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Abstract

Coupling-based normalizing flows (e.g. RealNVP) are a popular family of nor-
malizing flow architectures that work surprisingly well in practice. This calls for
theoretical understanding. Existing work shows that such flows weakly converge
to arbitrary data distributions [1]. However, they make no statement about the
stricter convergence criterion used in practice, the maximum likelihood loss. For
the first time, we make a quantitative statement about this kind of convergence:
We prove that all coupling-based normalizing flows perform whitening of the
data distribution (i.e. diagonalize the covariance matrix) and derive corresponding
convergence bounds that show a linear convergence rate in the depth of the flow.
Numerical experiments demonstrate the implications of our theory and point at
open questions.

1 Introduction

Normalizing flows [2, 3] are among the most promising approaches to generative machine learning
and have already demonstrated convincing performance in a wide variety of practical applications,
ranging from image analysis [4, 5, 6, 7, 8] to astrophysics [9], mechanical engineering [10], causality
[11], computational biology [12] and medicine [13]. As the name suggests, normalizing flows
represent complex data distributions as bijective transformations (also known as flows or push-

forwards) of standard normal or other well-understood distributions.

In this paper, we focus on a theoretical underpinning of coupling-based normalizing flows, a par-
ticularly effective class of normalizing flows in terms of invertible neural networks. All of the
above applications are actually implemented using coupling-based normalizing flows. Their central
building blocks are coupling layers, which decompose the space into two subspaces called active and
passive subspace (see Section 3). Only the active dimensions are transformed conditioned on the
passive dimensions, which makes the mapping computationally easy to invert. In order to vary the
assignment of dimensions to the active and passive subspaces, coupling layers are combined with
preceding orthonormal transformation layers into coupling blocks. These blocks are arranged into
deep networks such that the orthonormal transformations are sampled uniformly at random from the
orthogonal matrices and the coupling layers are trained with the maximum likelihood objective, see
Equation (2). Upon convergence of the training, the sequence of coupling blocks gradually transforms
the probability density that generated the given training data, into a standard normal distribution and
vice versa.
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Figure 1: (Left) The Maximum Likelihood Loss L (blue) can be split into the non-Gaussianity

G (orange) [25] and the non-Standardness S (green) of the latent code z = f✓(x): L = G + S

(Proposition 1). For the latter, we give explicit guarantees as one more coupling block is added in
Theorems 1 and 2 and show a global convergence rate in Theorem 3. (Right) Typical fit of EMNIST
digits by a standard affine coupling flow for various depths. Our theory (Theorem 1) upper bounds
the average S for L+ 1 coupling blocks given a trained model with L coupling blocks (dotted green).
We observe that our bound is predictive for how much end-to-end training reduces S .

Since the resulting normalizing flows deviate significantly from optimal transport flows [14] and the
bulk of the mathematical literature is focusing on optimal transport, an analysis tailored to coupling
architectures is lacking. In a landmark paper, [1] proved that sufficiently large affine coupling flows
weakly converge to arbitrary data densities. The notion of weak convergence is critical here, as it does

not imply convergence in maximum likelihood [15, Remark 3]. Maximum likelihood (or, equivalently,
the Kullback-Leibler (KL) divergence) is the loss that is actually used in practice. It can be used for
gradient descent and it guarantees not only convergence in samples (“x ⇠ q(x) ! x ⇠ p(x)”) but
also in density estimates (“q(x) ! p(x)”). It is strong in the sense that the square root of the KL
divergence upper bounds (up to a factor 2) the total variation metric, and hence also the Wasserstein
metric if the underlying space is bounded [16]. Moreover, convergence under the KL divergence
implies weak convergence which is fundamental for robust statistics [17].

We take a first step towards showing that coupling blocks also converge in terms of maximum likeli-
hood. To the best of our knowledge, our paper presents for the first time a quantitative convergence
analysis of coupling-based normalizing flows based on this strong notion of convergence.

Specifically, we make the following contributions towards this goal:

• We utilize that the loss of a normalizing flow can be decomposed into two parts (Figure 1):
The divergence to the nearest Gaussian (non-Gaussianity) plus the divergence of that
Gaussian to the standard normal (non-Standardness).

• The contribution of a single coupling layer on the non-Standardness is analyzed in terms of
matrix operations (Schur complement and scaling).

• Explicit bounds for the non-Standardness after a single coupling block in expectation over
all orthonormal transformations are derived.

• We use these results to prove that a sequence of coupling blocks whitens the data covariance
and to derive linear convergence rates for this process.

Our results hold for all coupling architectures we are aware of (Appendix C), including: NICE [4],
RealNVP [5], and GLOW [6]; Flow++ [18]; nonlinear-squared flow [19]; linear, quadratic [20],
cubic [21], and rational quadratic splines [22]; neural autoregressive flows [23], and unconstrained
monotonic neural networks [24]. We confirm our theoretical findings experimentally and identify
directions for further improvement.
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2 Related work

Analyzing which distributions coupling-based normalizing flows can approximate is an active area of
research. A general statement shows that a coupling-based normalizing flow which can approximate
an arbitrary invertible function can learn any probability density weakly [1]. This applies to affine
coupling flows [4, 5, 6], Flow++ [18], neural autoregressive flows [26], and SOS polynomial flows
[27]. Affine coupling flows converge to arbitrary densities in Wasserstein distance [15]. Both
universality results, however, require that the couplings become ill-conditioned (i.e. the learnt
functions become increasingly discontinuous as the error decreases, whereas in practice one observes
that functions remain smooth). Also, they consider only a finite subspace of the data space. Even more
importantly, the convergence criterion employed in their proofs (weak convergence resp. convergence
under Wasserstein metric) is critical: Those criteria do not imply convergence in the loss that is
employed in practice [15, Remark 3], the Kullback-Leibler divergence (equivalent to maximum
likelihood). An arbitrarily small distance in any of the above metrics can even result in an infinite
KL divergence. In contrast to previous work on affine coupling flows, we work directly on the KL
divergence. We decompose it in two contributions and show the flow’s convergence for one of the
parts.

Regarding when ill-conditioned flows need to arise to fit a distribution, [28] showed that well-
conditioned affine couplings can approximate log-concave padded distributions, again in terms of
Wasserstein distance. Lipschitz flows on the other hand cannot model arbitrary tail behavior, but this
can be fixed by adapting the latent distribution [29].

SOS polynomial flows converge in total variation to arbitrary probability densities [30], which also
does not imply convergence in KL divergence; zero-padded affine coupling flows converge weakly
[23], and so do Neural ODEs [31, 32]. Normalizing Flows with diagonal Jacobian in each layer,
known as Gaussianization (Flows), also converge weakly [33, 34].

Closely related to our work, 48 linear affine coupling blocks can represent any invertible linear
function Ax + b with det(A) > 0 [15, Theorem 2]. This also allows mapping any Gaussian
distribution N (m,⌃) to the standard normal N (0, I). We put this statement into context in terms
of the KL divergence: The loss is exactly composed of the divergence to the nearest Gaussian and
of that Gaussian to the standard normal. We then make strong statements about the convergence
of the latter, concluding that for typical flows a smaller number of layers is required for accurate
approximation than predicted by [15].

3 Coupling-based normalizing flows

Normalizing flows learn an invertible function f✓(x) that maps samples x from some unknown
distribution p(x) given by samples to latent variables z = f✓(x) so that z follow a simple distribution,
typically the standard normal. The function f✓ then yields an estimate q(x) for the true data
distribution p(x) via the change of variables formula (e.g. [5]):

q(x) = N (f✓(x); 0, I)| det J |, (1)

where J = rf✓(x) is the Jacobian of f✓(x). We can train a normalizing flow via the maximum
likelihood loss, which is equivalent to minimizing the Kullback-Leibler divergence between the
distribution of the latent code q(z), as given by z = f✓(x) when x ⇠ p(x), and the standard normal:

L = DKL(q(z)kN (0, I)) = Ex⇠p(x)

h
1
2

��f✓(x)
��2 � log | det J |

i
+ const . (2)

The invertible architecture that makes up f✓ has to (i) be computationally easy to invert, (ii) be able
to represent complex transformations, and (iii) have a tractable Jacobian determinant | det J | [9].
Building such an architecture is an active area of research, see e.g. [2] for a review. In this work, we
focus on the family of coupling-based normalizing flows, first presented in the form of the NICE
architecture [4]. It is a deep architecture that consists of several blocks, each containing a rotation, a
coupling and an ActNorm layer [6]:

fblock(x) = (fact � fcpl � frot)(x). (3)

The coupling fcpl splits an incoming vector x0 in two parts along the coordinate axis: The first part
p0, which we call passive, is left unchanged. The second part a0, which we call active, is modified as
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a function of the passive dimensions:

fcpl(x0) = fcpl

✓
p0

a0

◆
=

✓
p0

c(a0; p0)

◆
=:

✓
p1

a1

◆
. (4)

Here, the coupling function c : RD/2
⇥RD/2

! RD/2 has to be a function that is easy to invert when
p0 is given, i.e. it is easy to compute a0 = c

�1(a1; p0) given p0. This makes the coupling easy to
invert: Call x1 = (p1; a1) the output of the layer, then p0 = p1. Use this to invert a1 = c(a0; p0). For
example, RealNVP [5] proposes a simple affine transformation for c: a1 = c(a0; p0) = a0 � s(p0) +

t(p0) (� means element-wise multiplication). s(p0) 2 RD/2
+ and t(p0) 2 RD/2 are computed by a

feed-forward neural network. The coupling functions c of other architectures our theory applies to
are listed in Appendix C.

An Activation Normalization (ActNorm) layer [6] helps stabilize training and is implemented in
practice like in the popular INN framework FrEIA [35]. It rescales and shifts each dimension:

fact(x) = r � x+ u, (5)
given parameters r 2 RD

+ and u 2 RD. We include it as it simplifies our mathematical arguments.

If we were to concatenate several coupling layers, the entire network would never change the passive
dimensions apart from the element-wise affine transformation in the ActNorm layer. Here, the
rotation layers frot(x) = Qx come into play [6]. They multiply an orthogonal matrix Q to the data,
changing which subspaces are passive respectively active. This matrix is typically fixed at random at
initialization and then left unchanged during training.

4 Coupling layers as whitening transformation

The central mathematical question we answer in this work is the following: How can a deep coupling-
based normalizing flow whiten the data? As the latent distribution is a standard normal, whitening is
a necessary condition for the flow to converge. This is a direct property of the loss:
Proposition 1 (Pythagorean Identity, Proof in Appendix B.1). Given data with distribution p(x) with

mean m and covariance ⌃. Then, the Kullback-Leibler divergence to a standard normal distribution

decomposes as follows:

DKL(p(x)kN (0, I)) = DKL(p(x)kN (m,⌃))| {z }
non-Gaussianity G(p)

+DKL(N (m,⌃)kN (0, I))| {z }
non-Standardness S(p)

, (6)

and the non-Standardness again decomposes:

S(p) = DKL(N (m,⌃)kN (m,Diag(⌃)))| {z }
Correlation C(p)

+DKL(N (m,Diag(⌃))kN (0, I))| {z }
Diagonal non-Standardness

. (7)

This splits the transport from the data distribution to the latent standard normal into three parts:
(i) From the data to the nearest Gaussian distribution N (m,⌃), measured by G. This measure of
non-Gaussianity is often denoted as the negentropy, e.g. [36]. (ii) From that nearest Gaussian to the
corresponding uncorrelated Gaussian N (m,Diag(⌃)), measured by C. (iii) From the uncorrelated
Gaussian to standard normal.

We do not make explicit use of the fact that the non-Standardness can again be decomposed,
but we show it nevertheless to relate our result to the literature: The Pythagorean identity
DKL(p(x)kN (m,Diag(⌃))) = G(p) + C(p) has been shown before by [25, Section 2.3]. Both
their and our result are specific applications of the general [37, Theorem 3.8] from information
geometry. Our proof is given in Appendix B.1.

Proposition 1 is visualized in Figure 1. In an experiment, we fit a set of Glow [6] coupling flows
of increasing depths to the EMNIST digit dataset [38] using maximum likelihood loss and measure
the capability of each flow in decreasing G and S (Details in Appendix A.1). The form of the non-
Standardness S is given by the well-known KL divergence between the involved normal distributions,
see Equation (30) in Appendix B.1. It is invariant under rotations Q and only depends on the first two
moments m,⌃:

S(m,⌃) := S(p) =
1

2
(kmk

2 + tr⌃�D � log det⌃)) = S(Qm,Q⌃QT). (8)
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The non-Standardness S will be our measure on how far the covariance and mean have approached
the standard normal in the latent space. We give explicit loss guarantees for S for a single coupling
block in Theorems 1 and 2 and imply a linear convergence rate for a deep network in Theorem 3.

Deep Normalizing Flows are typically trained end-to-end, i.e. the entire stack of blocks is trained
jointly. In this work, our ansatz is to consider the effect of a single coupling block on the non-
Standardness S . Then, we combine the effect of many isolated blocks, disregarding potential further
improvements to S due to joint, cooperative learning of all blocks. This simplifies the theoretical
analysis of the network, but it is not a restriction on the model: Any function that is achieved in
block-wise training could also be the solution of end-to-end training.

We aim to strongly reduce S while leaving room for a complementary theory explaining how non-
Gaussianity G is reduced in practice. Note that affine-linear functions Ax+ b can never change G,
because they jointly transform the distribution p(x) at hand and correspondingly the closest Gaussian
to it (see Lemma 1 in Appendix B.2). Thus, if we restrict our coupling layers to be affine-linear
functions, we are able to reduce S without increasing G in turn. This motivates considering affine-
linear couplings of the following form, spelled out together with ActNorm as given by Equation (5).
The results in this work apply to all coupling architectures, as they all can represent this coupling,
see Appendix C. ✓

p1

a1

◆
= (fact � fcpl)(Qx) = r �

✓
I 0
T I

◆✓
p0

a0

◆
+ u. (9)

For future work considering G, we propose to lift the restriction to affine-linear layers while making
sure that S behaves as described in what follows. As the convergence of G however will strongly
depend on the coupling architecture and data p(x) at hand, this is beyond the scope of this work.

Our first result shows which mean m1 and covariance ⌃1 a single affine-linear coupling as in
Equation (9) yields to minimize S(m1,⌃1) given data with mean m and covariance ⌃, rotated by Q:
Proposition 2 (Proof in Appendix B.2). Given D-dimensional data with mean m and covariance ⌃
and a rotation matrix Q. Split the covariance of the rotated data into four blocks, corresponding to

the passive and active dimensions of the coupling layer:

Q⌃QT = ⌃0 =

✓
⌃0,pp ⌃0,pa

⌃0,ap ⌃0,aa

◆
(10)

Then, the moments m1,⌃1 that can be reached by a coupling as in Equation (9) are:

m1 = 0, ⌃1 =

✓
M(⌃0,pp) 0

0 M(⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa)

◆
. (11)

This minimizes S as given in Equation (8), and G does not increase.

The function M takes a matrix A and rescales the diagonal to 1 as follows. It is a well-known
operation in numerics called Diagonal scaling or Jacobi preconditioning so that M(A)ii = 1:

M(A)ij =
p
AiiAjj

�1
Aij = (Diag(A)�1/2

ADiag(A)�1/2)ij . (12)
Proposition 2 shows how the covariance can be brought closer to the identity.

The new covariance has passive and active dimensions uncorrelated. In the active subspace, the
covariance is the Schur complement ⌃0,aa �⌃0,ap⌃

�1
0,pp⌃0,pa. This coincides with the covariance of

the Gaussian N (0,⌃) as it is conditioned on any passive value p. Afterwards, the diagonal is rescaled
to one, matching the standard deviations of all dimensions with the desired latent code. The proof is
based on a more general result how a single layer maximally reduces the Maximum Likelihood Loss
for arbitrary data [14], which we apply to the non-Standardness S (see Appendix B.2).

Figure 2 shows an experiment in which a single affine-linear layer was trained to bring the covariance
of EMNIST digits [38] as close to I as possible (Details in Appendix A.2). The experimental result
coincides with the prediction by Proposition 2. Due to the finite batch-size, a small difference between
theory and experiment remains.

5 Explicit convergence rate

In Section 4, we showed how a single coupling layer acts on the first two moments of a given data
distribution to whiten it. We now explicitly demonstrate how much progress this means in terms
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Figure 2: How a single coupling layer can whiten the covariance at the example of the EMNIST
digits covariance matrix (first panel). The covariance after a single layer trained experimentally
to minimize non-Standardness S(m1,⌃1) (second panel), which matches closely the prediction of
Proposition 2 (third panel). The difference between theory and experiment vanishes (last panel).

of the non-Standardness S(m1,⌃1) averaged over rotations Q (Theorems 1 and 2) and show the
consequences for multiple blocks (Theorem 3).

5.1 Single coupling block guarantees

Proposition 2 allows the computation of the minimum non-Standardness after a single coupling block
given its rotation Q, by evaluating S(m1,⌃1). In fact, if we were to choose Q such that the data
is rotated so that principal components lie on the axes (i.e. obtain Q using PCA), a single coupling
block suffices to reduce the covariance to the identity: ⌃0 = Q⌃QT would be a diagonal matrix
and ⌃1 = I . This is not the case in practice, where this optimal orientation has zero probability: Q
is chosen uniformly at random before training from all orthogonal matrices. One could argue that
one should whiten the data before passing it to the flow, reducing S to zero from the start. However,
any change in the architecture could possibly alter the performance of the network with regard to
reducing the non-Gaussianity G. Also, our work shows that coupling-based normalizing flows are
already well-equipped to bring the non-Standardness to zero without such modifications. To properly
describe the achievable non-Standardness S , we formulate all guarantees as expectations over the
rotation Q, corresponding to the loss averaged over training runs.

We make two mild assumptions on our data that are part of usual data-preprocessing, when the mean
is subtracted from the data and all data points are divided by the scalar

p
tr⌃/D (not to be confused

with diagonal preconditioning, which acts dimension-wise).
Assumption 1. The data p(x) is centered: Ex⇠p(x)[x] = 0.

Assumption 2. The covariance is normalized: tr⌃ = D.

The assumptions simplify the non-Standardness in Equation (8), which now only depends on the
determinant of ⌃:

S(⌃) = �
1
2 log det⌃ = �

1
2 log det⌃0 = S(⌃0) (13)

for arbitrary rotation Q. We aim to compute the average non-Standardness after a single block
EQ2p(Q)[S(⌃1(Q))]. For any Q, S(⌃1) is again given by the determinant of the covariance ⌃1(Q)
as Assumptions 1 and 2 remain fulfilled: By Proposition 2 m1 = 0 and the diagonal preconditioning
M ensures that the trace of ⌃1 is D. We write det(⌃1) via Ma and Mp, the diagonal matrices that
make up the diagonal preconditioning in Equation (12), and use the Schur determinantal formula
for the determinant of block matrices: det(⌃0,pp) det(⌃0,aa � ⌃0,ap⌃

�1
0,pp⌃0,pa) = det(⌃0) =

det(⌃) [39]. We thus get det(⌃1) = det(Mp⌃0,ppMp) det(Ma(⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa)Ma) =

det(M2
p
) det(M2

a
) det(⌃). Inserting this into Equation (13), we find:

S(⌃1) = �
1
2 (log det⌃+ log detM2

p
+ log detM2

a
)  S(⌃0) = S(⌃). (14)

The inequality S(⌃1)  S(⌃0) holds because ⌃1 = ⌃0 is an admissible solution of the coupling
layer optimization, but ⌃1 as given by Proposition 2 is a minimizer of S(⌃1).

We average this quantity over training runs, i.e. over rotations Q:

EQ⇠p(Q)[S(⌃1)] = �
1
2

�
log det⌃+ EQ⇠p(Q)[log detM

2
p
] + EQ⇠p(Q)[log detM

2
a
]
�
. (15)
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The main difficulty lies in the computation of EQ⇠p(Q)[log detM
2
a
]. Here, we contribute the two

strong statements Theorems 1 and 2 below.

5.1.1 Precise guarantee

The first result relies on projected orbital measures as developed by [40]. This theory describes the
eigenvalues of submatrices of matrices in a random basis. We require such a result for integrating
over p(Q) in EQ⇠p(Q)[log detM

2
a
]. In contrast to typical choices of p(Q), the theory to this date

only covers data rotated by unitary matrices.1 To comply with [40], we make two more assumptions:
Assumption 3. The distribution of rotations is the Haar measure over unitary matrices U(D).

Assumption 4. The eigenvalues of the covariance matrix ⌃ are distinct: �i 6= �j for i 6= j.

One could think that the step from orthogonal to unitary rotations takes us far away from the scenario
we want to consider. We will later observe empirically that the difference between averaging over
unitary and orthogonal matrices is negligible. Technically, the covariance matrix remains positive
definite, so the non-Standardness S is always real (see Appendix B.3.4). We will write EQ⇠U(D)[ · ]
to denote expectations over unitary matrices.

Assumption 4 is typically satisfied when working with real data that are in ‘general position’. We are
now ready to compute the average training performance of a single coupling block:
Theorem 1 (Proof in Appendix B.3). Given D-dimensional data with covariance ⌃ with eigenvalues

�1, . . .�D. Assume that Assumptions 1 to 4 hold. Then, after a single coupling block, the expected

non-Standardness is bounded from above:

EQ2U(D)[S(⌃1(Q))]<S(⌃)+D

2 log

✓
(�1)

D

2 +1
DX

i=1

�
1�D

2
i

log(�i)R(��1
i

;��1
6=i

)eD

2 �1
(��1

6=i
)

◆
. (16)

Here, � 6=i := {�1, . . . ,�i�1,�i+1, . . . ,�D} and R, eK are given by:

R(a; {bi}
N

i=1) =
NY

i=1

1

a� bi
and eK({bi}

N

i=1) =
X

0<i1<···<iKN

bi1 · · · biK . (17)

Inequality (16) sharply bounds the expected non-Standardness that can be achieved by a single block.
The only approximation made is an inequality which comes close to equality as the dimension D

increases due to the concentration of the corresponding probability distribution.

Figure 3 shows an experiment confirming Theorem 1 (Details in Appendix A.3). We start with
covariance matrices using parametrized eigenvalue spectra. On each, we first apply a single coupling
block with random Q and train the coupling that maximally reduces S (Proposition 2). Then we
iteratively append 32 additional blocks in the same manner, building a flow of that depth. We average
the resulting empirical ratio S(⌃1)/S(⌃) over several orthogonal orientations Q of the rotation layer
for each input covariance matrix. Then, we compare this to (i) experimentally averaging over unitary

rotations and (ii) to the prediction by Theorem 1 and confirm that it is a valid and close upper bound.
Details for replication and more examples can be found in Appendix A.3.

The proof explicitly integrates E[M2
a
] using [40] (see Appendix B.3). Numerically evaluating

Equation (16) can be hard even for small D as the summands scale as O(exp(D)), but the overall
sum scales as O(D). High values cancel due to R alternating in sign, and one requires arbitrary-
precision floating point software to evaluate Equation (16).

5.1.2 Interpretable guarantee

The guarantee in Theorem 1 yields useful predictions, but it does not lend itself to further analysis:
How does the bound behave over several coupling blocks? What is the behavior for varying dimension
D? Also, Assumption 3 restricts formal reasoning as we are interested in averaging over orthogonal
and not unitary rotations. Our second single-block guarantee depends only on simple metrics of the
covariance. Moreover, we drop Assumptions 3 and 4, averaging over orthogonal, not unitary, Q:

1The only result known to us would yield predictions for D = 2 [41], whereas we are interested in large D.
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Figure 3: Comparison between predicted non-Standardness and experiment for 48-dimensional
parametrized eigenvalue spectra (insets), varied over a parameter which controls the spread of the
spectrum and thus changes S. The experimental average over orthogonal rotations matrices (blue,
shaded by Interquartile Range IQR) is closely matched by the experimental average over unitary

matrices (dotted blue). The prediction by Theorem 1 is a close upper bound that closely matches the
experimental behavior (orange). The predictions by Theorem 2 are less precise, but converge to the
same value as the precise bound for covariances close to the identitiy: ‘Var-max’ is Equation (18a)
(green) and ‘Loss-only’ is Equation (18b) (red). More details and examples in Appendix A.3.

Theorem 2 (Proof in Appendix B.4). Given D-dimensional data fulfilling Assumptions 1 and 2 with

covariance ⌃ 6= I with eigenvalues �1, . . .�D. Then, after a single coupling block, the expected loss

can be bounded from above:

EQ2O(D)[S(⌃1(Q))]  S(⌃) +
D

4
log

 
1�

D
2

2(D � 1)(D + 2)

Var[�]

�max

!
(18a)

 S(⌃) +
D

4
log

 
1�

D
2

(D � 1)(D + 2)

1�
p

1� gD

1 +
p

1� gD
(1� g)

!
< S(⌃).

(18b)

Here, g is the geometric mean of the eigenvalues: g =
Q

D

i=1 �
1/D
i

= exp(�2S(⌃)/D) < 1 which

is a bijection of S(⌃).

These two new bounds on the average achievable non-Standardness S after a single block are also
depicted in Figure 3. They make useful predictions, but are less precise than Theorem 1. The second
bound will be especially useful in what follows because it only depends on the non-Standardness
before the block S(⌃).

The full proof is given in Appendix B.4. It relies on the integration of monomials of entries of random
orthogonal matrices as described by [42] and the arithmetic mean-geometric mean inequality by [43].

The first bound suggests an important property of the non-Standardness convergence of a coupling-
based normalizing flow in terms of dimension: The performance only marginally depends on the
dimension. To see this, divide Equation (18a) by D to obtain a statement about the non-Standardness
per dimension S/D. Then take several data sets with different dimension but same spectrum
characteristics (i.e. same geometric mean, variance and maximum of covariance eigenvalues). The
guarantee is then approximately constant in D (it varies slightly with D

2
/(D2 +D � 2), which is

always close to 1).

5.2 Deep network guarantee

The previous Section 5.1 was concerned with determining how much a single coupling block can
typically contribute towards reducing the S to zero. Now, we extend this result to compute the
expected non-Standardness after a deep coupling-based normalizing flow as an explicit function of
the number of blocks. We again treat the rotation layer of each block as a random variable, as it is
randomly determined before training.
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Figure 4: Deep network convergence of covariance on toy dataset. (Left) Each line shows the
experimental convergence of S via the repeated application of Proposition 2, averaged over 32 runs
with different rotations Q. (Right) The empirical convergence rate (blue), i.e. the ratio of S before
and after a block, is correctly bounded from above by our predictions in Theorem 1 (orange), and
the bounds in Theorem 2: Equation (18a) (green) and Equation (18b) (red). The solid lines show
the ratio (bounds) averaged over the toy dataset and rotations, the shade is the IQR. The experiment
suggests that a convergence rate like Theorem 3 can also be derived for the remaining bounds.

We find that the convergence rate of the covariance to the identity is (at least) linear:
Theorem 3 (Proof in Appendix B.5). Given D-dimensional data fulfilling Assumptions 1 and 2 with

covariance ⌃. Then, after L coupling blocks, the expected loss is smaller than:

EQ1,...,QL2O(D)[S(⌃L)]  �
�
S(⌃)

�L
S(⌃), (19)

where the convergence rate depends on the non-Standardness before training:

�(S) = 1 + 1
4S/D

log

 
1�

D
2

(D � 1)(D + 2)

1�
p

1� g(S)D

1 +
p

1� g(S)D

�
1� g(S)

�
!

< 1. (20)

The non-Standardness decreases at least exponentially fast in the number of blocks. The convergence
rate that holds for a deep network is computed using the non-Standardness of the input data S(⌃).
This rate comes from Equation (18b). The proof uses that �(S) improves from block to block as
S decreases (see Appendix B.5). Again, g(S) = exp(�2S/D) < 1 is the geometric mean of
eigenvalues of ⌃, which increases from block to block.

Figure 4 shows the convergence of the non-Standardness to zero in an experiment. We build a toy
dataset of various covariances where we aim to capture a plethora of possible cases (see Appendix A.4).
We apply a single coupling block with random Q and the coupling that maximally reduces S via
Proposition 2. We iteratively add such blocks 32 times, building a flow of that depth. The resulting
convergence of S as a function of depth is averaged over 32 runs with different rotations. The
measured curve confirms Theorem 3. We find that the rate � in Equation (20) is correct, but several
experiments show even faster convergence in practice. Indeed, the experiments suggest that dividing
all upper bounds for E[S(⌃1)] in Theorems 1 and 2 by S(⌃) also bounds the non-Standardness ratio
for subsequent blocks. Formally, we conjecture that E[S(⌃L)]/S(⌃)  (B/S(⌃))L where B is the
rhs. of Equations (16) and (18a) (Theorem 3 shows exactly this for Equation (18b)). We leave a proof
or falsification of this conjecture open to future work.

The experiment also suggests that all bounds agree after a few blocks, leaving a small gap to the
experiment. We can explicitly compute this limit value of �(S) by taking S ! 0:

�(S)
S!0
���!

D(D+2)�4
2(D�1)(D+2) 2

⇥
1/2, 5/9

⇤
. (21)

The two experimental observations together with this limit value suggest the heuristic that a single
additional coupling block typically reduces the non-Standardness S by a factor of approximately
50% if previous blocks are left unchanged, and possibly faster if cooperations between blocks are
taken into account.
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6 Conclusion

To the best of our knowledge, this is the first work on coupling-based normalizing flows that provides a
quantitative convergence analysis in terms of the KL divergence. Specifically, a minimal convergence
rate is established at which flows whiten the covariance of the input data under this strong measure of
discrepancy of probability distributions. Splitting the loss into the non-Gaussianity (negentropy) G
and the non-Standardness S, we show that this whitening is a necessary condition for the flow to
converge and give explicit guarantees. Our derivations suggest the rule of thumb that S can typically
be reduced by about 50% per coupling block.

Our central idea was to separate out the contribution a single isolated block can make to reduce the
loss, arguing that end-to-end training can only outperform the concatenation of isolated blocks.

Having separated the tasks a normalizing flow has to solve, and having explained how the non-
Standardness S can be reduced to zero, we hope that explaining also the entire convergence of
L = G + S with respect to the KL divergence is within reach. In particular, our theory did not yet
explore how the non-linear part of each coupling block reduces the non-Gaussianity G.
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