
Whitening Convergence Rate of
Coupling-based Normalizing Flows: Appendix

A Details on Experiments

All experiments were carried out on a single AMD Ryzen 7 3700X 8-Core Processor together with a
NVIDIA GeForce RTX 2080. At https://github.com/vislearn/Coupling-Flow-Bound we
have made available the code for all experiments.

A.1 Deep network on EMNIST

In this experiment, we estimate the capability of affine normalizing flows in reducing the non-
Standardness S (see Equation (8)) as a function of the number of layers. We compare this to the
theoretic bound in Theorem 1.

To this end, we train affine normalizing flows on EMNIST digits [38]. We leverage a 20-block Glow
architecture as described in Section 3. To measure the effect of depth L = 1, . . . , 20 of the flow on S ,
we truncate the architecture to L layers.

The architecture is built as follows: We start by down-sampling the input image from gray scale
1⇥ 28⇥ 28 to 4⇥ 14⇥ 14: Each group of four neighboring pixels is reordered into one pixel with
four times the channels in a checkerboard-like pattern. Then, eight convolutional coupling blocks
with 16 hidden channels are applied. They are followed by another down-sampling to 16 ⇥ 7 ⇥ 7
and eight convolutional coupling blocks with 32 hidden channels. After flattening the input, four
fully-connected affine coupling blocks are added with 392 hidden dimensions.

When truncating this architecture, we remove blocks from the left. For example, when one block is
present (L = 1), only the last coupling block with the fully connected subnetwork remains. This
makes the theory in this paper applicable, as Proposition 2 assumes that the neural networks s and t

are fully connected (otherwise, the whitening operation cannot always be represented).

We train each depth from scratch for 300 epochs using Adam with a learning rate of 3 · 10�3 which
is reduced by a factor of .1 after 100 and 200 epochs. The batch size is 240 which implies 1000
iterations per epoch.

Given the 20 networks of different depth, we split the loss into the non-Gaussianity G and non-
Standardness S as suggested by Proposition 1. To do so, we compute the empirical covariances ⌃l of
10’000 test samples pushed through each flow.

To relate this experiment to our theory, we take the covariance matrices obtained using the trained
flows ⌃l and apply Theorem 1 on each. This yields an upper bound on the expected non-Standardness
after training another network with depth increased by one. In other words, given ⌃l, Theorem 1
predicts an upper bound on the expected EQl+1⇠p(Q)[S(⌃l+1)]. We observe that the experimentally
observed non-Standardness behaves similar to the upper bound. We do not expect this to be the
case in general: There might be a trade-off between reducing S and G, so the optimization might
actually decide for reducing G at the cost of increasing S. We only show that with the covariance
in Proposition 2, G does not increase. On the other end, an affine flow might actually be able to
reduce the non-Standardness stronger than predicted, as our theory does not take potentially useful
cooperation between layers into account.

We average all results over eight runs per depth (i.e. 8 · 20 = 160 networks in total). Despite different
random orientations in each run, the results are very concentrated: We find error bars so small that
they are not visible in Figure 1.

We observe that after four blocks, the non-Standardness is close to zero. Here, the flow consists
of four coupling blocks with fully connected subnetworks. This justifies the use of convolutional
networks for s and t in the remaining blocks; they can only reduce correlations between pixels locally,
thus not reducing non-Standardness as strongly as predicted. However, the non-Standardness is
reduced enough by only four coupling blocks.

Figure 5 shows samples from one networks trained for each depth (sampling temperature T = 0.7).

14

https://github.com/vislearn/Coupling-Flow-Bound

Figure 5: Samples generated by the affine coupling flows with varying depth trained for Figure 1.
Each column shows eight samples by a network of the corresponding depth.

A.2 Single layer on EMNIST digit covariance

This experiment confirms that the covariance minimizing the non-Standardness S(⌃1) after a single
layer is correctly predicted by Proposition 2.

To get an interesting covariance matrix, we flatten the EMNIST digits training data and compute its
covariance matrix ⌃, as depicted in Figure 2 on the left. We then sample a multivariate Gaussian
with this covariance matrix and train a single affine coupling layer. As the data is Gaussian, we can
train with the standard maximum likelihood loss as it is equivalent to the non-Standardness S. We
use Adam with a learning rate 0.05, a batch size of 2048 and train for 512 iterations.

A.3 Single block on toy data

This experiment explores the average non-Standardness that can be reached by a single layer by
modifying the covariance as given by Proposition 2. It also aims to confirm the upper bounds shown
in Theorems 1 and 2.

We build a family of toy covariance matrices to work with. As the data will be randomly rotated
anyway, we choose the matrices to be diagonal w.l.o.g., i.e. we directly design the eigenvalue spectrum
of each covariance. We prescribe this spectrum by a continuous function µ : [0, 1] ! R+. It is
chosen bijective to ensure that the eigenvalues are distinct. We then define the eigenvalues as follows:

µi = µ
�

i

D�1

�
i = 0, . . . , D � 1. (22)

With this approach, we can systematically modify eigenvalue/noise spectra.

Given a vector of eigenvalues (µi)i, we need to ensure that its mean is one. We do so by dividing by
the mean:

⌫i :=
µiP

D

i=1 µi/D
. (23)

Finally, we add a scaling parameter s > 0 that defines how close the spectrum is to the identity:

�
(s)
i

:= (⌫i � 1) · s+ 1. (24)
The non-Standardness strictly decreases as s comes closer to 0. As the eigenvalues always have to be
positive, s must be chosen smaller than:

s <
1

1� �min
=: smax. (25)

Given a spectrum �
(s)
i

, we build a diagonal covariance matrix

⌃ = Diag(�(s)
i

)D
i=1. (26)

15

Figure 6: Eigenvalue spectra used for experiment depicted in Figure 3. (Left) µ(x) = x
2 and (right)

µ(x) = x
8. Each line corresponds to a different scaling s.

For the experimental baseline, we sample Nrot orthogonal and unitary rotation matrices
Q ⇠ p(Q) from the corresponding Haar measure over O(D) and U(D). We employ
scipy.stats.ortho_group respectively scipy.stats.unitary_group. This yields the covari-
ance of the rotated data:

⌃0 = Q⌃QT
. (27)

(Or, Q⇤ instead of QT if we average over unitary matrices).

We do not train affine coupling layers directly. Instead, we make use of the single layer output
covariance ⌃1 from Proposition 2.

We choose the following numerical values for s: To get a close look at the case where s ! 0 and
correspondingly S ! 0, we take Nscale/3 geometrically spaced points in [0.001smax, 0.9smax]. To
accurately capture the off-minimum behavior, we add to that 2Nscale/3 linearly spaced points between
[0.9smax, .999smax].

We choose Nrot = 100 and Nscale = 150 for all experiments. To save computational resources, we
re-use the rotations sampled for the first scale for the remaining.

In Figure 3, we showed the experiment for the parameterized spectra µ(x) = x
2 and µ(x) = x

8. For
both, Figure 6 shows which rescaled eigenvalue spectra were used in this experiment. In Figure 7, we
give examples for more spectra.

A.4 Layer-wise training on toy data

In this experiment, we track the non-Standardness as layers are added, check Theorem 3, and compare
the convergence rate Equation (20) to the other bounds in Theorems 1 and 2.

This experiment uses a different set of toy covariances than Appendix A.3. This time, we build a
plethora of different initial covariances (eigenvalue spectra) that include extreme cases:

1. All eigenvalues are set to 1 except for one that is varying.

2. All eigenvalues have the same value that is varied, except for one that is set to 1.

3. Split the eigenvalues into two halves, respectively having the same value: The first half is
varied, the second half assume the inverse value of the first half.

4. Randomly sample all eigenvalues uniformly from [0, 2].

5. Randomly sample all eigenvalues between such that the logarithm is uniformly distributed
over [1/vmax, vmax].

Whenever we vary the value of any eigenvalue, we take Nvary scalars geometrically spaced between
1/vmax and vmax. We exclude the case where all eigenvalues are equal to 1, implying a non-
Standardness of 0.

16

Figure 7: Examples for single layer relative non-Standardness on more eigenvalue spectra: (Top left)

µ(x) = x, (top right) µ(x) = x
5, (bottom left) µ(x) = 1

1.1�x
, (bottom right) µ(x) = exp(x). More

details in Figure 3.

To fulfill Assumption 4, we do not actually assign the same value to eigenvalues, but multiply them
each with a linearly increasing factor in (1� ✏, 1+ ✏). We do not observe any change in experimental
behavior from this, but this allows us evaluating Theorem 1.

Given the dataset of eigenvalues, we build diagonal covariances, repeatedly apply random rotations
and the whitening procedure in Proposition 2. The details are given in Algorithm 1. For each input
covariance, we obtain Nrot trajectories of covariances.

Algorithm 1 Multi-layer non-Standardness experiment
Input: Input covariances ⌃(i)

, i = 1, . . . , N , number of rotations Nrot, number of layers L.
⌃(i,r)

0 ⌃(i) for i = 1, . . . , N ; r = 1, . . . , Nrot {Copy each input covariance Nrot times}
for l = 1, . . . , L do
Q

(r)
⇠ O(D) for r = 1, . . . , Nrot {Sample rotations}

⌃(i,r)
l�1

0
 Q

(r)⌃(i,r)
l�1 (Q

(r))T for i = 1, . . . , N ; r = 1, . . . , Nrot {Apply rotations}
⌃(i,r)

l
 Proposition 2 on ⌃(i,r)

l�1
0 {Apply whitening step}

end for
Output: {⌃(i,r)

l
}
L

l=1 for i = 1, . . . , N ; r = 1, . . . , Nrot.

We evaluate the non-Standardness of each covariance matrix S(⌃(i,r)
l

) and average over rotations.
This is shown in the left plot in Figure 4.

In addition, we compute the relative non-Standardness between layers:

S(⌃(i,r)
l

)/S(⌃(i,r)
l�1). (28)

This quantity is averaged over rotations r and instances i. It is depicted together with the correspond-
ing interquartile range (IQR) in the right half of Figure 4.

We also evaluate each of the bounds on EQ[S(⌃
(i,r)
l+1)] in Theorems 1 and 2 given ⌃(i,r)

l
and divide it

by the non-Standardness S(⌃(i,r)
l

). Again, we average over rotations and iterations.

17

Averaging over rotations might be counter-intuitive as the bounds explicitly calculate a value that is
an average: It is necessary because for each initial covariance, we have Nrot trajectories with different
convergence behavior. Let us make this explicit. Denote by B any of the bounds in Theorems 1
and 2:

EQl+1⇠p(Q)[S(⌃
(i,r)
l+1 (Ql+1))]

S(⌃(i,r)
l

)

B(⌃(i,r)
l

)

S(⌃(i,r)
l

)
. (29)

We average the quantity on the right over the different trajectories, i.e. over i, r. It only depends on
the covariances in the lth layer in contrast to the expression on the left.

As hyperparameters to the experiment, we choose D = 48, L = 32, Nvary = 128, Nrot = 32, vmax =
1000, ✏ = 10�5. We stop a trajectory once the non-Standardness falls below 10�9 to avoid numerical
instabilities.

B Detailed proofs

B.1 Proof of Proposition 1

The explicit form of the non-Standardness is given by the KL divergence between the two multivariate
Gaussians N (m,⌃) and N (0, I):

DKL(N (m,⌃)kN (0, I)) (30a)
= Ex⇠N (m,⌃)[logN (x;m,⌃)� logN (x; 0, I)] (30b)

= Ex⇠N (m,⌃)[�
1
2 log det(2⇡⌃)�

1
2 (x�m)T⌃�1(x�m) + 1

2 log det(2⇡ID) + 1
2kxk

2] (30c)

= 1
2

⇣
� log det(⌃) + Ex⇠N (m,⌃)[�

1
2 (x�m)T⌃�1(x�m) + 1

2kxk
2]
⌘

(30d)

= 1
2 (kmk

2 + tr⌃�D � log det⌃). (30e)

Proof. We start with the first decomposition in Equation (6).

DKL(pkN (0, I))�DKL(pkN (m,⌃)) (31a)
= Ex⇠p(x)[log p(x)� logN (x; 0, I)� log p(x) + logN (x;m,⌃)] (31b)
= Ex⇠p(x)[� logN (x; 0, I) + logN (x;m,⌃)] (31c)

=
1

2
Ex⇠p(x)[D log(2⇡) + kxk2 �D log(2⇡)� log det⌃� (x�m)T⌃�1(x�m)] (31d)

=
1

2
Ex⇠p(x)[kxk

2
� log det⌃� (x�m)T⌃�1(x�m)] (31e)

=
1

2

⇣
Ex⇠p(x)[kxk

2]� log det⌃� Ex⇠p(x)[(x�m)T⌃�1(x�m)]
⌘
. (31f)

The open expectation values read:

Ex⇠p(x)[kxk
2] = Ex⇠p(x)[

DX

i=1

x
2
i
] =

DX

i=1

Ex⇠p(x)[x
2
i
] =

DX

i=1

(m2
i
+ ⌃ii) = kmk

2 + tr⌃, (32)

and interpreting (x �m) as a RD⇥1 matrix, we can re-write using the trace. Then use the cyclic
property and linearity of the trace:

Ex⇠p(x)[(x�m)T⌃�1(x�m)] = Ex⇠p(x)[tr((x�m)T⌃�1(x�m))] (33a)

= Ex⇠p(x)[tr((x�m)(x�m)T⌃�1)] (33b)

= tr(Ex⇠p(x)[(x�m)(x�m)T]⌃�1) (33c)

= tr(⌃⌃�1) (33d)
= D. (33e)

18

Inserting the two expectation values, we identify:

DKL(pkN (0, I))�DKL(pkN (m,⌃)) =
1

2

⇣
kmk

2 + tr⌃� log det⌃�D

⌘
(34a)

= DKL(N (m,⌃)kN (0, I)), (34b)

and obtain Equation (6).

Now we move on to show Equation (7):

C(p) = DKL(N (m,⌃)kN (m,Diag(⌃))) (35a)

=
1

2

✓
tr
⇣
(Diag⌃)�1⌃

⌘
�D + log

det(Diag(⌃))

det⌃

◆
(35b)

=
1

2
log

det(Diag(⌃))

det⌃
, (35c)

and

DKL(N (m,Diag(⌃))kN (0, I)) =
1

2

�
trDiag(⌃)�D � log(det(Diag(⌃)))

�
(36a)

=
1

2

�
tr⌃�D � log(det(Diag(⌃)))

�
. (36b)

Adding the two divergences yields Equation (7).

B.2 Proof of Proposition 2

We first show that an affine-linear function g(x) as assumed in Proposition 2 cannot change the
non-Gaussianity G. This has already been argued by [36]. We provide an explicit proof:
Lemma 1. Given a D-dimensional distribution and an affine-linear function

g(x) = Ax+ b (37)

for some A 2 RD⇥D
with detA > 0 and b 2 RD

. Then:

G(g]p) = G(p). (38)

Proof. The non-Gaussianity G is given by:

G(p) = DKL(p(x)kN (m,⌃)). (39)

Mean and covariance of the push-forward of p via g read:

Ex⇠p(x)[g(x)] = Ex⇠p(x)[Ax+ b] = Am+ b = m1, (40a)

Covx⇠p(x)[g(x)] = Covx⇠p(x)[Ax+ b] = A⌃AT = ⌃1. (40b)

Thus, the non-Gaussianity after applying g reads:

G(g]p) = DKL(g]pkN (m1,⌃1)). (41)

The push-forward of N (m,⌃) via g is identical to the normal distribution that occurs in the non-
Gaussianity of g]p:

g]N (m,⌃) = N (m1,⌃1), (42)
Now, we make use of the fact that the KL divergence is invariant if both arguments are transformed
by any invertible function g:

DKL(p1(x)kp2(x)) = DKL((g]p1)(x)k(g]p2)(x)). (43)

Together,
G(g]p) = G(p). (44)

We now turn to the proof of Proposition 2:

19

Proof. We aim to find the affine-linear coupling layer fcpl minimizing S(⌃1). By Lemma 1, G does
not change.

The affine-linear coupling fcpl has the following form:

x1 =

✓
Diag(r) 0

T Diag(s)

◆✓
p0

a0

◆
+

✓
u

t

◆
=: Ax0 + b. (45)

To make the coupling affine-linear, r, s 2 RD/2
+ are positive vectors, u, t 2 RD/2 are vectors and

T 2 RD/2⇥D/2 is the matrix describing the linear dependence of a1 on p0.

By linearity of expectation, the mean of x1 reads:

m1 = Am0 + b. (46)

Write S := Diag(s) and R := Diag(r) so that the covariance of x1 is given by:

⌃1 := Cov[x1] = A⌃0A
T (47a)

=

✓
R 0
T S

◆✓
⌃0,pp ⌃0,pa

⌃0,ap ⌃0,aa

◆✓
R T

T

0 S

◆
(47b)

=

✓
R⌃0,ppR R(⌃0,paS + ⌃0,ppT

T)
(T⌃0,pp + S⌃0,ap)R (T⌃0,pa + S⌃0,aa)S + (T⌃0,pp + S⌃0,ap)TT

◆
(47c)

Together, the non-Standardness of x1 is given from Equation (8)

S(m1,⌃1) (48a)

= 1
2

⇣
km1k

2 + tr⌃1 �D � log det⌃1

⌘
(48b)

= 1
2

⇣
kAm0 + bk

2 + tr(R2⌃0,pp) + tr(T⌃0,paS) + tr(S2⌃0,aa) + tr(T⌃0,ppT
T) (48c)

+ tr(S⌃0,apT
T)�D � log det⌃0 � log detR� log detS

⌘
. (48d)

To find the minimum of S(m1,⌃1), minimize the above over r, s, T and b:

argmin
r,s,T,b

S(m1,⌃1). (49a)

It is easy to see that b = �Am0 minimizes Equation (48) as in this case m1 = 0.

At the minimum, we find for r:

0 =
@S(m1,⌃1)

@rm
= �

1

rm
+ rm(⌃0,pp)mm, (50)

for some m = 1, . . . , D/2. We read off that rm = (⌃0,pp)
�1/2
mm . In matrix notation:

R = Diag(⌃0,pp)
�1/2

. (51)

For s, T , we find the system:

0 =
@S(m1,⌃1)

@sn
= �

1

sn
+

D/2X

j=1

Tnj(⌃0,pa)jn + sn(⌃0,ap)nn (52a)

0 =
@S(m1,⌃1)

@Top

= sp(⌃0,pa)po +

D/2X

k=1

Tpk(⌃0,aa)ko. (52b)

Multiplying the first equation by sn, we find in matrix notation:

I = Diag(T⌃0,paS + S
2⌃0,aa) (53a)

0 = S⌃0,pa + T⌃0,pp. (53b)

20

We solve the second equation for T (we use that ⌃0,pp is invertible as it is positive definite):

T = �S⌃0,ap⌃
�1
0,pp, (54)

and insert into the first:

I = Diag(�S⌃0,ap⌃
�1
0,pp⌃0,paS + S

2⌃0,aa) (55a)

= Diag(�S2⌃0,ap⌃
�1
0,pp⌃0,pa + S

2⌃0,aa). (55b)

The last step is due to Diag(·) linear and S diagonal. We read off that:

S = Diag(⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa)

�1/2
. (56)

Alternative solutions with negative signs are discarded by convention (without an effect on the
covariance).

Inserting into Equation (47c), we find:

⌃1,pp = R⌃0,ppR = Diag(⌃0,pp)
�1/2⌃0,pp Diag(⌃0,pp)

�1/2 = M(⌃0,pp), (57a)

⌃1,pa = R(⌃0,paS + ⌃0,ppT
T) = R(⌃0,paS � ⌃0,pp⌃

�1
0,pp⌃0,paS) = 0, (57b)

⌃1,ap = ⌃T
1,pa = 0, (57c)

⌃1,aa = (T⌃0,pa + S⌃0,aa)S + (T⌃0,pp + S⌃0,ap)T
T (57d)

= (�S⌃0,ap⌃
�1
0,pp⌃0,pa + S⌃0,aa)S + (S⌃0,ap⌃

�1
0,pp⌃0,pp � S⌃0,ap)⌃

�1
0,pp⌃0,paS (57e)

= S(⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa)S = M(⌃0,aa � ⌃0,ap⌃

�1
0,pp⌃0,pa). (57f)

This concludes the proof:

m1 = 0, ⌃1 =

✓
M(⌃0,pp) 0

0 M(⌃0,aa � ⌃ap⌃�1
pp

⌃pa)

◆
. (58)

B.3 Proof of Theorem 1

The following statement will help us along the way:

Lemma 2. For A 2 CD
, Q 2 {O(D), U(D)} with the corresponding Haar measure p(Q):

EQ2p(Q)[(QAQ
⇤)ii] =

1

D
tr(A). (59)

Proof. By symmetry, EQ[(QAQ
⇤)11] = EQ[(QAQ

⇤)ii] for i = 1, . . . , D. Thus, EQ[(QAQ
⇤)11] =

1
D

P
D

i=1 EQ[(QAQ
⇤)ii] =

1
D
EQ[tr(QAQ

⇤)] = 1
D
trA.

When we write Q
⇤, we mean conjugate transpose if Q is sampled from the unitary group U(D), and

transpose if Q is from the orthogonal group O(D). Whenever we only consider orthogonal Q, we
will resort back to writing Q

T.

This allows us to directly estimate EQ⇠p(Q)[log detM
2
p
]:

Lemma 3. With the definitions in Section 5.1, p(Q) either the Haar measure of orthogonal or unitary

matrices, and Assumption 2. Then:

EQ⇠p(Q)[log detM
2
p
] � 0. (60)

Proof. Mp is given by:
M

2
p
= Diag(⌃0,pp)

�1
. (61)

21

The corresponding expectation value can be estimated via Jensen’s inequality:

EQ⇠p(Q)[log detM
2
p
] = EQ⇠p(Q)[log detDiag(⌃0,pp)

�1] (62a)

= �EQ⇠p(Q)[log

D/2Y

i=1

(⌃0,pp)ii] = �

D/2X

i=1

EQ⇠p(Q)[log(⌃0,pp)ii] (62b)

� �

D/2X

i=1

logEQ⇠p(Q)[(⌃0,pp)ii] = �
D

2
log tr⌃/D (62c)

= 0. (62d)

By Assumption 2, tr⌃ = D. We have used Lemma 2 for evaluating EQ⇠p(Q)[(⌃0,pp)ii].

As mentioned in Section 5.1, the main difficulty in estimating EQ⇠p(Q)[S(⌃1(Q))] lies in
EQ⇠p(Q)[log detM

2
a
]. The following subsections show a path to do so.

B.3.1 Problem reformulation

In a first step, we reformulate this expectation so that it can be computed with the help of projected
orbital measures [40].

We split the expectation over the Haar measure p(Q) in two parts: One that defines which eigenvalues
the (D/2) ⇥ (D/2) block ⌃0,aa has (denote this as Qap) and, conditioned on this, another which
rotates ⌃0,aa into all possibles bases (denote this as Qa). Formally, write Q as:

Q =

✓
I 0
0 Qa

◆
Qap. (63)

We will replace the Schur complement ⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa appearing in Proposition 2 by the

corresponding block of the precision matrix P0 := ⌃�1
0 = (Q⌃�1

Q
⇤)�1 = Q⌃�1

Q
⇤ (e.g. [39,

Section (0.7.3)]:
(P0,aa)

�1 = ((⌃�1
0)aa)

�1 = ⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa. (64)

We give more details in the proof of the following lemma, which formalizes this step:
Lemma 4. Given the definitions in Section 5.1 and Assumption 2. It holds that

EQ⇠p(Q)[log detM
2
a
] � �

D/2X

i=1

logEQa⇠p(Qa|Qap)[((P0,aa)
�1)ii]. (65)

Proof. By Proposition 2, M2
a

is given by:

M
2
a
= Diag(⌃0,aa � ⌃0,ap⌃

�1
0,pp⌃0,pa)

�1
. (66)

Being diagonal, its determinant is given by the product of its diagonal entries:

EQ⇠p(Q)[log detM
2
a
] = EQ⇠p(Q)[log

D/2Y

i=1

(⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa)

�1
ii

] (67a)

=

D/2X

i=1

EQ⇠p(Q)[log((⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa)

�1
ii

)] (67b)

= �

D/2X

i=1

EQ⇠p(Q)[log((⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa)ii)]. (67c)

Evaluating this expression is hard mainly because the ⌃0,ap⌃
�1
0,pp⌃0,pa involves the inverse of

⌃0,pp = (Q⌃Q⇤)pp, which depends on Q.

22

To circumvent this, note the following property of any nonsingular matrix M [39, Section (0.7.3)].
Split M into blocks as:

M =

✓
A B

B
⇤

C

◆
, (68)

and do the same for its inverse:
M

�1 =

✓
A

0
B

0

B
0⇤

C
0

◆
(69)

Then, (A0)�1 = A� BC
�1

B
⇤, which is called the Schur complement M/C. This means we can

rewrite
⌃0,aa � ⌃0,ap⌃

�1
0,pp⌃0,pa = (P0,aa)

�1
, (70)

where P0 = ⌃�1
0 is the precision matrix of the rotated data. Given a rotation Q, it can easily be

obtained from the precision matrix of the data in its original rotation:

⌃0 = Q⌃Q⇤
, P0 = Q⌃�1

Q
⇤
. (71)

Inserting this, we find the expectation value:

EQ⇠p(Q)[log detM
2
a
] = �

D/2X

i=1

EQ⇠p(Q)[log(((P0,aa)
�1)ii)]. (72)

The logarithm can be drawn out via Jensen’s inequality:

�

D/2X

i=1

EQ⇠p(Q)[log(((P0,aa)
�1)ii)] � �

D/2X

i=1

log(EQ⇠p(Q)[((P0,aa)
�1)ii]). (73)

This concludes the statement.

B.3.2 Projected orbit expectation

The theory of projected orbital measures describes the distribution of eigenvalues of a randomly
projected submatrix of some given matrix. Let us formalize this:

Fix a diagonal matrix A = Diag(a1, . . . , aN). Then, then the orbit of A is defined as:

OA := {QAQ
⇤ : Q 2 U(D)}. (74)

(The same definition also exists for orthogonal Q 2 O(D), but we keep it to the level we require
here). All matrices in the orbit of OA have the same eigenvalues.

The natural measure (probability distribution) on the orbit OA is given by the image of the Haar
measure on the unitary group U(D). This can be thought of as the uniform measure on the group of
unitary rotations. We call this measure the orbital measure.

We now cut out the K ⇥K top left corner out of every matrix in OA:

PKOA := {PKY : Y 2 OA}. (75)

We call this the projected orbit. The matrix PK projects a matrix to its upper left corner:

PK = (IK ; 0K⇥(N�K)). (76)

The distribution of matrices in the projected orbit PKOA induced by the orbital measure is denoted
as the projected orbital measure µA,K . We are now interested in the eigenvalues of matrices in the
projected orbit PKOA.

Let spectrum be the function that assigns a matrix Y 2 CK⇥K its eigenvalues y1, . . . , yK . We will
make use of a result that gives the distribution of eigenvalues of matrices in the projected orbit PKOA.
This is called the radial part of the projected orbital measure and is denoted as ⌫A,K(x1, . . . , xK).

⌫A,K(x1, . . . , xK) = PX⇠µA,K [spectrum(X) = (x1, . . . , xK)]. (77)

In other words, ⌫A,K(x1, . . . , xK) gives the probability density that a random matrix from the
projected orbit of A has exactly eigenvalues (x1, . . . , xK). Its functional form was shown by [40]:

23

Theorem 4 (Radial part of projected orbital measure [40]). Fix A = (a1, . . . , aD) with a1 < · · · <

aD. For any K = 1, . . . , D � 1, the density of eigenvalues of

⌫A,K(x1, . . . , xK) = cD,K

V (x1, . . . , xK) det[M(aj ;xi, . . . , xD�K+i)]Ki,j=1Q
j�i�D�K+1(xj � xi)

. (78)

Here, the constant is given by:

cD,K =
K�1Y

i=1

✓
D �K + i

i

◆
, (79)

and M(a; y1, . . . , yN) is the B-spline:

M(a; y1, . . . , yn) := (N � 1)
X

i:yi>a

(yi � a)n�2

Q
r:r 6=i

(yi � yr)
, (80)

and V is the Vandermonde polynomial:

V (y1, . . . , yn) =
Y

i<j

(yj � yi). (81)

We will make use of the following variant of the Vandermonde determinant where all powers greater
or equal to some k are increased by one:
Lemma 5. For all n 2 N, k = 1, . . . , n� 1 and distinct ai, i = 1, . . . , n:

det

0

BB@

1 · · · a
k�1
1 a

k+1
1 · · · a

n
1

.

.

.
.
.
.

.

.

.
.
.
.

1 · · · a
k�1
n

a
k+1
n

· · · a
n
n

1

CCA = V (a1, . . . , an)en�k(a1, . . . , an). (82)

with the elementary symmetric polynomial eK given by Equation (17).
Lemma 6. Fix A = (a1, . . . , aN) with a1 < · · · < aN . For any K = 1, . . . , N � 1, it holds that:

Ea1,...,aK⇠⌫A,K(x1,...,xK)[x
�1
1 + · · ·+ x

�1
K

] (83a)

= (N �K)(�1)N�K

NX

j=1

a
N�K�1
j

log(aj)R(aj ; a 6=j)eK�1(a 6=j). (83b)

Here, R is defined in Equation (17).

Proof. We use the Andreief identity in the form of [44, Lemma 2.1]

Ex1,...,xk⇠⌫A,K [1
x1

+ · · ·+ 1
xk

] (84a)

= Z
�1

Z

(RK)+

(1
x1

+ · · ·+ 1
xk

) det(xj�1
i

) det(M(xi; aj , . . . , aj+N�K)) dx1 · · · dxk (84b)

= Z
�1

KX

k=1

det

Z

R
x
��jkx

j�1
M(x; ai, . . . , ai+N�K) dx (84c)

= Z
�1 det

Z

R
x
j�1��j1M(x; ai, . . . , ai+N�K) dx (84d)

= Z
�1 det

(
µ�1(ai, . . . , ai+N�K) j = 1
µj�1(ai, . . . , ai+N�K) j > 1

(84e)

where µk(t1, . . . , tn) the kth moment of the B-spline with knots t1, . . . , tn:

µk(t1, . . . , tn) =

Z
x
k
M(x; t1, . . . , tn) dx. (85)

24

We can now make use of the Hermite–Genocchi formula [41, Proposition 6.3]:
Z

f
(n�1)(x)M(x; t1, . . . , tn) dx = (n� 1)!f [t1, . . . , tn], (86)

so we can rewrite
µk(t1, . . . , tn) = fk[t1, . . . , tn], (87)

with

f�1(x) = (n� 1)xn�2 log x, (88a)

fk(x) =

✓
n+ k � 1

k

◆�1

x
n+k�1

. (88b)

Together, we find

Ex1,...,xk⇠⌫A,K [1
x1

+ · · ·+ 1
xk

] = Z
�1 det(fi�1��1i [aj , . . . , aj+N�K]). (89)

The right hand side can be identified with the right hand side of [41, Proposition 6.4]. It is equal to:

Z
�1 det(fi[aj , . . . , aj+N�K]) (90a)

= Z
�1

0

@
Y

0<j�iN�K

(aj � ai)
�1

1

A

����������������

1 · · · 1
a1 · · · aN
...

...
a
N�K�1
1 · · · a

N�K�1
N

f1(a1) · · · f1(aN)
...

...
fK(a1) · · · fK(aN)

����������������

(90b)

= Z
�1

0

@
Y

0<j�iN�K

(aj � ai)
�1

KY

k=1

✓
N �K + k

k

◆�1
1

A(N �K)

������������������

1 · · · 1
a1 · · · aN
...

...
a
N�K�1
1 · · · a

N�K�1
N

a
N�K�1
1 log a1 · · · a

N�K�1
N

log aN
a
N�K+1
1 · · · a

N�K+1
N

...
...

a
N�1
1 · · · a

N�1
N

������������������
(90c)

=: C2 det(Mij) (90d)

Here, C2 reduces to:

C2 =
N �K

V (a1, . . . an)
. (91a)

Then, the determinant of Mij reads:

detMij =
NX

j=1

(�1)N�K+1+j
a
N�K�1
j

log(aj)V (a 6=j)
X

i1<···<iK�1

i... 6=j

ai1 · · · aiK�1 (92a)

= V (a)(�1)N�K
X

j

a
N�K�1
j

log(aj)R(aj ; a 6=j)eK�1(a 6=j), (92b)

where R(aj ; a 6=j) collects all the terms in V (a) that were not contained in V (a 6=j) up to sign:

R(aj ; a 6=j) =
nY

i=1
i 6=j

1

ai � aj
= (�1)j�1

V (a 6=j)/V (a). (93)

25

Note that the sign of R(aj ; a 6=j) flips from j ! j + 1, so the alternating nature of the above series
remains.

Together, the desired expectation value reads:

Ex1,...,xk⇠⌫A,K [1
x1

+ · · ·+ 1
xk

] (94a)

= (N �K)(�1)N�K

NX

j=1

a
N�K�1
j

log(aj)R(aj ; a 6=j)eK�1(a 6=j), (94b)

which concludes the proof.

We now connect this result to our situation. This paves the path from the reformulation in Lemma 4
to Theorem 1.
Corollary 1. For the definitions in Section 5.1 and when Assumptions 3 and 4 are fulfilled, it holds

that:

EQ⇠p(Q)[log detM
2
a
] � D

2 log

✓
(�1)

D

2 +1
DX

i=1

�
1�D

2
i

log(�i)R(��1
i

;��1
6=i

)eD

2 �1
(��1

6=i
)

◆
. (95)

Proof. Then, Lemma 2 tells us how to integrate over Qa.

EQa⇠p(Qa|Qap)[((P0,aa)
�1)ii] = tr((QapPQ

⇤
ap
)�1) =

D/2X

i=1

ai(Qap)
�1

. (96)

Here, we denote by ai(Qap) the ith eigenvalue of P0 = QapPQ
⇤
ap

, which depends on the “outer”
rotation Qap.

We substitute the expectation over Qap with an expectation over the projected eigenvalues of the
rotated precision matrix P0:

EQap⇠p(Q)[EQa⇠p(Qa|Qap)[((P0,aa)
�1)ii] = tr((QapPQ

⇤
ap
)�1)] (97a)

= E
a1,...,aD/2⇠⌫A,D/2(a1,...,aD/2|��1

1 ,...,�
�1
D)[a

�1
1 + · · ·+ a

�1
D/2]. (97b)

Here X = (��1
1 , . . .�

�1
D

) contains the eigenvalues of the precision matrix P , the inverse of the
covariance ⌃. Lemma 6 with K = D/2 tells us how to evaluate the above expression. Insert the
result into Lemma 4 to obtain the result.

B.3.3 Summary

We can now collect the above pieces to build the proof of Theorem 1:

Proof. Equation (15) is the version of the non-Standardness after a single layer when Assumptions 1
and 2 are fulfilled. Insert Lemma 3 (passive part) and Corollary 1 (active part) to obtain the result.
The former required Assumption 2 and the latter Assumptions 3 and 4 to hold.

B.3.4 Handling of imaginary part

If we allow for unitary rotations Q 2 U(D), real-valued data is typically rotated into imaginary space.
In fact, the case that the input remains real even has probability zero:

P[Qx 2 RD] = 0. (98)

This does not pose a problem for our theory: The covariance matrix is positive definite also for
complex data and so it has a positive determinant and trace, which are the only quantities entering the
non-Standardness S (see Equation (8)).

26

B.4 Proof of Theorem 2

Lemma 7. With the definitions in Section 5.1 and p(Q) the Haar measure over the orthogonal group

O(D):

EQ⇠p(Q)[log detM
2
a
] � D/2 log

✓
1�

DD

2(D + 1)(D � 1)

Var[�]

�max

◆
. (99)

Proof. By Proposition 2, M2
a

is given by:

M
2
a
= Diag(⌃0,aa � ⌃0,ap⌃

�1
0,pp⌃0,pa)

�1
. (100)

The determinant of a diagonal matrix is equal to the product of the entries on the diagonal. By the
permutation symmetry of p(Q), we can pick the entry in the upper left corner:

EQ⇠p(Q)[log detM
2
a
] = D/2EQ⇠p(Q)[log((M

�2
a

)11)] �D/2 logEQ⇠p(Q)[(M
2
a
)11]. (101)

The last step is due to the Jensen inequality.

We are left with computing EQ⇠p(Q)[(M
2
a
)11]:

EQ⇠p(Q)[(M
2
a
)11] = EQ⇠p(Q)[(⌃0,aa � ⌃0,ap⌃

�1
0,pp⌃0,pa)11] (102a)

= EQ⇠p(Q)[(⌃0,aa)11]� EQ⇠p(Q)[(⌃0,ap⌃
�1
0,pp⌃0,pa)11] (102b)

=
1

D
tr⌃0 � EQ⇠p(Q)[(⌃0,ap⌃

�1
0,pp⌃0,pa)11]. (102c)

The first expectation can be exactly computed via Lemma 2.

The average trace of the second matrix is not so easy to evaluate. As ⌃�1
0,pp is positive definite, we

can replace it with the worst case in the expectation:

(⌃0,ap⌃
�1
0,pp⌃0,pa)11 � (⌃0,ap�

�1
maxI⌃0,pa)11 = (⌃0,ap⌃0,pa)11�

�1
max. (103)

�max is the largest eigenvalue of ⌃, which does not depend on Q.

The expectation value can now be computed exactly:

EQ⇠p(Q)[(⌃0,ap⌃0,pa)11] =

D/2X

i=1

EQ⇠p(Q)[(⌃0,ap)1i(⌃0,pa)i1] (104a)

= D/2EQ⇠p(Q)[(⌃0,ap)
2
11]. (104b)

The last step is because each summand will have the same contribution. Writing the matrix multipli-
cation out explicitly:

(⌃0,ap)
2
11 = (QDiag(�1, . . . ,�D)Q⇤)211 = (

DX

j=1

Q1j�jQ(D/2+1)j)
2 (105)

Again by symmetry, we can exchange axes and write 2 instead of D/2 + 1 in what follows:

(
DX

j=1

Q1j�jQ(D/2+1)j)
2 = (

DX

j=1

Q1j�jQ2j)
2 =

DX

j,k=1

�j�kQ1jQ2jQ1kQ2k. (106)

Taking the expectation, we use the linearity of the expectation and are left with the following
monomials of elements of Q:

1. j = k: EQ⇠p(Q)[Q
2
1jQ

2
2j] = EQ⇠p(Q)[Q

2
11Q

2
21] as we can exchanges axes,

2. j 6= k: EQ⇠p(Q)[Q1jQ2jQ1kQ2k] = EQ⇠p(Q)[Q11Q21Q12Q22] as we can exchange axes.

27

By [42], these amount to the following integrals of monomials of entries of random orthogonal
matrices and the corresponding values:

1.
⌦
2 2

↵
=

1

D(D + 2)
, (107a)

2.

⌧
1 1
1 1

�
= �

1

D(D � 1)(D + 2)
. (107b)

Together, we find

EQ⇠p(Q)[(M
2
a
)11] = 1�

1

2(D + 2)�max

0

@
DX

j=1

�
2
j
�

1

D � 1

X

j 6=k

�j�k

1

A (108a)

= 1�
D

2

2(D � 1)(D + 2)

Var[�]

�max
. (108b)

Here, Var[�] = 1
D
tr⌃2

� (1
D
tr⌃)2 is the variance of the eigenvalues of ⌃.

Insert this to obtain the result.

Lemma 8. With the definitions in Section 5.1:

EQ⇠p(Q)[log detM
2
a
] � D/2 log

✓
1�

DD

2(D + 1)(D � 1)

Var[�]

�max

◆
. (109)

Proof. The idea is to lower bound
Var[�]

�max
(110)

by some function of L. We make use of following arithmetic mean-geometric mean (AM-GM)
inequality by [43]:

Var[�]

2�max
 �̄� g

Var[�]

2�min
, (111)

where g is the geometric mean of the eigenvalues:

g :=

0

@
DY

i=1

�i

1

A
1/D

. (112)

We can write the loss L directly via g and vice versa:

L = �
1

2
log gD = �

D

2
log g, (113a)

g = exp(�2L/D). (113b)

Rewrite Equation (111) to our needs:
Var[�]

�max
=

Var[�]�min

�max�min
=

2

Var[�]

2�min
�

2

(1� g), (114)

with the condition number of the covariance ⌃.

As we want a bound that merely depends on the loss, we upper bound using a function of the
loss, yielding a lower bound on Var[�]/�max that merely depends on the loss. The maximum of the
condition value is given by:

max
�1,...,�DP

i �i=D
Q

i �
1/D
i =g

 =
1 +

p
1� gD

1�
p
1� gD

. (115)

This yields the required lower bound:

Var[�]

�max
� 2

1�
p
1� gD

1 +
p
1� gD

(1� g), (116)

28

which results in an overall upper bound:

EQ2O(D)[S(⌃1(Q))] S(⌃) +
D

4
log

1�

D
2

(D � 1)(D + 2)

1�
p
1� gD

1 +
p
1� gD

(1� g)

!
. (117)

Replacing the expression in Equation (113b) for g yields the statement.

We summarize to obtain the proof of Theorem 2:

Proof. Equation (15) is the form of non-Standardness S(⌃1) (see Equation (8)) we need to evaluate
when Assumptions 1 and 2 hold. Into this equation, insert Lemma 3 together with Lemma 7 for the
first bound. For the second bound, insert Lemmas 3 and 8.

B.5 Proof of Theorem 3

Proof. The non-Standardness will not increase by the action of a single layer given in Proposition 2
(compare Equation (14)). This holds regardless of the rotations of the individual blocks Q1, . . . QL,
so S(⌃) = S(⌃0) � S(⌃1) � · · · � S(⌃L). It is easy to see that � decreases as S decreases by
using S > 0 to check that

@�

@S
> 0. (118)

Together, we have:
�
�
S(⌃L�1)

�
 · · · �

�
S(⌃0)

�
. (119)

Rewrite Theorem 2 as follows:

EQ2O(D)[S(⌃1(Q))] �
�
S(⌃0)

�
S(⌃), (120)

and apply repeatedly:

EQ1,...,QL2O(D)[S(⌃L)] EQ1,...,QL�12O(D)[�(S(⌃L�1))S(⌃L�1)] (121a)
 �(S(⌃))EQ1,...,QL�12O(D)[S(⌃L�1)] (121b)

 · · · �(S(⌃))LS(⌃0) (121c)

This shows the statement.

C Compatible coupling architectures

All statements in this paper apply to the following architectures, where we assume each layer to
be equipped with ActNorm [6]. To shorten the notation, we consider how a single dimension is
transformed and rewrite the dependence on p0 via a parameter vector ✓ = ✓(p0), which is usually
computed by a feed-forward neural network:

y = c(x; ✓), (122)

short for:
(a1)i = c

�
(a0)i; ✓i(p0)

�
. (123)

• Affine coupling flows in the form of NICE [4], RealNVP [5] and GLOW [6]:

c(x; ✓) = sx+ t. (124)

Here, ✓ = [s; t] 2 R+ ⇥ R.
• Nonlinear squared flow [19]:

c(x; ✓) = ax+ b+
c

1 + (dx+ h)2
, (125)

for ✓ = [a, b, c, d, h] 2 R5.

29

• SOS polynomial flows [27]:

c(x; ✓) =

Z
x

0

kX

=1

0

@
rX

l=0

al,u
l

1

A
2

du+ t. (126)

Here, ✓ = [t; (al,)l,] 2 R⇥ Rrk.
• Flow++ [18]:

c(x; ✓) = s�
�1

0

@
KX

j=1

⇡j�

x� µj

�j

!1

A+ t. (127)

Here, ✓ = [s; t; (⇡j , µj ,�j)Kj=1] 2 R+⇥R⇥ (R⇥R⇥R+)K and � is the logistic function.
• Spline flows in the form of piecewise-linear, monotone quadratic [20], cubic [21], and

rational quadratic [22] splines. Here, c is a spline of the corresponding type, parameterized
by knots ✓.

• Neural autoregressive flow [26] parameterize c(x; ✓) by a feed-forward neural network,
which can be shown to be bijective if all weights are positive and all activation functions are
strictly monotone.
One can also restrict the neural network c(x; ✓) to have positive output and integrate it
numerically. This was introduced as unconstrained monotonic neural networks [24].

30

	Introduction
	Related work
	Coupling-based normalizing flows
	Coupling layers as whitening transformation
	Explicit convergence rate
	Single coupling block guarantees
	Precise guarantee
	Interpretable guarantee

	Deep network guarantee

	Conclusion
	Details on Experiments
	Deep network on EMNIST
	Single layer on EMNIST digit covariance
	Single block on toy data
	Layer-wise training on toy data

	Detailed proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Problem reformulation
	Projected orbit expectation
	Summary
	Handling of imaginary part

	Proof of Theorem 2
	Proof of Theorem 3

	Compatible coupling architectures

