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Abstract

The task of Human-Object Interaction (HOI) detection targets fine-grained visual
parsing of humans interacting with their environment, enabling a broad range of ap-
plications. Prior work has demonstrated the benefits of effective architecture design
and integration of relevant cues for more accurate HOI detection. However, the
design of an appropriate pre-training strategy for this task remains underexplored
by existing approaches. To address this gap, we propose Relational Language-
Image Pre-training (RLIP), a strategy for contrastive pre-training that leverages
both entity and relation descriptions. To make effective use of such pre-training,
we make three technical contributions: (1) a new Parallel entity detection and
Sequential relation inference (ParSe) architecture that enables the use of both entity
and relation descriptions during holistically optimized pre-training; (2) a synthetic
data generation framework, Label Sequence Extension, that expands the scale of
language data available within each minibatch; (3) mechanisms to account for
ambiguity, Relation Quality Labels and Relation Pseudo-Labels, to mitigate the
influence of ambiguous/noisy samples in the pre-training data. Through extensive
experiments, we demonstrate the benefits of these contributions, collectively termed
RLIP-ParSe, for improved zero-shot, few-shot and fine-tuning HOI detection per-
formance as well as increased robustness to learning from noisy annotations. Code
will be available at https://github.com/JacobYuan7/RLIP.

1 Introduction
Driven by improvements in storage, sensors and networking technology, humanity is amassing vast
archives of image and video data. A significant fraction of this media is human-centric—it is content
focused on humans and their actions. The task of human-object interaction (HOI) detection [4] aims
to provide a step towards fine-grained parsing of such content by detecting all possible triplets of the
form <human, relation, object> present in visual data. Robust HOI detection has myriad uses for
image/video data analysis and represents essential functionality for visual and language applications
such as image/video captioning [62, 48], image retrieval [27], image synthesis [26] and video action
understanding [24, 65].

Given that sustained progress in object detection has yielded increasingly robust systems for detecting
people and objects [53, 16, 10], a key remaining challenge for HOI detection is to develop methods
capable of generalising to the many possible pairs of interactions between these entities when
provided with non-exhaustive training data. To tackle this challenge, we draw inspiration from recent
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developments demonstrating that contrastive language-image pre-training can induce remarkable
generalisation for zero-shot classification tasks [52, 25]. These methods perform classification by
casting it as a retrieval problem, ensuring that the downstream task aligns closely with the pre-training
objective. Recent work by Alayrac et al. [2] hypothesises that it is this close alignment between
the downstream and pre-training objectives that explains why contrastive methods have proven so
effective for zero-shot classification. In light of this hypothesis, in this work, we explore whether it is
possible to achieve a similarly close alignment between the HOI detection task and its pre-training
strategy.

While HOI detection has been widely studied [15, 49, 61, 40, 29, 31, 69, 71, 30, 57, 66, 9], the topic
of designing pre-training to reflect the final task objective remains under-explored. Indeed, a widely
adopted strategy [66, 68, 57, 7, 71] has been to employ object detection pre-training to initialise
the parameters of the model responsible for both entity detection and relation inference. However,
while suitable for entity detection, such pre-training may be suboptimal for the detection of relations
between entities which often requires the model to take account of groups of entities with greater
spatial context, rather than individual entities in isolation.

To address this shortcoming of HOI detection, we propose Relational Language-Image Pre-training
(RLIP) which tasks the model with establishing correspondences from both entities and relations
to free-form text descriptions. By doing so, RLIP endows the model with the ability to perform
zero-shot HOI detection3. Moreover, in contrast to previous pre-training schemes that are limited to
predefined finite category lists, RLIP benefits from the rich descriptive nature of natural language
supervision.

We encountered three barriers to a naive implementation of RLIP for existing methods: (1) Recent
end-to-end HOI detection architectures [57, 68, 71, 66] typically employ joint representations of
(some subset of) subject, object and relation triplets. As a consequence, it is difficult to leverage text
descriptions for separate humans, objects and relations provided by existing datasets such as VG [32].
(2) Contrastive pre-training requires negative samples to train effectively, but it is unclear a priori
how such negatives should be constructed. (3) Free-form text descriptions exhibit label noise and
semantic ambiguity (since there can be many ways to describe the same concept in the absence of a
canonical list of categories), rendering optimisation challenging.

To overcome these barriers, we make several technical contributions in addition to the RLIP frame-
work. First, to allow end-to-end contrastive pre-training with distinct descriptions of subsets, objects
and relations, we propose the Parallel entity detection and Sequential relation inference (ParSe)
architecture. ParSe employs a DETR [3]-like design that allocates separate learnable query groups
for subject and object representations, together with an additional set of conditional queries that
encode relations. While ParSe enables (and works best with) RLIP, we also find that it yields gains
for traditional object detection pre-training schemes. To address the second barrier, we synthesise
label sequences by extending in-batch labels with out-of-batch sampling to ensure a plentiful supply
of negatives—we term this Label Sequence Extension (LSE). For the third barrier, we exploit cross-
modal cues to resolve label noise and relation ambiguity. In particular, to mitigate label noise we use
the quality of the visual entity detection phase [37] to assign quality scores to relation-text correspon-
dences, an approach we term Relational Quality Labels (RQL). To mitigate relation ambiguity, we
leverage similarities between labels to propagate relations via a pseudo-labeling scheme, which we
term Relational Pseudo-Labels (RPL).

We demonstrate through experiments that relational pre-training outperforms traditional object
detection pre-training schemes on comparable data. We further find that the a zero-shot application
of our combined approach, RLIP-ParSe, surpasses several existing fine-tuned methods.

2 Related Work
Human-object interaction detection. There is a rich body of work on HOI detection. One theme
has focused on the development of effective architectures for this task [40, 29, 57, 9]. A second
theme has sought to leverage informative cues ranging from interaction points [40, 69], interaction
boxes [29], contextualized embeddings [57, 30, 71, 30], poses [15, 39] and statistical priors [31, 66]
to external knowledge in the form of language embeddings [61, 49, 66]. However, relational pre-
training and open-vocabulary recognition remains underexplored. The inter-pair transformations of

3Zero-shot in this context refers to HOI detection without fine-tuning (following the terminology of [52]), a
formulation that assesses the generalization of a pre-training model to unseen distributions. This offers a practical
alternative to the scenario (unseen combinations) considered in several prior HOI detection papers [19, 21].
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Figure 1: An overview of our pre-training framework, RLIP-ParSe. The Parallel Entity Detection and
Sequential Relation Inference blocks represent independent DETR-style decoders responsible for entity and
relation detection, respectively. We omit the localisation loss for clarity. See Sec. 3 for further details.

IDN [38] and affordance transfer learning of ATL [20] can be interpreted as entity augmentations
to train a stronger verb classifier, but these methods do not directly optimise for all the components
of HOI detection. Similar to ParSe, CDN [68] explores disentangled embeddings. However, it still
couples the embedding of subjects and objects, rendering it suboptimal for RLIP. The concurrent
work, GEN-VLKT [41] aims to derive knowledge from image-level language-image pre-training [52],
while we aim to achieve aligned entity- and relation-level pre-training for HOI detection.

Leveraging free-form text for visual pre-training. A series of recent papers have illustrated
the significant value of employing free-form language to provide supervision for vision systems.
CLIP [52] and ALIGN [25] demonstrated striking improvements in zero-shot image classification
ability through contrastive training of image-level representations. Further work has sought to
additionally leverage correspondences between objects/regions and text to learn flexible grounding
models [28, 36, 67]. We similarly seek to benefit from natural language supervision. However, to the
best of our knowledge, we are the first to leverage correspondences between descriptions of relations
and explicit pairings of subjects and objects (rather than descriptions of images, objects or regions)
as a pre-training signal.

3 Methodology
In this section, we first present our triplet detection architecture, ParSe. Second, we describe
how ParSe is used to perform relational language-image pre-training (RLIP). Finally, we introduce
techniques to synthesise contrastive negatives and mitigate noise and ambiguities among labels. The
overall RLIP-ParSe framework is illustrated in Fig. 1.

3.1 ParSe for Triplet Detection
Structure overview. The core idea underpinning the ParSe architecture is to allocate distinct
representations of subjects, objects and relations in a holistically optimized model (rather than
representing their combination, as commonly pursued in prior work [57]). The motivation for doing
so is two-fold: (i) distinct representations enable the direct use of contrastive RLIP, since these
representations can be put in correspondence with separate entity and relation annotations; (ii)
the separation of responsibilities allows for a more fine-grained control over the context available
for each decision (a theme that has proven important for detection tasks [56]). In particular, note
that when detecting subjects and objects, local context is typically most useful. However, when it
comes to relations, detection will benefit not only from informative local cues, but also neighbouring
context [64] (for instance, it is useful to be aware of water and hoses when inferring the relation
in the triplet <human, wash, car>). To instantiate this idea we follow [68] and implement triplet
detection in a two-stage end-to-end manner. Our probabilistic model factorises as follows:

P(G|Qs,Qo,C;θPar,θSe) = P(Bs,Bo|Qs,Qo,C;θPar) · P(R|Bs,Bo,C;θSe) (1)

where Qs,Qo ∈ RNQ×D define two sets of independent queries for NQ subjects and NQ objects;
C denotes features from the detection encoder; Bs,Bo,R denote sets of detected subject boxes,
object boxes and relations, respectively (these collectively comprise the detection results G); θPar

and θSe represent learnable parameters from the entity detection decoder and the relation inferring
decoder, respectively. To construct ParSe, we design two components, Parallel Entity Detection and
Sequential Relation Inference, to implement the second and third terms in Eq. (1), respectively. These
are described next.
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Parallel Entity Detection. Following the DETR family of architectures [3, 70, 43], we first extract
visual features using an image encoder, add positional encodings and then pass the result through
a customized Transformer encoder according to the detector we adopt (we explore both DETR [3]
and DDETR [70] variants) to obtain detection features C. Then, two sets of queries Qs and Qo are
fed into the entity decoder to perform self-attention [58], cross-attention and feed-forward network
(FFN) inference, obtaining Q̃s, Q̃o ∈ RNQ×D which are used to predict box locations and classes.
Sequential Relation Inference. To encode relations, we perform Sequential Relation Inference as
a sequential step after entity detection (similarly to [68]). In the first stage, subjects and objects
are detected via Parallel Entity Detection. In the second stage, we adopt a simple parameter-free
matching scheme between subjects and objects to generate relation queries: matching by their indices.
Using this pairing scheme, we obtain relation queries via a conditional query generation function:

Qr = Fso(Q̃s, Q̃o) (2)

where for simplicity, we adopt addition as the query generation function. Since we match by indices,
Qr ∈ RNQ×D contains NQ relation queries. Qr is then fed into the second decoder to perform
Sequential Relation Inference via self-attention, cross-attention and FFN inference to obtain the
corresponding relation features Q̃r ∈ RNQ×D which are then used for relation classification.

3.2 RLIP-ParSe for Relational Language-Image Pre-training
For each iteration of pre-training, we construct a minibatch of images and their annotated relation
triplets comprising all entities’ locations, NE unique entity text labels as well as NR unique relation
text labels. We describe how these are used for contrastive pre-training next.
Formation of target label sequences. We construct targets from in-batch labels (free-form text
descriptions forming subject, object, relation triplets). In more detail, we first aggregate all entity
labels within the batch and append to this sequence a no objects label. Next, we similarly aggregate
all in-batch relation labels. Then, all entity and relation labels are respectively fed into a text encoder
(RoBERTa [44] in our implementation) to extract label features denoted as LE and LR, respectively.
Note that a free-form text label can have multiple tokens after tokenization—we use only the feature
derived from the [CLS] token to represent the label. We concatenate the label feature sequence
with features from the image encoder as shown in Fig. 1. To fuse the concatenated features, we
adopt a simple approach: applying a Transformer encoder [34, 28, 1] to obtain fused label features
L̃E ∈ RNE×D and L̃R ∈ RNR×D.
Cross-modal alignment through classification. To implement RLIP, we task the model with estab-
lishing correspondences between entities/relations and their text descriptions using a classification
objective, following [36]. In particular, we align the ith relation Q̃r(i) ∈ RD with relation its text via
a Focal loss [42]:

Pr(i) = Q̃r(i)L̃
T
R + Q̃r(i)W

T
b +Wc; Lr(j) = Focal(sigmoid(Pr(i, j))) (3)

where Q̃r(i)W
T
b +Wc is the learnable bias term introduced in [42]; Wb ∈ RNR×D is a learnable

linear projection and Wc ∈ RNR is a constant vector filled with −log((1− π)/π) with π = .01. The
Focal loss is defined via Focal(p) = −(1 − p)γ log(p) where γ is set as a hyperparameter. In the
argument to this loss in Eq. (3), j indexes along Pr(i) ∈ RNR . To encourage matching of subjects
and objects with their corresponding entity descriptions, an analogous objective to Eq. (3) is used
except that a softmax and a CE loss are applied and Wc is omitted (note that entities are uni-label and
relations multi-label, as defined by the downstream task). The central benefit of the RLIP objectives
defined above is that they bring the pre-training and downstream HOI detection losses into close
alignment since the task of classifying entities and relations in the downstream task reflects the
same matching task used in pre-training. As a result, RLIP produces models that can perform HOI
detection under zero-shot with no fine-tuning (NF) evaluation protocols.
Label Sequence Extension (LSE). Within a given batch, the number of negative samples available
for matching is limited. However, provision of plentiful negatives has been widely shown to improve
contrastive learning [8, 11, 23, 59]. To this end, we propose Label Sequence Extension as a mechanism
to leverage out-of-batch text descriptions. Concretely, we sample additional text descriptions with a
ratio of two thirds entity labels and one third relation labels. To ensure computational tractability in
the presence of the quadratic complexity of Transformer, we limit the label sequence to a predefined
length NL. We experiment with two sampling strategies: (i) Uniform sampling that draws among
candidate labels with equal probability; (ii) Frequency-based sampling that samples according to the
label frequency in the training set.
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3.3 Addressing Relational Semantic Ambiguity
Datasets with crowd-sourced language annotations [32, 33] exhibit significant label noise and ambi-
guity. First, the descriptions themselves may be noisy (inaccurate), particularly when the underlying
image is challenging to interpret. A second challenge for traditional training schemes is that similar
relations can be described differently, thanks to synonyms. For example, the stand near relation
may be annotated “stand near”, “stand next to”, “stand by”, etc.. These forms of semantic ambiguity
make supervised cross-modal pre-training (which relies on access to consistent labels) challenging.
To mitigate this issue, we focus on two aspects of the pre-training input data: (i) the quality of the
relation text labels; (ii) the presence of semantically-similar labels in sampled label sequences.
Relational Quality Labels (RQL). To tackle the first challenge, we propose a label smoothing [46]
approach. The key idea is that we expect the difficulty of subject and object detection for a particular
instance to correlate with the confidence of the annotated relation. We therefore propose to estimate
annotation quality from the quality of the entity detection stage. Drawing inspiration from the
generalised focal loss [37], we instantiate this idea by assessing the quality of the ith subject and
object detection after bipartite matching [57] as

e(i) = min(GIoU0–1(Bs(i), B̂s(i)),GIoU0–1(Bo(i), B̂o(i))) (4)

where GIoU0–1 denotes generalized IoU from [55] together with a linear scaling function to scale
the GIoU value to the range of 0 to 1 and ˆ denotes ground-truth annotation. The resulting value
e(i) is then employed to calibrate the relation label confidence via multiplication: R̃(i) = e(i)R̂(i).
Relational Pseudo-Labels (RPL). To address the second issue, we propose a pseudo-labelling
strategy [63] to account for synonyms in the extended sequence. We exploit the fact that text
embeddings with high semantic similarity will lie close together, as measured by an appropriate
distance function M(·, ·). We define the distance between the ith annotated relation label R̂(i) =

{0, 1}NR and the jth relation text feature L̃R(j) ∈ RD from the extended sequence as

M(R̂(i), L̃R(j)) =
∑NR

k=1
R̂(i, k) ·m(L̃R(k), L̃R(j)) (5)

where m(·, ·) denotes Euclidean distance. Given the ith relation label, we apply a scaling function to
M(i, j) via M̄(i, j) = maxk(M(i,k))−M(i,j)

maxk(M(i,k)) where we have abbreviated M(R̂(i), L̃R(j)) as M(i, j)

for clarity. Next, we use a global threshold η to select label texts with high similarities: we set the
jth label in the ith relation labels as M̄(i, j) if M̄(i, j) > η. Note that when applying either RQL or
RPL, the ground truth labels are continuous (rather than discrete). We therefore employ the Quality
Focal Loss [37] (rather than the standard Focal Loss [42]) as our objective function.

3.4 Pre-training, Fine-tuning and Inference
By design, our pre-training (RLIP) and fine-tuning phases follow a similar process. For a given batch
of images with corresponding annotations, we aggregate the results from Parallel Entity Detection
and Sequential Relation Inference to form NQ triplets per image. During pre-training and fine-tuning,
we employ bipartite matching similarly to prior work [57, 71, 6, 68, 66], following in particular the
matching cost proposed in [57]. The overall loss is then constructed as follows:

L = λ1Ll1 + λ2LGIoU + λ3(Ls + Lo) + λ4Lr (6)

where Ll1,LGIoU ,Ls,Lo,Lr denote the ℓ1 loss for box regression, GIoU loss [55], CE loss for
subject and object classes, and Focal loss for relations (or Quality Focal loss [37] when applying
RQL or RPL), respectively. The λ terms are fixed weights to balance multi-task training following
[57], with λ1 = 2.5, λ2 = 1, λ3 = 1, λ4 = 1. During pre-training, the label sequence is constructed
from both in-batch and out-of-batch labels. During fine-tuning, we use all text labels contained in
the dataset to form the label sequence (unlike pre-training, these labels fall within a pre-defined
category list of limited size). Note that we follow [57, 68] and exclude Ls during fine-tuning since
HOI detection detects only humans as subjects. During inference, the confidence score for an object
is simply the top-1 score from the softmax distribution over objects, and the relation score is obtained
by multiplying the original score from the sigmoid function and the object score. We rank relation
scores and filter out the top-K within those correctly localised triplets (IoU > 0.5) for evaluation. K
is set to 100 by default following [57, 68, 40, 66].

4 Experiments
Datasets. We use the Visual Genome (VG) [32] dataset for RLIP. This dataset contains 108,077
images annotated with free-form text for a wide array of objects and relations (100,298 object
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annotations and 36,515 relation annotations). The dataset is pre-processed prior to use (see supple-
mentary material for details). For downstream tasks, we conduct experiments on HICO-DET [5] and
V-COCO [14]. HICO-DET contains 37,536 training images and 9,515 testing images, annotated
with 600 HOI triplets derived from combinations of 117 verbs and 80 objects. We evaluate under
the Default setting. V-COCO comprises 2,533 training images, 2,876 validation images and 4,946
testing images annotated with 24 interactions and 80 objects. Results are assessed under two
scenarios denoted as AP#1

role and AP#2
role as defined by the official evaluation code [14]. Note that all

object classes in HICO-DET and V-COCO are identical to COCO.

Implementation details. The basic architecture of the encoder and decoder are based on DETR [3] for
ParSe and DDETR [70] for an additional variant named ParSeD. A detailed architecture description
of RLIP-ParSeD (which uses an additional transformer for cross-modal fusion) is provided in the
supplementary. For Parallel Entity Detection and Sequential Relation Inference, 3 decoding layers
are used. The number of queries NQ is set to 100 during pre-training and 64 during fine-tuning
(following [68]). γ in the Focal loss is set to 2 following [57, 68]. NL in LSE is set to 500 to ensure
computational tractability. η in RPL is set to 0.3. For pre-training and fine-tuning, the initial learning
rate (LR) of the image and text encoders is set to 1e-5, while all other modules are set to 1e-4. For
RLIP-ParSeD and ParSeD (object detection and relation detection pre-training), we pre-train model
on VG for 50 epochs and drop LR by a factor of 10 at epoch 40. For ParSeD and RLIP-ParSeD, We
fine-tune for 60 epochs and drop LR at epoch 40 by a factor of 10. For ParSe and RLIP-ParSe, We
fine-tune for 90 epochs and drop LR at epoch 60 by a factor of 10. The pre-training and fine-tuning
strategy follow above descriptions unless stated otherwise. Experiments are conducted on 8 Tesla
V100 GPU cards with a minibatch size of 32.

Experimental protocols. To assess performance under fine-tuning and zero-shot with no fine-tuning
(NF) scenarios, we evaluate on HICO-DET across three HOI sets under the mAP metric: Rare (HOIs
with training samples less than 10, of which there are 138), Non-Rare (HOIs with samples equal to or
more than 10, of which there are 462) and Full (all HOIs, of which there are 600).

To evaluate performance under the zero-shot formulation considered by [20, 21, 19], we report results
on unseen combinations (UC). In particular, we report results under two settings: UC with rare-first
(UC-RF) selection and UC with non-rare first selection (UC-NF), both of which are assessed across
three subsets: Unseen (120 HOIs), Seen (480 HOIs) and Full (600 HOIs).

To evaluate few-shot transfer performance, we follow [28] and sample subsets of training annotations
from HICO-DET. In detail, we sample 1% and 10% of the total annotations available among the
HICO-DET training data, ensuring that all objects and verbs (but not all combinations) exist in the
selected annotations. Similarly to the fine-tuning protocol, we evaluate on the Rare, Non-Rare and
Full sets.

To assess the robustness of RLIP and its sensitivity to noise in the relation labels, we follow [35, 60]
and artificially inject noise into the relation labels by randomly flipping a fixed ratio of verbs in HOI
triplets across the training set.

4.1 Results and Analysis
Comparing object detection and relation detection pre-training with RLIP. An assessment of
the benefits of object detection pre-training using the COCO dataset may offer a somewhat optimistic
evaluation of this approach, since COCO shares identical object classes with the downstream HOI
detection evaluation datasets HICO-DET and V-COCO (and in the latter case shares training images).
If we control for this effect by performing object detection pre-training on VG rather than COCO, we
observe a significant drop in performance for our ParSeD baseline (from 29.12 to 23.78 across the
Full set on HICO-DET and from 61.8 to 41.4 on V-COCO for AP#1

role, as shown in Tab. 1). However,
since COCO lacks relation annotations, we investigate the benefits of RLIP on VG. We observe that
RLIP outperforms vanilla object detection pre-training by a wide margin (boosting performance from
23.78 to 29.21 across the Full set on HICO-DET and from 41.4 to 53.1 on V-COCO for AP#1

role),
demonstrating the value of incorporating relations as a pre-training cue. Another way to pre-train with
relations is to perform relation detection which is still inferior to RLIP (27.45 < 29.21), demonstrating
the importance of relational language-image pre-training.

Leveraging off-the-shelf object detection data without relations. As shown in the previous
experiment, while VG provides relation annotations, it provides a much weaker basis for object
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Table 1: Comparisons with previous fine-tuned methods on HICO-DET and V-COCO (column AP#1
role and

AP#2
role). PT, PTP, OD, RD and MD abbreviate Pre-Training, Pre-Training Paradigm, Object Detection, Relation

Detection and Modulated Detection. FRCNN, R, HG and Swin-T denote Faster R-CNN [54], ResNet [17],
Hourglass [47] and Swin-Tiny [45]. * denotes RLIP is performed on VG, initialized with parameters from
COCO object detection. † denotes fine-tuning for 150 epochs following QAHOI [6].

PT Data PTP Method Detector Backbone Rare Non-Rare Full AP#1
role AP#2

role

-
- QAHOI† [6] DDETR Swin-T 22.44 30.27 28.47 - -
- ParSeD† DDETR Swin-T 25.76 31.84 30.44 - -

COCO OD

InteractNet [13] FRCNN R50-FPN 7.16 10.77 9.94 40.0 -
GPNN [51] FRCNN R152-DCN 9.34 14.23 13.11 44.0 -
iCAN [12] FRCNN ResNet-50 10.45 16.15 14.84 45.3 52.4

UnionDet [29] RetinaNet R50-FPN 11.72 19.33 17.58 47.5 56.2
PPDM [40] CenterNet HG104 13.97 24.32 21.94 - -
HOTR [30] DETR ResNet-50 17.34 27.42 25.10 55.2 64.4

HOITransformer [71] DETR ResNet-50 16.91 25.41 23.46 52.9 -
QPIC [57] DETR ResNet-50 21.85 31.23 29.07 58.8 61.0
OCN [66] DETR ResNet-50 25.56 32.51 30.91 64.2 66.3
CDN [68] DETR ResNet-50 27.39 32.64 31.44 61.7 63.8

QAHOI [6] DDETR ResNet-50 18.06 28.61 26.18 - -
ParSeD DDETR ResNet-50 22.23 31.17 29.12 61.8 64.0
ParSe DETR ResNet-50 26.36 33.41 31.79 62.5 64.8
ParSe DETR ResNet-101 28.59 34.01 32.76 64.4 66.5

VG
OD ParSeD DDETR ResNet-50 19.59 25.03 23.78 41.4 43.0
RD ParSeD DDETR ResNet-50 21.36 29.27 27.45 51.5 53.2

RLIP RLIP-ParSeD DDETR ResNet-50 24.45 30.63 29.21 53.1 55.0

COCO+VG
RLIP* RLIP-ParSeD DDETR ResNet-50 24.67 32.50 30.70 61.7 63.8
RLIP* RLIP-ParSe DETR ResNet-50 26.85 34.63 32.84 61.9 64.2

GoldG+ MD MDETR-ParSe [28] DETR ResNet-101 22.91 31.07 29.19 53.6 56.0

detection pre-training than COCO. More broadly, we may expect that object annotations are likely to
be more readily available (and greater in scale) than relation annotations. To mitigate this, a simple
solution is to simply load object detection parameters pre-trained from an object-annotated dataset
(like COCO), to complement the abilities of RLIP. Tab. 1 indicates that RLIP-ParSeD indeed benefits
from this approach, surpassing both object detection pre-training and RLIP (29.12, 29.21 → 30.70
on the Full set). We pre-trained on DETR for 150 epochs, outperforming an expert object detection
pre-training (31.79 → 32.84). On V-COCO, there is a degradation of performance (62.5 → 61.9)
which we believe may be caused by the reduced domain alignment (i.e. common training images)
relative to COCO object-detection pre-training [57].

Comparing cross-modal regional alignment pre-training with RLIP. We next compare to the
use of language-region alignment pre-training introduced by MDETR [28], which employed the
GoldG+ dataset (this comprises VG, COCO and Flickr30k [50] together with the corresponding
annotations for referring expressions, VG regions, Flickr entities, and GQA [22]). For comparison,
we initialise RLIP-ParSe with MDETR’s parameters and then fine-tune on HICO-DET. The results
are reported in Tab. 1 as MDETR-ParSe. Although MDETR makes use of a heavier backbone
(ResNet-101) and additional pre-training data, RLIP-ParSe nevertheless surpasses this baseline with
a lighter ResNet-50 backbone, demonstrating the effectiveness of RLIP for this task.

Zero-shot HOI detection. To assess performance under the zero-shot NF protocol, we compare
with other methods using RLIP-ParSe (initialised with COCO parameters followed by RLIP on VG)
and ParSe (initialised with COCO parameters). Note that during RLIP, we match subjects against
a diverse collection of categories. However HOI detection only needs to detect person as subjects.
Consequently, for zero-shot NF inference, we filter out subjects that are not classified as person. We
report results in Tab. 2, where we observe that RLIP outperforms several fully fine-tuned methods.
We find, as expected, that regional language-image pre-training methods like MDETR fail under an
NF evaluation, since its pre-training lacks the notion of explicit relations. Under UC-RF and UC-NF
protocols (fine-tuning for 40 epochs under UC-NF to avoid over-fitting), RLIP-ParSe outperforms
previous methods and ParSe by performing RLIP on VG. Few-shot transfer on HICO-DET. To

7



evaluate few-show transfer, we fine-tune ParSeD for 60 epochs as above, while RLIP-ParSeD is
fine-tuned for 10 epochs to avoid over-fitting. The results are shown in Tab. 3. We observe that
RLIP significantly benefits few-shot fine-tuning relative to object detection pre-training and relation
detection pre-training, especially when data is scarce.

Table 2: Results under zero-shot settings on HICO-
DET. NR denotes Non-Rare.

Zero-shot Method Rare NR Full

NF
MDETR-ParSe [28] 0.00 0.00 0.00

RLIP-ParSe 15.08 15.50 15.40
Zero-shot Method Unseen Seen Full

UC-RF

VCL [19] 10.06 24.28 21.43
ATL [20] 9.18 24.67 21.57
FCL [21] 13.16 24.23 22.01

ParSe 18.53 32.21 29.06
RLIP-ParSe 19.19 33.35 30.52

UC-NF

VCL [19] 16.22 18.52 18.06
ATL [20] 18.25 18.78 18.67
FCL [21] 18.66 19.55 19.37

ParSe 19.65 24.50 23.38
RLIP-ParSe 20.27 27.67 26.19

Table 3: Few-shot transfer on HICO-DET. OD, RD de-
note object detection pre-training and relation detection
pre-training.

Method Data Epochs Rare Non-Rare Full

ParSeD
(VG, OD)

1% 60 0.18 2.05 1.62
10% 60 6.46 12.19 10.87

ParSeD
(VG, RD)

1% 60 3.74 8.62 7.50
10% 60 12.29 17.98 16.67

ParSeD
(COCO, OD)

1% 60 5.86 10.16 9.17
10% 60 12.20 20.39 18.51

RLIP-ParSeD
(VG)

0% - 12.30 12.81 12.69
1% 10 16.24 16.05 16.09
10% 10 15.43 20.34 19.21

RLIP-ParSeD
(COCO + VG)

0% - 11.20 14.73 13.92
1% 10 16.22 18.92 18.30
10% 10 15.89 23.94 22.09

The influence of relation label noise. To assess sensitivity to noise, we report fine-tuning results
on HICO-DET with increasing ratios of relation label noise in Fig. 2. We observe that as label noise
increases, the COCO object detection pre-training adopted by prior work exhibits a greater degradation
in performance (29.12→24.52, -4.60) than RLIP (29.21→25.68, -3.53) We also observe that when
initialising RLIP-ParSeD with COCO pre-trained parameters, RLIP again helps to ameliorate noise,
with a more limited loss of performance (30.70→26.87, -3.83) than COCO pre-training and a similar
degradation to RLIP-ParSeD with random initialization. Consequently, we deduce that RLIP offers a
route to mitigating label corruption and improving model robustness [18].

4.60

3.53

3.83

Figure 2: Relation Label Noise.

Table 4: Ablation study of different sampling strategies for
label sequence extension using RLIP-ParSeD on HICO-DET.

Sampling Type
Fine-tuning Zero-shot (NF)

Rare Non-Rare Full Rare Non-Rare Full

- 22.58 28.98 27.51 9.77 9.97 9.92
Uniform 23.33 29.55 28.12 9.46 9.67 9.63

Frequency-based 23.02 29.77 28.22 10.45 11.26 11.07

4.2 Ablation studies and analysis
Ablation study of ParSe on the influence of decoupled representations. We report an ablation
study of the ParSe architecture in Tab. 5 to highlight the importance of decoupling the representation
of subjects, objects and relations. The first row of Tab. 5 represents the use of coupled representations
for subjects, objects and relations [57]. The second row of Tab. 5 represents the use of coupled
representations for subjects and objects that are disentangled from relations [68]. The final row
(ParSe) uses fully-disentangled representations. We observe a clear gain resulting from ParSe over
methods using a joint representation of (some subset of) subject, object and relation triplets.

Ablation study of sampling strategy. In Tab. 4, we present an ablation study to assess the efficacy
of out-of-batch sampling strategies. Intuitively, uniform sampling will up-weight descriptions from
the tail of the distribution while frequency-based sampling will preserve the distribution. Both bring
improvements to fine-tuning by providing additional negative samples. However, by over-sampling
descriptions from the tail, uniform sampling performs less well with common texts in the downstream
task, and thus fares less well overall.

Visualisation of ParSe attention weights. We visualise attention weights from ParSe for several
example images in Fig. 3. We observe that ParSe attends distinct regions for subjects, objects and
relations. This aligns with our motivation that entity detection is best supported by local context,
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Table 5: Fine-tuning results with ParSe (COCO, OD) on HICO-DET.
ParSe Architecture Coupling Rare Non-Rare Full
- coupled subject, objects and relations 23.18 31.45 29.55
w/ Se coupled subject and objects 25.58 32.50 30.91
w/ ParSe fully decoupled 26.36 33.41 31.79

Table 6: Ablation study of RLIP techniques using RLIP-ParSeD on HICO-DET.
RLIP Technique Fine-tuning Zero-shot (NF) Relation

LSE RQL RPL Rare Non-Rare Full Rare Non-Rare Full Uniformity↓ Alignment↓
22.58 28.98 27.51 9.77 9.97 9.92 -0.8233 0.3650

✓ 23.02 29.77 28.22 10.45 11.26 11.07 -1.0556 0.4542
✓ ✓ 24.32 30.32 28.94 11.49 12.60 12.34 -1.3986 0.6072
✓ ✓ ✓ 24.45 30.63 29.21 12.30 12.81 12.69 -1.3265 0.5799

while relation inference draws on additional spatial context, conditioning on subjects and objects like
hands and string, as well as the wet ground and sky where appropriate.

human blow cake

human blow cake

human wash bus

human fly kite

human hold backpack

Figure 3: Attention weight analysis
for the top-1 scored verb. Weights are
extracted from Parallel Entity Detec-
tion (human and object) and Sequential
Relation Inference (verb).

Ablation study of RLIP techniques. In Tab. 6, we present
an ablation study of the three proposed technical contributions.
We observe that each benefits both fine-tuning and zero-shot NF
under all metrics. LSE attains a greater boost for the Non-Rare
set (by sampling according to the training set distribution). On
the other hand, RPL enhances results for the Rare set, likely due
to the propensity of RPL to label rare descriptions as positive
(due to the long-tailed distribution of text labels).

Understanding LSE, RQL and RPL with Uniformity and
Alignment. To gain insight into representation quality, Wang
et al. [59] proposed two metrics, uniformity and alignment,
which we employ here to better understand the influence
of our contributions. To this end, we perform a zero-shot
(NF) evaluation on HICO-DET, using bipartite matching to
assign predicted triplets to ground-truth labels. We then
calculate uniformity and alignment metrics for relation fea-
tures via Lu(f ; t) = log(E

(x,y)
i.i.d∼ Pdata

[e−t∥f(x)−f(y)∥2
2 ]) and

La(f ;α) = E(x,y)∼Ppos
[∥f(x)− f(y)∥α2 ], where α, t = 2. We present the results in Tab. 6, where

we observe that LSE and RQL both reduce uniformity, the former through additional negative pairs
and the latter by reducing the loss assigned to over-confident text labels. We also observe that RPL
yields better alignment through discovering additional positive labels. The results indicate, however,
a trade-off between the metrics—a useful direction for future work would be to determine how to
find an appropriate balance between them.

Verb-wise mAP Analysis for zero-shot (NF) evaluation. We provide analysis to give a sense
of the verb overlap of HICO with VG. We use “relationship aliases” from the official VG website
to obtain as many HOI verb annotations from VG as possible by string matching. The result is
shown in Tab. 11 in the supplementary material. We observe that in VG there are only 2,203 HOI
verb annotations even when considering relationship aliases—approximately 1.47% of the number
of relationship annotations in HICO-DET. 30 HOI verbs do not have an annotation and 45 HOI
verbs have five or fewer annotations. In RLIP-ParSe (COCO+VG), we observe that mAP for the 30
verbs is 5.56 while mAP for the remaining 87 verbs is 18.12. If we use uni-modal relation detection
pre-training, the result for the 30 verbs degrades to zero. In light of this, we conjecture that existing
relations can transfer their knowledge to the inference of non-existing relations in HOI detection. To
provide a more detailed analysis, we show the verb-wise mAP on HICO verbs in VG (Fig. 3) and not
in VG (Fig. 4) with zero-shot (NF) evaluation (figures are provided in the supplementary material),
where we observe solid performance for some verbs.

Probing into reasons for the verb zero-shot performance. We aim to qualitatively understand
where the zero-shot ability stems from. In the above analysis, pay has the highest performance
among verbs not seen by VG (Fig. 4 in the supplementary material). In the methodology section, we
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Table 7: VG verb ranking given similar subject-object triplets from HICO-DET. Verbs are in ascending
order of Euclidean distance. (The Cosine distance can also output similar rankings.)

"pay"
("parking meter") putting money in collecting money at puts change into repairing checking next to ...

Count 1 1 1 1 1 1 ...
Euclidean 11.56 11.70 13.34 14.21 15.16 16.12 ...

Cosine 0.4560 0.4576 0.3108 0.2554 0.1583 0.0709 ...

present the conditional query generation that constrains the verb inference to be related to subjects
and objects, providing verb inference with a conditional context. Thus, to analyze how this ability
of verb zero-shot inference emerges, we need to consider the subject and object context as they are
essential to predict the verb in ParSe. For the verb pay in HICO-DET, there is only one possible triplet
annotated, "person pay parking meter". Then, we want to answer, "Is there any triplet annotated
with similar or identical subjects and objects that transfer the inference ability to pay?" To
answer this question, we search for triplets annotated with similar subjects and objects to HICO-DET
from VG (For details, please refer to the analysis of Tab. 12 in the supplementary material.). We
report the verb distribution of the limited number of triplets that are found, ranking the verbs in
ascending order of Euclidean distance to the target verb (Tab. 7). From this table, we can see that the
verbs quantitatively closer (in Euclidean distance or Cosine distance) to pay have similar meanings
to pay, shown by their lexical variants or grammatical variants (e.g., putting money in has a similar
meaning to pay). Thus, in the VG dataset, there is human putting money in parking meter, which
may transfer to the zero-shot recognition of person pay parking meter in HICO-DET. More examples
can be found in Tab. 12 in the supplementary material. In short conclusion, we conjecture that
the zero-shot inference ability of RLIP is not from the scale of annotations (by comparing relation
detection pre-training and RLIP using VG), but the ability to transfer the verb inference knowledge
from semantically similar annotations. This analysis also accords with previous works [52, 36] that
semantic diversity is important as it introduces large-scale potential annotations, ensuring a model
transfers well to different data distributions.

Table 8: Uniformity analysis of the seen verbs,
unseen verbs and all verbs before and after RLIP.
Lower uniformity value is better.

Verb Set Seen (87) Unseen (30) All (117)

Before RLIP -0.00367 -0.00436 -0.00388
After RLIP -3.73780 -3.59457 -3.71330

Second, we aim to demonstrate quantitatively
how RLIP pre-trains the model to perform zero-
shot detection from the perspective of represen-
tation learning. We employ the Uniformity met-
ric introduced in [59]. Uniformity is a metric
to assess a model’s generalization in contrastive
learning. In this case, since label textual embed-
dings serve as a classifier in RLIP, we calculate
the Uniformity of the seen verbs, unseen verbs and all verbs, aiming to observe how the generalization
changes before and after RLIP, and how the generalization varies between seen verbs and unseen
verbs. The results are shown in Tab. 8. As can be seen from the table, Uniformity values are high
before RLIP, suggesting that the representations before RLIP are distributed compactly, leading to
a poor classifier. However, after RLIP is performed, the 87 seen verbs have a substantially lower
Uniformity value, corresponding with decent zero-shot performance. Similarly, the 30 unseen verbs
and the combination of 117 verbs also have excellent Uniformity values, contributing to unseen
zero-shot performance. Through this quantitative observation, we think that from the perspective of
representations, RLIP contributes to improved zero-shot performance.

From all the above analysis, we conjecture that the zero-shot performance is not caused by the
increased dataset size or annotations, but rather from the generalization in representations obtained
by pre-training with language supervision.

5 Conclusion
In this paper, we propose RLIP as a pre-training strategy for HOI detection. We show that RLIP,
together with our additional technical contributions, boosts HOI detection performance under fine-
tuning, zero-shot and few-shot evaluations, and improves robustness against noisy annotations.
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