub-intervals and further focus the learning of F on their d midpoints {mj}j∈[d]. Note
that we use d0 to refer to the covariate dimensionality, and use d, dk to refer to the discretization
numbers. This discretization idea would enable a mutual reinforcement procedure of the discretized
price selection and the knowledge accumulation of F on these d discretized points. They can
repeatedly enhance each other in a closed loop. To do so, at each time period t, we construct the
candidate price set St = {mj + x>t θ̂|j ∈ [d],mj + x>t θ̂ ∈ (0, pmax)}. Then for any candidate
price pt = mj + x>t θ0 ∈ St, its associated purchasing probability (1 − F (pt − x>t θ0)) would be
close to (1 − F (mj)). Therefore, the knowledge accumulation of F on {mj}j∈[d] helps with the
expected revenue evaluation of the candidate prices and thus the price selection from St. On the other
hand, the selection of any candidate price pt = mj + x>t θ0 ∈ St invokes a binary outcome with a
probability close to 1− F (mj), thus helping with the knowledge accumulation of F on mj . Denote
Dt−1,j := {s : 1 ≤ s ≤ t− 1, js = j} as all past time periods s such that ps − x>t θ̂ = mj . Then we
construct the UCB of 1− F (mj) as

UCBt(1− F (mj)) =


∑
s∈Dt−1,j

p2sys

λ+
∑
s∈Dt−1,j

p2s
+

√
βt

λ+
∑
s∈Dt−1,j

p2s
, for Dt−1,j 6= ∅;

+∞, for Dt−1,j = ∅.
(1)

Note that for s ∈ Dt−1,j , ys ∼ Ber(1−F (ps−x>s θ0)) ≈ Ber(1−F (mj)). Therefore, the first term
in the right-hand side of (1) for Dt−1,j 6= ∅ is a regularized weighted average of those ys and thus an
estimate of 1− F (mj). The second term is an associated confidence interval length. Based on these
upper confidence bounds for 1− F (mj), we select the price pt = mj + x>t θ̂ from the candidate set
St that maximizes the optimism expected revenue (mj + x>t θ̂)UCBt(1− F (mj)).

It remains to specify the choice of βt in Equation (1). We will discuss its choice by the following
perturbed linear bandit [35] formulation of the pricing problem in the Inner UCB Algorithm.

Perturbed Linear Bandit Formulation With the restriction on the candidate sets St, we are able
to formulate the pricing problem guided by θ̂ as a perturbed linear bandit. The PLB is an extension of
the linear bandit and we present its formal definition in Appendix C. The expected reward of the PLB
takes the form of 〈ξt, At〉 at each time period t, where At is the action vector. Different from the
linear bandit, the linear parameters ξt in the PLB can vary across time periods and are perturbations
from a central linear parameter ξ∗.
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In our pricing problem, by specifying the linear parameter ξt = (1−F (m1 +x>t θ̂−x>t θ0), . . . , 1−
F (md+x>t θ̂−x>t θ0))> ∈ Rd and mapping each candidate price pt = mj +x>t θ̂ to an action vector
At with a single non-zero j-th element pt, the expected revenue of setting price pt can be rewritten as

pt(1− F (pt − x>t θ0)) = 〈ξt, At〉.

In addition, all linear parameters ξt are around the central parameter ξ∗ = (1 − F (m1), . . . , 1 −
F (md))

> and thus close to each other with a perturbation constant Cp = 2L||θ̂ − θ0||1. Namely, we
have ||ξs − ξt||∞ ≤ Cp,∀s, t ∈ N+. This implies a lower `1 estimation error of θ̂ would lead to less
perturbations and probably incur less regret.

Under the PLB formulation, the Inner UCB Algorithm is indeed equivalent to a modified version of
the LinUCB algorithm [1, 31, 35]. Thus we specify βt in (1) as βt = β∗t = p2max(1 ∨ ( 1

pmax

√
λd+√

2 log(T0) + d log(
dλ+(t−1)p2max

dλ ))2).

5 Regret Analysis

In this section, we analyze the regret of our proposed Explore-then-UCB algorithm. For both Case
(A) and Case (B), we specify the parameters β and γ in Algorithm 1 appropriately and prove the
respective upper bounds. Furthermore, we prove the first regret lower bound for Case (A).

5.1 Upper Bounds

For upper bounds, we first analyze a single episode in Algorithm 1 and then extend it to the entire
horizon. Firstly, we provide the `1 estimation error of our θ0 estimation procedure.

Lemma 1 Under Assumptions 1 – 3, there exists positive constants c̃1, c̃2, c̃3 such that for any
episode k with the exploration phase length nk ≥ c̃3(d0 + 1)3, we have with probability at least

1− 2
nk
− c̃1e

− c̃2
(d0+1)2

nk that

||θ̂k − θ0||1 ≤
8(B + U +W )(d0 + 1)

c0

√
log nk
nk

.

Therefore, with an exploration phase length nk that scales as `βk , we obtain an estimate θ̂k with a high
probability `1-error of Õ(`

−β/2
k ). As this θ̂k will guide the UCB procedure, we need to investigate

how the estimation error propagates into the UCB phase regret. A lower error rate is expected to cause
less regret. On the other hand, a lower error rate requires a larger β and costs a longer exploration
phase with more regret. Therefore, besides the “inner” balance between revenue-maximizing and
F -learning in the UCB phase, there is an “outer” balance between the exploration phase regret and
the UCB phase regret, both associated with θ0-learning. This outer balance is regulated by the value
of β, which should be set differently under Case (A) and Case (B) to achieve the optimal balance.

Secondly, we analyze the regret for the Inner UCB Algorithm. By defining the discrete best prices
p̃∗t := arg maxp∈St p(1− F (p− x>t θ0)) in St, the time t regret rt can be decomposed as

p̃∗t (1− F (p̃∗t − x>t θ0))− pt(1− F (pt − x>t θ0))︸ ︷︷ ︸
rt,1

+ p∗t (1− F (p∗t − x>t θ0))− p̃∗t (1− F (p̃∗t − x>t θ0))︸ ︷︷ ︸
rt,2

.

We refer to RT0,1 =
∑T0

t=1 rt,1 and RT0,2 =
∑T0

t=1 rt,2 as the discrete-part and continuous-part
regrets. By the PLB formulation of the pricing problem, there is a correspondence between candidate
prices and PLB actions. Thus the discrete-part regret is equivalent to the PLB regret. To bound the
discrete-part regret of the Inner UCB Algorithm, we prove the following Proposition 1 based on
Theorem 1 in [35].

Proposition 1 Under Assumptions 1 and 4, there exists positive constants C
′

1, C
′

2 and C
′

3 such that
with probability at least 1− 1

T0
, the Inner UCB Algorithm yields a discrete-part regret

RT0,1 ≤ C
′

1d
√
T0 log(C

′

2T0) + C
′

3L||θ̂ − θ0||1T0.
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Table 2: Regret components’ rates for Case (A) and Case (B).

Exploration
Phase

UCB Phase
Discrete-part

Continuous-partθ0 Estimation Error F -Learning
O(||θ̂ − θ0||1T0) Õ(d

√
T0)

Case (A) O(T β0 ) O(T
1− β2
0 ) Õ(T

γ+ 1
2

0 ) O(T0

d2 ) = O(T 1−2γ
0 )

Case (B) O(T β0 ) O(T
1− β2
0 ) Õ(T

γ+ 1
2

0 ) O(T0

d ) = O(T 1−γ
0 )

In Proposition 1, the first Õ(d
√
T0) component is typical in linear bandit and attributes to the lack of

knowledge for F and the central parameter ξ∗ in the PLB formulation. The second L||θ̂ − θ0||1T0
component is proportional to the PLB perturbation constant 2L||θ̂ − θ0||. It demonstrates how
estimation errors influence the regret upper bounds, which matches with the intuition that a better
estimation would incur a lower regret in the UCB phase.

The discretization number d plays a critical role in balancing the discrete-part and continuous-part
regret. A larger d leads to a higher discrete-part regret as indicated by Proposition 1, which is intuitive
since more discretizations yield more candidate prices and hence a more challenging search process.
On the other hand, a larger h and a denser discretization would make the discrete best price “closer”
to the overall best price and decrease the continuous-part regret. Specifically, under Case (A) and
Case (B), we can bound the continuous-part regret with the order O(T0

d2 ) and O(T0

d ) respectively.
Namely, we could achieve a lower rate with the extra 2nd-order smoothness Assumption 5. Since we
choose the discretization number dk in episode k to scale as (uk)γ where uk denotes the UCB phase
length, γ regulates the balance between the discrete-part and continuous-part regret in the UCB phase
and should be set differently for optimal balances in Case (A) and Case (B).

Now we are ready to present the two regret upper bounds for Case (A) and Case (B).

Theorem 1 Under Assumptions 1 – 5, by choosing β = 2
3 and γ = 1

6 in Algorithm 1, the expected
regret satisfies E(RT ) = Õ(d20T

2/3) = Õ(T 2/3).

Theorem 2 Under Assumptions 1 – 4, by choosing β = 3
4 and γ = 1

4 in Algorithm 1, the expected
regret satisfies E(RT ) = Õ(d0T

3/4) = Õ(T 3/4).

We illustrate the regret components’ orders in Table 2 for a single episode with a generic length T0.
Table 2 explains the different choices of β and γ in the two cases to minimize the overall regret rates.
It demonstrates that β balances between the exploration phase regret and the discrete-part regret due
to θ0 estimation error; while γ balances between the continuous-part regret and the discrete-part regret
due to F -learning. As shown in Theorem 1, through optimal balance, ExUCB improves the existing
regret of Õ(T 2/3∨(1−α)) in [35] and Õ(T 5/7) in [20] to Õ(T 2/3) under Lipschitz and 2nd-order
smoothness assumptions. In addition, an optimal choice of β and γ in Theorem 2 helps ExUCB
match the best existing regret of Õ(T 3/4) [48] under the Lipschitz-only assumption.

5.2 Lower Bound

We next prove a regret lower bound of Ω̃(T 3/5) for Case (A). To our limited knowledge, this is the
first lower bound result under the Lipschitz and 2nd-order smoothness assumptions. Note that there
is a gap between our proved upper and lower bounds for Case (A). Indeed, such a gap also happens
in other works [20, 48] on the unknown noise pricing problems. This may be due to the inherent
difficulties of these problems, e.g., in learning both θ0 and F .

Theorem 3 For any δ > 0, no policy can achieve an O(T 3/5−δ) regret for the dynamic pricing
problem under Assumptions 1 – 5.

Remark 1 In [48], the authors proved an Ω̃(T 2/3) lower bound with constructed instances that
can fit into Case (B) but does not apply to Case (A). Our proved lower bound rate is lower since
our instances need to satisfy more assumptions and lie in a more benign class. Another similar
lower bound of Ω(T 3/5) is proved in [13] for 1-dimensional nonparametric contextual expected
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revenue functions. However, their instances are constructed in a local-bin fashion with respect to
the covariate and thus are outside our revenue function class. Therefore, their lower bound does not
apply to our setting.

Proof Sketch of Theorem 3. We follow similar ideas in [28, 48] to construct the instances. Firstly
we set θ0 = 0 and relieve the difficulty from contexts. Secondly, we construct a series of “bump
towers” and transform them to valid expected revenue functions in the form of p(1− F (p)), while
still preserving the intended properties. We construct each bump tower from an infinitely-nested
interval series [0, 1] = [a0, b0] ⊃ [a1, b1] ⊃ · · · ⊃ [ak, bk] ⊃ . . . . Specifically, we divide [ak, bk]
with length wk = 3−k! into three same-length sub-intervals and further divide the middle one into
wk
wk+1

candidate intervals. Then each of the candidate intervals forms one case of [ak+1, bk+1]. For
each of these infinitely-nested interval series, we add up bump functions on the nested intervals to
form the bump tower. Different from [48], to construct the expected revenue functions that satisfy
the 2nd-order smoothness assumption, we adopt a different basic bump function and develop a
“quadratically-shrinking” adding pattern. Finally, we prove that any policy will miss the peaks of
some revenue function instances often enough, thus accumulating an inevitable amount of the regret.

6 Numerical Experiments

We conduct numerical experiments to support our theoretical regret bounds of ExUCB under both
Case (A) and Case (B). We consider a total horizon length T =

∑10
i=1 28+i that is divided into 10

episodes with the first episode length α1 = 29. For both cases, we specify the linear parameter
θ0 = 30 and sample the i.i.d. covariates as xt ∼ Unif(1/2, 1). For Case (A), the noise distribution
is set as a Uniform mixture 3

4Unif(−15, 0) + 1
4Unif(0, 15); while for Case (B), we adopt another

Uniform mixture 1
4Unif(−15, 0) + 3

4Unif(0, 15). It can be verified that the first distribution satisfies
the Lipschitz and 2nd-order smoothness assumptions while the second one only satisfies the Lipschitz
assumption. We apply ExUCB with different choices of β, γ specified in Theorems 1 – 2 to these two
instances. For both cases, we set the constants in Algorithm 1 as pmax = 50, B = 50, C1 = 1, C2 =
20, λ = 0.1. With 100 replications, we plot the log-log scale of average accumulative regrets versus
the time periods in Figure 2 along with the 95% confidence intervals. The linear fits extract a slope
of 0.670 for Case (A) and a slope of 0.724 for Case (B), which indicates that our proved regrets of
Õ(T 2/3) for Case (A) and Õ(T 3/4) for Case (B) are sharp.

(a) Case (A): ExUCB with β = 2/3, γ = 1/6. (b) Case (B): ExUCB with β = 3/4, γ = 1/4.

Figure 2: Regret rates of ExUCB for Case (A) and Case (B).

7 Conclusion

In this paper, we introduce a novel Explore-then-UCB strategy to tackle the contextual dynamic
pricing problem with unknown linear valuation and unknown nonparametric noise distribution F .
Under Lipschitz and 2nd-order smoothness assumptions on F , ExUCB policy improves the best-
known regret upper bounds to Õ(T 2/3). Under the Lipschitz-only assumption, ExUCB matches the
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best existing regret of Õ(T 3/4) with better computational efficiency. In addition, we prove a first
Ω̃(T 3/5) lower bound for our considered contextual dynamic pricing problem under the Lipschitz
and 2nd-order smoothness assumptions.
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