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A Appendix

In this supplementary material, we first discuss the potential societal impact (Appendix and
limitations (Appendix [A.2)) of our approach. Next, we provide further details on the architecture
of RLIP-ParSeD (Appendix [A.3)), dataset pre-processing (Appendix [A.4)), phased pre-training (Ap-
pendix [A.3)), attention analysis (Appendix [A.6) and subject-object query pairing (Appendix [A.7).
Finally, we provide additional experiments and analysis (Appendix [A.8) and discuss our use of
datasets (Appendix [A.9). Codes will be publicly available upon publication.

A.1 Potential Societal Impact

By targeting improved HOI detection, our work has the potential to bring societal and commercial
benefits in medical, retail, security and sports analysis applications. However, it is inherently a
dual-use technology, providing functionality with scope for abuse. For example, better HOI detection
may make it easier to conduct unlawful surveillance. Moreover, due to biases present among training
datasets, it is also likely that our system does not perform equally across all demographics. Therefore,
we caution that our approach represents a research proof-of-concept and is not suitable for real-world
usage without a rigorous evaluation of the deployment context and appropriate oversight.

A.2 Limitations and Potential Future Works

As noted in the experiment section of the main paper, one limitation of our method is its dependence
on a particular form of annotations (i.e. the pre-training data must be annotated with relation triplets),
which are not always available, or exist at a diminished scale relative to object detection annotations.
In our work, we investigated one potential solution by bootstrapping RLIP from object detection
parameters to mitigate annotation scarcity. Although existing relation annotations are limited, we do
not anticipate that this will remain the case. Indeed, we hope that our work will inspire future work to
focus on this problem and dataset contributions will follow. Besides, we provide ways to scale up
datasets as future works. For example, we could reuse a grounding dataset with entities annotated.
Then, a language processing tool like spaCy [8] can be adopted as a tool to obtain their relations from
captions. Even if we do not have subjects and objects but only image-caption pairs, we can combine
the use of spaCy and methods like GLIP [12] to create abundant triplet annotations. Based on the
analysis, we think our method is still promising and inspiring, paving a path for further research.

*Equal contribution. This work was done when Hangjie Yuan was an intern at DAMO Academy, Alibaba
Group, supported by Alibaba Research Intern Program.
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Figure 1: An overview of our pre-training framework, RLIP-ParSeD. The encoder represents DDETR-style
encoders. The Parallel Entity Detection and Sequential Relation Inference blocks represent independent
DDETR-style decoders responsible for entity and relation detection, respectively. The cross encoder represents
DETR-style encoders. We omit the localisation loss for clarity.

A second limitation of our approach is its requirement for long optimisation schedules during pre-
training—a characteristic that is inherited from DETR [2]. Although DDETR [20] ameliorates this
issue to some extent, it achieves weaker performance. Thus, one potential for future work is to
combine the benefits of DETR’s high performance and DDETR’s fast convergence speed.

A.3 Overall Architecture of RLIP-ParSeD

We present the detailed architecture of RLIP-ParSeD as shown in Fig. [T} The major difference
between RLIP-ParSe (shown in the main paper) and RLIP-ParSeD is the cross-modal fusion module.
For the former, we use the detection Transformer encoder to directly fuse language-image features
as previous works have done [[11} 9} [1]]. For the latter, we use an additional Transformer encoder to
fuse the decoded queries and language features following [[13]] since deformable attention [20] from
DDETR relies on spatial coordinates, which language features do not have. Note that the decoded
subject and object queries are fused with entity text features and the decoded relation queries are
fused with relation text features. The two cross encoders do not share parameters. The localisation
loss is applied on decoded queries (after Parallel Entity Detection and before the cross encoder).
Other architecture/RLIP details follow the descriptions provided in the main paper.

A.4 Pre-Processing Steps for Visual Genome

Due to the crowd-sourcing process used to construct Visual Genome [[10], there are many redundant
annotations. Thus, we conduct basic cleaning steps to filter out such annotations and all of our
experiments are conducted on the dataset after pre-processing. The steps are listed as follows:

* We keep the first object text description for every object because a very small proportion of
objects have multiple text descriptions.

» We filter out redundant triplets by i) keeping only one if there are multiple identical triplets
and ii) keeping only one if there are multiple triplets with identical subject descriptions,
object descriptions, relation descriptions and similar box locations (with both the subject
box’s and the object box’s IoU>0.5)

* We filter out redundant triplets if the number of triplets in one image is greater than the
number of queries Ng = 100.

A.5 Additional Details for Phased Pre-training

In the experiments section of the main paper, we describe i) how object detection parameters
(obtained via pre-training on COCO) can be used to initialise RLIP-ParSe and RLIP-ParSeD and
ii) how MDETR [9]] parameters (obtained via pre-training on GoldG+) can be used to initialise
MDETR-ParSe. Here, we provide further details on how these are implemented.

For the main blocks of RLIP-ParSe pre-trained on COCO, we initialise the image encoder, cross
encoder, Parallel Entity Detection block and Sequential Relation Inference block parameters with



parameters from the image encoder, detection Transformer encoder, detection Transformer decoder
(first 3 layers) and detection Transformer decoder (first 3 layers) of a COCO pre-trained DETR
model following [19]]. We initialise the FFN layers of RLIP-ParSe pre-trained on COCO using
the localization FFN layer parameters and entity classification FFN layer parameters (since object
categories in HICO-DET and V-COCO are identical to COCO). For RLIP-ParSeD pre-trained on
COCO, parameter initialisation follows RLIP-ParSe. Other parameters are randomly initialised.

For the main blocks of MDETR-ParSe [9], we initialise the parameters of the text encoder, image
encoder, cross encoder, Parallel Entity Detection block and Sequential Relation Inference block with
parameters from the text encoder, image encoder, cross encoder, detection Transformer decoder (first
3 layers) and detection Transformer decoder (first 3 layers) of a GoldG+ pre-trained MDETR model.
For the FFN layers of MDETR-ParSe, we initialise from localization FFN layers. Other parameters
are randomly initialised.

A.6 Details of Attention Weight Analysis

In Figure 3 of the main paper, we provide an analysis of the attention weights produced by ParSe
(extracted from ParSe in RLIP-ParSe). Here, we provide additional details of how this analysis is
conducted. During image inference, we employ a Transformer [[17] architecture to decode queries.
In this decoding process, a softmax function is used to normalize attention weights calculated by a
scaled dot-product attention. The logits after the softmax function indicate the importance of regions
(since queries aggregate values according to the logits). Thus, we extract the logits after the softmax
function in the last Transformer layer of both the Parallel Entity Detection and the Sequential Relation
Inference block for the top-1 scored verb. To visualize the attention weights, we linearly scale the
range of logits to 0-255 (and cast to integers to produce an image).

A.7 Computational Overhead of the Subject and Object Query Pairing

The pairing of humans and objects are performed by index-matching as is stated in the main paper.
Thus, we pair humans and objects with identical indices (e.g., the first decoded feature from the
subject queries and the first decoded feature from the object queries are paired.). Due to the simplicity
of this matching strategy, the cost is trivial (O(1) cost) compared to the overall overhead during
model inference.

A.8 Additional Experiments and Analysis

Ablation study of ParSe on the influence of decoupled representations. We report a further
ablation study of the ParSe architecture in Tab. [T] to highlight the importance of decoupling the
representation of subjects, objects and relations. The first row of Tab. [T|represents the use of coupled
representations for subjects, objects and relations [16]. The second row of Tab. [I]represents the use of
coupled representations for subjects and objects that are disentangled from relations [19]. The final
row (ParSe) uses fully-disentangled representations. We observe a clear gain resulting from ParSe
over methods using a joint representation of (some subset of) subject, object and relation triplets.

Table 1: Fine-tuning results with ParSe (COCO) on HICO-DET.

ParSe Architecture Coupling Rare Non-Rare Full
- coupled subject, objects and relations  23.18 31.45 29.55
w/ Se coupled subject and objects 25.58 32.50 30.91
w/ ParSe fully decoupled 26.36 3341 31.79

Robustness towards different backbones. Compare more thoroughly with CDN [19] and QA-
HOI [5], we perform extensive experiments to demonstrate the effectiveness of the uni-modal
detection pipeline ParSe as shwon in Tab.[2] As the table indicates, ParSe outperforms CDN-L with
half the number of decoding layers and a single-stage fine-tuning with a clear gain (+0.69 mAP on
Full set). When compared to QAHOI, ParSe improves by 1.18 mAP on Full set with only two fifths
number of fine-tuning epochs. If using the same number of epochs, ParSe can surpass it by 1.97 mAP
on Full set and more improvement on the Rare set (+3.32mAP).



Table 2: Fully-finetuned results on HICO-DET with different backbones. PTP, DL and PT denote
Pre-training paradigm, decoding layers and pre-training.

Method Backbone DL PTP PT data #Tuning Epochs Rare Non-Rare Full

CDN-L [19] ResNet-101 12 OD COCO 90+10 27.19 33.53 32.07
ParSe ResNet-101 6 OD COCO 90 28.59 34.01 32.76
QAHOI [5] Swin-T 6 - - 150 22.44 30.27 28.47
ParSe Swin-T 6 - - 60 23.77 31.40 29.65
ParSe Swin-T 6 - - 150 25.76 31.84 30.44

Superiority over other models with VG and COCO data To have a fairer comparison with
previous methods using VG and COCO data, we adopt CDN [19] as a base method and then add
the VG dataset to its pre-training stage. Since RLIP also adopts the relation annotations in VG,
we also try to include these annotations in the uni-modal pre-training. Thus, we resort to relation
detection on VG. To be more specific, we perform uni-modal relation detection pre-training by using
linear classifiers for verbs and entities rather than matching with texts. The results are shown in
Tab. [3] We can see from the table that by using uni-modal relation detection pre-training, CDN still
trails RLIP-ParSe with the same number of epochs of pre-training and fine-tuning, which shows the
effectiveness of RLIP. Even if comparing it with ParSe using relation detection pre-training, we can
still observe an improvement of ParSe over CDN, demonstrating the usefulness of decoupling triplet
representations.

Table 3: Fully-finetuned results on HICO-DET with VG and COCO dataset. RD and PT denote
relation detection and pre-training.

Method  Detector Data PT Paradigm PT #Epochs Rare Non-Rare Full
CDN DETR COCO+VG Relation Detction 150 25.65 32.75 31.12
ParSe DETR COCO+VG Relation Detction 150 26.00 33.40 31.70
RLIP-ParSe  DETR COCO+VG RLIP 150 26.85 34.63 32.84

Few-shot transfer with RLIP-ParSe. To evaluate few-show transfer with ParSe and RLIP-ParSe,
we fine-tune ParSe for 90 epochs as above, while RLIP-ParSe is fine-tuned for 10 epochs to avoid
over-fitting. The detailed results are shown in Tab. ] and evaluation curves are shown in Fig. [
We observe that RLIP with object detection initialisation significantly benefits few-shot fine-tuning
relative to object detection pre-training in terms of final results and convergence speed, especially
when data is scarce. RLIP-ParSe with 1% data achieves similar performance with ParSe with 10%
data.

020 //r Table 4: Few-shot transfer on HICO-DET with ParSe
s |7 and RLIP-ParSe.
Eo.lo R e % e OOV Method  Data Epochs Rare Non-Rare Full
2 ParSe 1% 90 169 367 321

ST CoCoy 10% 90 1461 1956 1842

. o % 0% - 15.08 15.50 15.40

erianie epocts RLIP-ParSe 19, 10 1747 1876 1846
Figure 2: Evaluation curves for few-shot transfer (COCO+VG) 10g 10 20.16 2332 2259
on HICO-DET with ParSe and RLIP-ParSe.

0

Detailed results of relation label noise with RLIP-ParSe and RLIP-ParSeD We present detailed
results concerning the influence of relation label noise on RLIP-ParSeD and ParSeD in Tab. 5| (which
corresponds to Figure 2 in the main paper) and the influence of relation label noise on RLIP-ParSe and
ParSe in Tab.[6] The RLIP-ParSe and ParSe results support our claim that RLIP helps to ameliorate
noise since ParSe suffers a greater degradation of performance (31.79—25.19, -6.6) than RLIP-ParSe
(32.84—27.75, -5.09).



Table 5: Relation label noise on HICO-DET with
ParSeD and RLIP-ParSeD.

Table 6: Relation label noise on HICO-DET with ParSe
Method Noise Rare Non-Rare Full and RLIP-ParSe.

0% 2223 31.17 29.12

ParSeD 10% 19.63 2958 27.29 Method Noise Rare Non-Rare Full
(cocoy 30% 17.14 2852 2591 0% 2636 3341 31.79
50% 15.82 27.12 24.52 ParSe 10% 2159 30.80 28.68

0% 2445 30.63 2921 (cocoy  30% 2052 2999 278l

RLIP-ParSeD 10% 2159 30.02 28.08 50% 15.01 2823 25.19
(VG) 30% 19.60  29.21  27.00 0% 26.85 34.63 32.84
50% 17.11 2824  25.68 RLIP-ParSe  10% 24.62  33.54  31.49

0% 24.67 3250 30.70 (COCO+vVG) 30% 2312 3175 29.77

RLIP-ParSeD 10% 19.86 3220 29.35 50% 20.09 30.04 27.75
(COCO+VG) 30% 1845 30.62 27.82
50% 17.81 29.58 26.87

Sensitivity analysis of hyper-parameter  in RPL. In Tab.[/| we present a sensitivity analysis
for the n hyperparamter used in RPL. As 7 decreases, RPL selects more descriptions with high
similarities as positive, boosting performance. However, if 7 is too low, there is an increased risk of
false positives arising in the pseudolabeling process. We choose 1 = 0.3 in the main paper according
to this experiment.

Table 7: Results with varying 1 in RPL with RLIP-ParSeD on HICO-DET. LSE and RQL are used by
default.

Fine-tuning Zero-shot (NF)
n Rare Non-Rare Full Rare Non-Rare Full

0.2 24.05 30.73 29.19 10.95 12.71 12.30
03 2445 30.63 29.21  12.30 12.81 12.69
04 23.67 29.90 2847 11.97 12.80 12.61
0.5 22.63 29.79 28.14 11.70 12.09 12.00

Design choice of distance function m(-,-) in RPL. For the design choice of m(-,-), we also
experiment on another widely-adopted distance function Cosine distance. We conduct a sensitivity
analysis of the hyper-parameter 7 to compare with the one chosen in the main paper (last row of
results). The zero-shot (NF) results of Cosine distance using RLIP-ParSeD is shown in Tab. [§] We
observe that Euclidean distance is slightly better (the last row of results is selected in the paper).
Since both methods have similar computational overhead, in the paper, we choose the Euclidean
distance.

Table 8: Zero-shot (NF) results with varying 7 in RPL with RLIP-ParSeD on HICO-DET. LSE and
RQL are used by default.

Distance Function 7 Rare Non-Rare Full

Cosine 03 11.21 12.53 12.23
Cosine 04 1192 12.82 12.61
Cosine 05 11.76 12.71 12.49
Cosine 0.6 11.30 12.22 12.01
Euclidean 0.3 12.30 12.81 12.69

Comparing RQL and RPL with Label Smoothing Regularization. Since we employ RPL and
RQL to smooth the target distributions used during training to account for ambiguity, it is useful to
compare their effectiveness to a manually-designed Label Smoothing Regularisation (LSR) method,
such as the one introduced in [[15]. We experiment with using LSR for relation labels (following RPL
and RQL). However, we find that LSR tends to degrade performance, while the proposed RPL and
RQL approaches boost all metrics.



Table 9: Results comparing Label Smoothing Regularization (LSR) [15] with RPL+RQL on HICO-
DET. We use RLIP-ParSeD with LSE as a base model.

Ambiguity Fine-tuning Zero-shot (NF)
Rare Non-Rare Full Rare Non-Rare Full

- 23.02 29.77 28.22  10.45 11.26 11.07
LSR 23.51 29.38 28.03 10.03 10.84 10.65
RPL+RQL 2445 30.63 29.21 12.30 12.81 12.69

suppression

Similarity analysis between in-batch labels and out-of-batch labels The in-batch labels are
aggregated from images’ annotations, and the out-of-batch labels are sampled from the whole dataset,
which does not overlap with in-batch labels. Since the contrastive loss optimizes to push away the
negative textual labels, we can observe the change of the similarities of the negative and positive
labels. To quantitatively analyze it, we simulate the training process by out-of-batch sampling, and
observe the change of similarities by calculating the average pairwise distance of the positive labels
to the negative labels. We mainly compare the object and relation similarity based on the RoBERTa
model before and after RLIP pre-training. The results are shown in Tab. [I0] From this table, we can
see that the Cosine similarity decreases, and Euclidean distance increases. Note that before RLIP, the
discrimination ability of text embeddings are poor, which corresponds with previous work [6]. The
results indicate whichever distance function we adopt (Cosine or Euclidean distance) and whichever
kind of feature we observe (object or relation), the similarity between in-batch labels and out-of-batch
labels decreases after performing RLIP. This enables the language model to adapt well to the visual
representations and serve as a good classifier.

Table 10: Similarity analysis between in-batch labels and out-of-batch labels before and after RLIP.
Cos and Euc abbreviate Cosine distance and Euclidean distance.

Model Object (Cos) Relation (Cos) Object (Euc) Relation (Euc)
RoBERTa (Before RLIP) 0.9991 0.9986 0.2502 0.3156
RoBERTa (After RLIP) 0.0084 0.0208 18.1943 16.9177

Verb-wise mAP analysis for zero-shot (NF) evaluation We provide analysis to give a sense of the
verb overlap of HICO with VG. We use “relationship aliases” from the official VG website to obtain
as many HOI verb annotations from VG as possible. The result is shown in Tab.

Table 11: Verb overlap of HICO with VG.
Dataset #images HOI verb annos HOI verb annos’ ratio Imbalance ratio

VG 108K 2,203 1.47% 304

We observe that in VG, there are 2,203 HOI verb annotations even when considering relationship
aliases—approximately 1.47% of the number of relationship annotations in HICO-DET. 30 HOI
verbs do not have an annotation and 45 HOI verbs have five or fewer annotations. In RLIP-ParSe
(COCO+VG), we observe that mAP for the 30 verbs is 5.56 while mAP for the remaining 87 verbs is
18.12. If we use uni-modal relation detection pre-training, the result for the 30 verbs degrades to zero.

To provide a more detailed analysis, we show the verb-wise mAP on HICO verbs in VG (Fig. [3) and
not in VG (Fig. |4)) with zero-shot (NF) evaluation. We can observe solid performance for some verbs.

Probing into reasons for the verb zero-shot performance We aim to qualitatively understand
where the zero-shot ability stems from. In the above analysis, pay has the highest performance
among verbs not seen by VG. In the main paper, we present the conditional query generation that
constrains the verb inference to be related to subjects and objects, providing verb inference with a
conditional context. Thus, to analyze how this ability of verb zero-shot inference emerges, we need
to consider the subject and object context as they are essential to predict the verb in ParSe. For the
verb pay in HICO-DET, there is only one possible triplet annotated, "person pay parking meter".
Then, we want to answer, "is there any triplet annotated with similar or identical subjects and



mAP for every HICO Verb existing in VG

HICO verbs in VG
0.54

0.44

0.24

0.19

0.0

swin.
chec|
operate

stand under

Figure 3: Verb-wise mAP Analysis for Zero-Shot (NF) Evaluation. Presented verbs exist in VG.
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Figure 4: Verb-wise mAP Analysis for Zero-Shot (NF) Evaluation. Presented verbs do not exist in VG.

objects that transfer the inference ability to pay?" To answer this question, we search for triplets
annotated with similar subjects and objects to HICO-DET from VG. For the subjects, we heuristically
select ones whose textual descriptions have any one of the following strings: man, woman, person,
friend, guy, dude, human, people, driver, passenger, hand, limb. For the objects, we heuristically
select ones whose textual descriptions have the string of the target object. By this processing, only
a limited number of triplets are found. Building on these, we report the verb distribution of the
limited number of triplets that are found, ranking the verbs in ascending order of Euclidean distance
to the target verb, results of which are shown in Tab. @ From this table, we can see that the verbs
quantitatively closer (in Euclidean distance or Cosine distance) to pay have similar meanings to pay,
shown by their lexical variants or grammatical variants (e.g., putting money in has a similar meaning
to pay). Thus, in the VG dataset, there is human putting money in parking meter, which may transfer
to the zero-shot recognition of person pay parking meter in HICO-DET. Similarly, we could see
that in the VG datatset, there is human putting condiments on hot dog, which may transfer to the
zero-shot recognition of person cook hot dog in HICO-DET. Note that there are some grammatical
variations that we can not exhaustively set rules to avoid, thus creating a zero-shot setting which
is not theoretically strict enough. But we want the model to benefit from this property of natural
language in the context of language-image pre-training.

In short conclusion, with the assistance of the sequential inference structure of verbs, we think that
the zero-shot inference ability in RLIP is not from the scale of annotations (by comparing relation
detection pre-training and RLIP using VG), but the ability to transfer the verb inference knowledge
from semantically similar annotations. This analysis also accords with previous papers [14,[12] that
semantic diversity is important as it introduces large-scale potential annotations, ensuring a model
transfers well to different data distributions.

Secondly, we aim to demonstrate quantitatively how RLIP pre-trains the model to perform zero-
shot detection from the perspective of representation learning. We resort to the Uniformity metric
introduced in [18]]. Uniformity is a metric to assess a model’s generalization in contrastive learning.
We detail the calculation of this metric in the analysis of the main paper. In this case, since label
textual embeddings serve as a classifier in RLIP, we calculate the Uniformity of the seen verbs,
unseen verbs and all verbs, aiming to observe how the generalization changes before and after RLIP,
and how the generalization varies between seen verbs and unseen verbs. The results are shown in
Tab. As can be seen from the table, Uniformity values are all high before RLIP. It means that the



Table 12: VG verb ranking given similar subject-object triplets from HICO-DET. Verbs are in
ascending order of Euclidean distance. (The Cosine distance can also output similar rankings.)

" "

pay
("parking meter") putting money in collecting money at puts change into repairing checking next to ...
Count 1 1 1 1 1 1
Euclidean 11.56 11.70 13.34 14.21 15.16 1612 ..
Cosine 0.4560 0.4576 0.3108 0.2554  0.1583 0.0709 ...
"cook"
("hot dog") putting condiments on prepping displeased with roasts blowing on about to eat ...
Count 1 1 1 1 1 1
Euclidean 13.38 14.14 15.48 15.63 16.04 16.27
Cosine 0.3467 0.2565 0.0656 0.1787  0.0471 0.0680
llgrindl|
("skateboard") race downhill flying off ramp on skating midair on for balancing on competes on ...
Count 1 1 2 1 1
Euclidean 13.26 13.27 13.44 13.59 14.26 14.36
Cosine 0.3670 0.3401 0.3553  0.3288 0.2510 0.2037
""assemble
("kite")  are preparing their launched managing launch carry directing ...
Count 1 1 2 1 1 2
Euclidean 12.48 12.72 13.13 13.20 13.31 13.71
Cosine 0.3350 0.3684  0.2974 0.2554 0.2027 0.2565
""text on"'
("cell phone") viewing messages on typing on texting speaking on listening on speaks on ...
Count 1 1 2 1 1 2
Euclidean 10.24 1124 1142 11.85 11.85 11.98
Cosine 0.5876 0.4437 0.3983  0.4082 0.4281 0.3557
"scratch"
("dog") touching bent over touching touches interacting with holding a hot reaching for ...
Count 8 1 2 1 1 2
Euclidean 14.02 14.47 14.54 14.60 14.80 14.81
Cosine  0.2157 0.1566 0.2260 0.0969 0.0512 0.2039

representations before RLIP are compactly distributed, serving as an awful classifier. However, after
RLIP is performed, the seen 87 verbs have a distinctively lower Uniformity value, corresponding with
the decent zero-shot performance. Similarly, the 30 unseen verbs and the combination of 117 verbs
also have excellent Uniformity values, contributing to the unseen zero-shot performance. Through
this quantitative observation, we think that from the perspective of representations, RLIP contributes
to the real zero-shotness.

From all the above analysis, we think that the zero-shotness may not be caused by the mounting dataset
size or annotations, but stem from the generalization in representations obtained by pre-training with
language supervision.

Table 13: Uniformity analysis of the seen verbs, unseen verbs and all verbs before and after RLIP.
Lower uniformity value is better.

Verb Set  Seen (87) Unseen (30) All (117)

Before RLIP  -0.00367 -0.00436  -0.00388
After RLIP  -3.73780 -3.59457  -3.71330

The influence of semantic-diverse data (upstream data distributions) We ablate semantic
diversity by significantly altering the distribution of VG annotations and assessing the influence on
RLIP’s performance. To this end, first note that since VG is human-annotated with free-form text, it
is extremely long-tailed. We alter its distribution by dropping tail object classes and verb classes to
create a dataset with limited semantic diversity. Concretely, we drop object classes whose instance
counts are fewer than 1,000 and relation classes whose instance counts are fewer than 500. We



pre-train RLIP on the resulting dataset and then perform zero-shot (NF) evaluation on HICO-DET.
The results are shown in Tab. We observe from this table that despite a very significant change
to the training distribution, performance on the Full set drops only moderately. We do, however,
witness a relatively larger decline on the Rare set due to the lack of semantic diversity in the modified
data. This finding accords with the observations of GLIP [12]]. To make full use of language-image
pre-training, semantic diversity is important which can ensure a good domain transfer as is indicated
by CLIP [14] and GLIP [12].

Table 14: Semantic diversity analysis with zero-shot (NF) evaluation on HICO-DET. Obyj, rel and
annos denote object, relation and annotations respectively.

Method Data Obj classes Obj annos Rel classes Rel annos Rare Non-Rare Full

ParSeD VG 100,298 3.80m 36,515 1.99m 1230 12.81 12.69
ParSeD VG- 497 1.73m 151 127m  9.45 12.13 11.51

More successful and failure cases analysis and corresponding potential future work In this
work, we present ParSe as an effective HOI detection structure. In Fig. 5] (a-d), we present several
cases where the model successfully predicts by using RLIP-ParSeD (VG), with verb scores greater
than 0.3. From Fig. E](a) and (b), we can see that although the scene is complex with many possible
triplets with multiple labels, the model can detect the right subjects and objects, linking them as
triplets. From Fig.[5](c) and (d), we can observe that although the person is only partially visible, the
model still detects him/her and then predicts the right triplets. Both cases show that RLIP-ParSeD
can overcome difficult cases during application. However, there are also failure cases, where further
works can improve upon. We show the failure cases from top-3 predictions produced by RLIP-ParSeD
(VG) in Fig.|5|(e-h). i) First of all, the verb inference in ParSe conditions on the detection results
since Sequential Relation Inference is fed with queries generated by detection features. Also, VG
does not provide a good object detection foundation. Thus, an inferior detection result can lead to
false positives. As shown in Fig. [5(f) and (g), the model detects the objects to be wine glass and
cell phone (which should be fire hydrant and handbag), thus producing wrong predictions. Building
on this observation, we think excellent object detectors can be designed and incorporated into HOI
detection. ii) Secondly, DETR-based models may find it hard to detect fine-grained poses in people,
which degrades the performance of inferring some verbs like wave. As shown in Fig.[5](e) and (g), the
model fails to predict wave although right localizing the subject person. Building on this observation,
we think it to be promising to efficiently incorporate pose cues in end-to-end HOI detection models.
iii) Thirdly, some contextual cues may be hard to be detected. As shown in Fig.[5] (h), the model
predicts ride rather than lasso. If the model captures the rope as a global context, then it can perform
well. Building on this observation, we think it to be promising to efficiently incorporate fine-grained
contextual cues or introduce external object knowledge to detect the triplet.

A.9 Datasets used in this work

Licenses. The V-COCO [7]] dataset is used under an MIT license. The HICO-DET [4! 3] dataset is
used under a CCO: Public Domain license. The Visual Genome [10]] dataset is used under a Creative
Commons Attribution 4.0 International License.

Release of personally identifiable information/offensive content/consent. We do not release data as
part of this research. We work with standard public domain benchmarks for computer vision: Visual
Genome [[10], HICO-DET [4, 3], and V-COCO [7]. We therefore assess that the risk of releasing
personally identifiable information or offensive content is relatively low. With regards to consent, we
did not pursue an independent investigation of consent that goes beyond the considerations of the
original dataset releases.
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