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Abstract

Much of the recent successes of deep learning can be attributed to scaling up the
size of the networks to the point where they often are vastly overparameterized.
Thus, understanding the role of overparameterization is of increasing importance.
While predictive theories have been developed for supervised learning, little is
known about the Reinforcement Learning case. In this work, we take a theoretical
approach and study the role of overparameterization for off-policy Temporal Dif-
ference (TD) learning in the linear setting. We leverage tools from random matrix
theory and random graph theory to obtain a characterization of the spectrum of the
TD operator. We use this result to study the stability and optimization dynamics
of TD learning as a function of the number of parameters.

1 Introduction

Occam’s razor principle states that among many plausible explanations, the simplest one is the
most likely to be true. In statistics and machine learning, this is often interpreted as models with
a restricted number of parameters should be privileged as they generalize better (Akaike, 1974).
This view is supported by the classical bias-variance trade-off which implies that models that
are too flexible are bound to overfit (Geman et al., 1992). Yet, deep neural networks with more
parameters than training data points achieved remarkable performance in many domains (LeCun
et al., 1989; Krizhevsky et al., 2012; Devlin et al., 2018), challenging this conventional wisdom.
A significant understanding of this apparent tension has been reached in recent years. A large
body of work using tools from random matrix theory has shown that, in models with random
features, overparameterization does not lead to overfitting but instead better generalization (Belkin
et al., 2020). This phenomenon is known as double descent and unifies the traditional and modern
understanding of bias and variance. Importantly, Kuzborskij et al. (2021) has shown that the double
descent phenomenon is in large part explained by purely optimization rather than label noise.
Following their insight, we mainly take an optimization approach in the rest of our paper.

While we now have a theory of overparameterization in supervised learning, the theoretical analysis
of overparameterization in the reinforcement learning (RL) setting is largely unexplored (Xiao et al.,
2021). Indeed, RL poses several new additional challenges. First, the agent has to interact with an
environment whose structure may be complex. Second, each state may not be sampled with equal
probability while each datapoint is usually sampled uniformly in supervised learning. In this work,
we focus mainly on policy evaluation, i.e evaluating the expected return of a fixed policy. More
precisely, we study the behavior of Temporal Difference learning (Sutton, 1988) which has become
ubiquitous for policy evaluation in modern Deep RL (Mnih et al., 2013; Haarnoja et al., 2018).

Our contributions are, in the limit of large number of states and parameters: 1) We introduce a
class of random graphs for which we can compute analytically the spectrum of the TD operator
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when using uniform off-policy sampling, 2) we derive approximations for the largest and smallest
eigenvalue in the non-uniform case. Furthermore, we analyze the behavior of the traditional Mean
Square Bellman Error (MSBE) when learning with TD(0) and show that 3) it exhibits a double
descent phenomenon similar to supervised learning but with a multiplicative factor depending on
the discount factor in the overparameterized regime and 4) the asymptotic residual MSBE displays
a peaking behavior near the interpolation threshold (when the number of parameters approaches
the number of states) that is specific to RL. Finally, 5) we showcase how the non-stationarity of the
policy can make the optimization of the value function unstable. All of these points are motivated
theoretically and empirically validated on small gridworlds MDPs.

2 Background

2.1 Value estimation

Definition: We place ourselves in the Markov Decision Process (MDP) setting (Puterman, 2014)
defined by {S,A,Psa→s, r, γ, p0}, where S and A denote the finite state and action spaces,
Psa→s ∈ R|S|·|A|×|S| is the environment transition probability matrix and r ∈ R|S|·|A| de-
notes the (deterministic) reward vector. γ ∈ [0, 1[ is the discount factor, and lastly, p0 is the
initial state distribution. For a given policy π, i.e a distribution over actions given a state, the
goal of value estimation is to be able to estimate the expected discounted return qπ(s, a) =
EPsa→s,π

[∑
t γ

tr(st, at)|s0 = s, a0 = a]. This quantity is also known as the state-action value
or the Q-function. Furthermore, it can be written as the solution of the Bellman equation (Bell-
man, 1954)1: qπ(s, a) = r(s, a) + γEPsa→s,π[q

π(s′, a′)]. By defining Pπ ∈ R|S|·|A|×|S|·|A| the
state-action to state-action transition matrix, we can write it in matrix form

qπ = r+ γPπqπ (1)

Linear function approximation: While Equation (1) can be solved efficiently when r,Pπ are
known and when n = |S| · |A| is not too large, in many cases this cannot be computed. One solution
is to introduce a parameter vector θ ∈ Rp and a feature matrix Φ ∈ Rn×p and optimize θ to approx-
imate qπ as qπ ≈ Φθ. This is referred to as the Linear Function Approximation (LFA) setting.

Temporal Difference with LFA: Estimating the Q-function in the Linear Function Approximation
setting can be done using the well-known algorithm TD(0) (Sutton, 1988) whose expected update is

θt+1 = θt + ηΦ⊤Ξ
(
r+ γPπΦθt − Φθt

)
(2)

where Ξ is the off-policy distribution matrix, a n×n diagonal matrix with positive entries summing
to 1, weighting each state-action by their probability of being sampled. Contrary to gradient descent
with an appropriate step-size, TD(0) is not guaranteed to converge as the matrix Φ⊤Ξ

(
In − γPπ)Φ

might have a negative eigenvalue. This phenomenon is known as the deadly triad as it can only
happen when we are (i) off-policy, (ii) using function approximation and (iii) bootstrapping on the
next value as TD(0) does (Baird, 1995; Tsitsiklis & Van Roy, 1997; Van Hasselt et al., 2018).

2.2 Random Matrix Theory

Wishart matrices: Extremely relevant in the study of least squares with random features are
matrices from the Wishart distribution (Wishart, 1928). These matrices can be written as 1

nΦ
⊤Φ

for Φ a n × p matrix with entries of zero mean, unit variance and bounded 4th moment sampled
independently and identically distributed. In that case, when p, n → ∞ and the ratio converges
to a finite limit limp,n→∞ p/n = ρ ∈]0,+∞[, the empirical spectral distribution converges to the
Marchenko-Pastur (Marčenko & Pastur, 1967) (MP) distribution whose density can be written as

dµ(x) = max{1− 1/ρ, 0} 1{0}(x)dx+
1

2πρx

√
(x− λ+

min)(λmax − x) 1[λ+
min,λmax]

(x)dx (3)

where 1A(·) is the indicator function, valued at 1 if x ∈ A, 0 otherwise and max{1− 1/ρ, 0} δ{0}(x)
are the 0 eigenvalues, which exist when p ≥ n, λmax = (1 +

√
ρ)2, the largest, and λ+

min =

(1−√
ρ)2, the smallest non-zero eigenvalue.

1Note that we study here the expectation Bellman equation, not the optimality Bellman equation which
would feature a max operator over the next action.
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Wigner-type matrices: Wigner (1955) historically introduced and studied symmetric n × n
matrices of the form W where Wij , i ≥ j are sampled i.i.d from a law of mean 0 and unit variance
for i ≥ j2. 1√

n
W has a real spectrum which converges to the semi-circle distribution dµ(x) =

1
2π

√
4− x2 1[−2,2]dx. When non-symmetric, the spectrum converges to the complex unit disk{z ∈

C, |z| ≤ 1}3 (Tao et al., 2010).

2.3 Random graphs

Random graphs are useful models to infer structural or spectral properties of typical graphs. The ear-
liest theoretical analyses of random graphs that we are aware of were done independently by Erdős
et al. (1960) and Gilbert (1959). The model introduced in Erdős et al. (1960) is a random graph
where each of the n nodes is connected at random to d others. The second model (Gilbert, 1959) is
slightly different as each node is independently connected to any other with a probability µ ∈]0, 1[.
We refer to the first one as the d-regular Erdős-Rényi model G(n, d) and the second one as the
Erdős-Rényi-Gilbert G(n, µ) model.

Given the adjacency matrix A, with Aij = 1 if i is connected to j, it is possible to construct a
matrix P by renormalizing the rows of A so that P is a stochastic matrix (positive entries and rows
summing to 1). P corresponds to the Markov transition matrix of a random walk on the graph and is
connected to the (left)-normalized Laplacian L by L = In−P. For many classes of random graphs,
the spectrum of these quantities is known (Zhao, 2012; Tran et al., 2010).

3 Spectrum of TD: from random graphs to spiked models

3.1 From Ordinary Least Squares to TD(0)

Random matrix models have been used in supervised learning, especially in the simple least squares
model (Cun et al., 1991; Hastie et al., 2019; Derezinski et al., 2020), to explain phenomena arising in
deep learning. Indeed, while much simpler than large neural networks, these models can shed light
on the optimization and generalization behavior of vastly overparameterized models (Pennington
& Bahri, 2017; Wei et al., 2022), something that most traditional complexity measures could
not (Zhang et al., 2021; Dziugaite et al., 2020).

Using gradient descent on a least square problem, our parameter update can be written as

θt+1 − θ∗ =
(
Ip − ηΦ⊤Φ

)
(θt − θ∗) (4)

for Φ : Rn×p the feature matrix and θ∗ the solution found by gradient descent. When choosing the
learning rate η optimally, the convergence rate is expressed as

λmax/λ+
min

−1
λmax/λ+

min
+1

for λ+
min, respectively

λmax, the smallest, resp. largest, non-zero eigenvalue of Φ⊤Φ (Nesterov, 2003).

When Φ has i.i.d entries with zero mean, unit variance and bounded 4th moment, as we will
consider in the rest of this paper, 1

nΦ
⊤Φ follows the Wishart distribution. In particular, we have

analytical expressions for the asymptotic minimum and maximum eigenvalue (section 2.2). When
limp,n→∞ p/n = ρ, we have λmax/λ+

min →
( 1+√

ρ

1−√
ρ

)2 ≥ 1. This function has asymptotes at 1, for
p = o(n) or n = o(p) and diverges when n = p. This peak-shaped function can also be observed
empirically in more complex models such as kernel methods (Poggio et al., 2019) and neural
networks in the limit of infinite width as they are in the Neural Tangent Kernel regime (Lee et al.,
2017; Jacot et al., 2018).

However, when using TD(0), presented in section 2.1, the feature covariance matrix Φ⊤Φ would
be replaced by Φ⊤Ξ(In − γPπ)Φ. While Xiao et al. (2021) derived worst-case bounds for
overparameterized TD, their dependency of the overparamerization ratio ρ = p/n is not obvious.
In this work we chose to use tools for random matrix theory for modeling the behavior of TD.
While we can model Φ as an i.i.d matrix, it is not obvious how to model Ξ and Pπ in a realistic
manner that would still allow us to characterize the spectrum of the TD operator Φ⊤Ξ(In−γPπ)Φ.

2and an additional light tail decay condition, weaker than the bounded 4-th moment one (Tao & Vu, 2012).
3both in probability and almost surely.
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For general Ξ and Pπ , no closed form solution for the spectrum exists. We believe this is one of
the key reasons why overparameterization in Temporal Difference learning has not been studied
extensively. Thus, finding good typical models for Pπ is of utmost importance, and the next section
will introduce a class of models for which the spectrum of TD can be computed.

3.2 Pπ as the Markov transition matrix of a random graph

In RL, Pπ is the Markov transition matrix of a random walk when sampling from π. We will assume
in the rest of the paper that the Markov chain is irreducible and aperiodic so that Pπ has a unique
stationary distribution denoted dπ .

As we wish to understand the expected behavior of the TD algorithm, we propose in this subsection
a simple yet expressive model of Pπ that will allow us to do so. As random graphs are used to
model properties of typical graphs, a candidate for a model of Pπ would be to take the Markov
transition matrix of a random graph. However, random graphs, at least the Erdős-Rényi(-Gilbert)
type ones, are not able natively to take into account the impact of π, most importantly the fact that
some state-actions are visited more often than others under dπ , the stationary distribution of π. In
this subsection, we propose a simple model for Pπ , denoted by P̂π , which is the Markov transition
matrix of a G(n, µ) graph deformed by dπ .

Let us start with an undirected graph of the type G(n, µ). To take into account the state-action
visitation dπ , we construct the diagonal matrix Dπ so that Dπ = diag(dπ). Now, we define
the deformed adjacency matrix Aπ as Aπ ≜ nADπ where A is the original adjacency matrix.
When dπ is uniform, we revert back to the original case Aπ = A. This construction keeps the
same edges as in the original graph but re-weights them by how likely dπ would visit that state-
action. We can informally write the Markov transition matrix associated with this deformed graph
as4 P̂π = 1nd

⊤
π +Xπ where (i) 1nd

⊤
π is a deterministic rank one matrix associated to the eigenvalue

1 as 1⊤
ndπ = 1 and (ii) Xπ =

√
n(1−µ)

µ
1√
n
WDπ is a stochastic matrix of null expectation as 1√

n
W

is a Wigner-type matrix with zero mean and unit variance. It can be tempting to understand under
which conditions the stochastic part becomes negligible and what it entails. As we will see shortly,
this setting will reveal itself to be of importance when studying the spectrum of TD.

Definition 1 (Asymptotically well-connected graphs). We say a graph G is asymptotically well-
connected if |λ2| ∈ o(1) for 1 = λ1 ≥ |λ2| ≥ · · · ≥ |λn| the (modulus) ordered eigenvalues of its
Markov transition matrix.

The choice for the name of Definition 1 comes from the fact that the second smallest eigenvalue
of the Laplacian is related to the presence of bottlenecks in the graph through Cheeger’s inequal-
ity (Cheeger, 1970).
Example. Graphs of the type G(n, µ) (resp. G(n, d)) are asymptotically well-connected if their
expected degree d = nµ (resp. d) grows to +∞ with n, i.e 1 ∈ o(d) (Zhao, 2012; Tran et al., 2010).

Proposition 3.1. For the dπ-deformed G(n, µ) graph studied above, assuming P̂π = 1nd
⊤
π +Xπ ,

then the graph is asymptotically well-connected if n∥dπ∥∞ ∈ o(
√
d).

This again generalizes the uniform case as, when dπ is uniform, the condition becomes equivalent
to 1 ∈ o(d) as in the example. In the non-uniform case, this condition entails that either dπ

spreads efficiently across states, or the degree d rises fast enough that those states are still visited
sufficiently often. Note that the asymptotically well-connected condition is also satisfied if we use
longer back-ups of length k such that k grows with n to +∞, i.e 1 ∈ o(k) for the TD update. See
Lemma B.2 for details.

In those cases, we have

P̂π = 1nd
⊤
π + o(1) (5)

This approximation is particularly interesting as it asymptotically conserves the left and right eigen-
vectors, dπ and 1n, of the original Pπ associated to the eigenvalue 1. Furthermore, if all state-
actions are reachable, the sequence of matrix power iterates of Pπ ,

(
Pπ
)k

converges to 1nd
⊤
π .

4Derivation can be found in Appendix.
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While we are not the first to use tools from graph theory in the context of RL, related works we are
aware of (Mahadevan & Maggioni, 2007; Machado et al., 2017, 2018; Wu et al., 2018) take a differ-
ent approach and leverage eigenvectors of the Markov transition matrix (or Laplacian) to construct
better representations for the value function or use them as options. In contrast, we use spectral
properties of Pπ to study the convergence of Temporal Difference learning.

3.3 Spiked Wishart model for TD with uniform sampling

Now that we have a simple random graph model for Pπ , we focus on estimating the spectrum
of Φ⊤Ξ(In − γP̂π)Φ. For simplicity, we assume the off-policy sampling is done uniformly, i.e
Ξ = 1

nIn. While this assumption is not realistic in most RL settings, it is still of interest in the
context of dynamic programming where we have access to all the states.

Proposition 3.2 (Spiked MP). If ργ2 < 1 the spectrum of 1
nΦ

⊤(In − γP̂π)Φ converges to the
Marchenko-Pastur law with parameter ρ. When ργ2 ≥ 1, there is a phase transition (Baik et al.,
2005) for the minimum non-zero eigenvalue λ+

min which separates from bulk and converges to

λ+
min

a.s−−−−→
p/n→ρ

λspiked = (1− γ)(ρ− 1
γ ) (6)

Note that the phase transition is smooth as for ρ = 1/γ2, λspiked = (
√

1/γ2 − 1)2.

Vast overparameterization and tabular case: An interesting regime is when ρ ≫ 1
γ2 > 1. In that

case, the maximum eigenvalue of the MP law and the spiked one differ by a factor H = 1
1−γ , the

effective horizon of the problem, as limρ→∞ λmax/λ+
min = 1

1−γ . In the tabular regime, Φ = In. As
Pπ has eigenvalues in [−1, 1], the eigenvalues of In − γPπ are in [1− γ, 1 + γ]. This would give a
worst case ratio of 1+γ

1−γ which, up to a factor 1+ γ ≤ 2, is the same as the vastly overparameterized
case above. As these eigenvalues govern the optimization speed of TD, the vastly overparameterized
case and the tabular can be thought of as comparable.

3.4 Non-uniform off-policy sampling

In the previous subsection we were able to characterize the spectrum of Φ⊤Ξ(In−γP̂π)Φ assuming
Ξ = 1

nIn. In this subsection we analyze the more general case where Ξ is not uniform. However by
doing so, we lose guarantees and must resort to approximations. First, we analyze the eigenvalues
of Ξ(In − γP̂π), or rather, in the limit of large n, the eigenvalues of Ξ(In − γ1nd

⊤
π ).

Lemma 3.1. If Ξ = diag(ξ1, . . . , ξn) is non-singular, the eigenvalues of Ξ(In − γ1nd
⊤
π ) satisfy a

secular equation (Golub, 1973)

1− γ

n∑
i=1

ξi · dπ(i)

ξi − λ
= 0 (7)

This expression is another form of the characteristic polynomial of a matrix whose roots are its
eigenvalues. However, this form enables us to derive approximations more easily. In particular,
for the least visited state-action m = argmini=1,...,n ξi, if ξm ≪ ξi, i ̸= m, we have for λ ≈ ξm
that 1

ξi−λ ≈ 1
ξi

if i ̸= m. From this assumption, we derive an approximation for the minimum

eigenvalue of Ξ(In − γP̂π)
ℓmin ≈ ξm

1−γ
1−γ+γ dπ(m) (8)

This eigenvalue is inferior to ξm and reflects the interaction between the off-policy distribution and
the discount factor. At worst, if dπ mostly visits state m, it will be close to ξm(1− γ) which is the
product of the minimum eigenvalues of Ξ and In − γP̂π . A similar expression can be derived for
the maximum eigenvalue under similar assumptions.

Now, again reasoning approximately, if that eigenvalue was very small compared to the other ones
who would form a bulk of similar values, we could expect Φ⊤Ξ(In − γP̂π)Φ to have a similar
spiking behavior as before. However, in that case, the spiking eigenvalue would be

λ+
min ≈ nℓmin

(
ρ− 1

1−nℓmin

)
(9)
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While less simple than the estimators developed in the last subsection, we will see in Section 5 that
it still accurately predicts the smallest non-zero eigenvalue.

4 Optimizing with Temporal Difference learning

4.1 Decomposition of the error

Using results about the spectrum of the TD operator shown in the last section, we analyze the
behavior of the Mean Square Bellman Error LMSBE(qt) = 1

2∥r + γPπqt − qt∥2Ξ during the
optimization. In particular, assuming Φ⊤Ξ(In − γPπ)Φ is non-singular for p < n

qTD =

{
ΦθTD = Φ(Φ⊤Ξ(In − γPπ)Φ)−1Φ⊤Ξr, if p < n
qπ = (In − γPπ)−1r, if p > n

the q-value asymptotically reached by TD(0), we can decompose this error into two components.
Lemma 4.1 (Decomposition of the error). For qt = Φθt, where θt is updated with TD(0) (eq. (2)),
we have the following decomposition

∥r+ γPπqt − qt∥Ξ ≤
√

n∥Ξ∥∞ · ∥qt − qTD∥2 + ∥r+ γPπqTD − qTD∥Ξ (10)

where ∥x∥Ξ =
√
x⊤Ξx is the 2-norm in metric Ξ.

Following Bottou & Bousquet (2007), we refer to ∥qt − qTD∥2 as the approximation error and
∥r + γPπqTD − qTD∥Ξ as the estimation error. The factor

√
n∥Ξ∥∞ ≥ 1 comes from bounding

the spectral norm of (In − γPπ) in metric Ξ. Beyond this factor, we are not exactly in the same
setting as (Bottou & Bousquet, 2007) as the asymptotic TD(0) value estimate qTD may not be the
one reaching the lowest estimation error, as known in the RL community (Scherrer, 2010). Indeed,
TD(0) finds the minimum of the Mean Square Projected Bellman Error (MSPBE) but not of the
MSBE (Sutton & Barto, 2018). However in practice it is common to minimize the MSBE as it does
not require an expensive projection step.

4.2 The ordinary behavior of the approximation error

In this subsection, we take a look at the approximation error, i.e how efficiently we converge to qTD.
Proposition 4.1. Let us assume that Φ⊤Ξ(In − γPπ)Φ is diagonalizable as QΛQ−1, and that
its spectrum is real and positive. Denoting by λ+

min and λmax its smallest non-zero and largest
eigenvalues, for η = 2

λ+
min+λmax

∥qt − qTD∥22 ≤
(

λmax/λ+
min − 1

λmax/λ+
min + 1

)2t

K2∥q0 − qTD∥22 (11)

where K = κ(Φ)κ(Q) when p < n and K = κ(Q) when p > n where κ is the condition number.

The assumptions above can seem strong however they are verified under our model (cf Section 3.3).
This is a slightly more general version of the linear convergence of gradient descent, however, as the
TD operator may not be diagonalizable in an orthonormal basis, we incur an additional factor K2.

4.3 The singular behavior of the estimation error

Now we turn our attention to the second term; the estimation error which is the residual error after
T → +∞ steps. In supervised learning, we expect this error to be the usual bias of our algorithm
and thus to decrease as p/n increases until p = n for which the bias would reach 0 as it is possible
to interpolate the data. However, in reinforcement learning, the behavior of this term can be quite
different, in particular it can be non-monotonous.

Proposition 4.2. Let us assume P̂π satisfies the well-connected property, i.e that it is asymptotically
rank one

lim
n,p→∞
p/n→ρ

∥(In − γP̂π)qTD − r∥2Ξ = ∥Π⊥r∥2Ξ +
2γ

1− γρ̃
(d⊤

πΠr)(ξ⊤Π⊥r) + (
γ

1− γρ̃
)2ξ⊤Π⊥1n(d

⊤
πΠr)2
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where Π is the orthogonal projector onto the span of Φ in norm Ξ: Π = Φ(Φ⊤ΞΦ)−1Φ⊤Ξ, Π⊥ =
In −Π is its complement, and ρ̃ = d⊤

πΠ1n.

When γ = 0, i.e we just perform reward regression, this is equal to ∥Π⊥r∥2Ξ which is exactly the
residual error in r that our representation cannot capture. When ρ > 1, Π⊥ = 0 so the limit is zero
as we expect from a model able to interpolate the data. However, there is a behavior here not present
in supervised learning. When ρ̃ ≈ 1, which we can expect when Π is closer to identity, i.e p close
to but less than n, a peaking behavior of the estimation error can happen.

Replacing Π by its expectation5 ρIn above can lead to an equation simpler to analyze, albeit biased

1]0,1](ρ) (1− ρ)
(
∥r∥2Ξ + 2

γρ

1− γρ
(d⊤

π r)(ξ
⊤r) + (d⊤

π r)
2(

γρ

1− γρ
)2
)

(12)

This phenomenon might appear counter-intuitive as we would expected our error to decrease with
p. We provide a few insights to make sense of this. First, when γ increases, so does the scale of the
Q-function, so we can expect our errors to get bigger. Second, using random features Φ informally
has a smoothing effect, stronger when ρ is small, which causes the reduction in magnitude from 1

1−γ

to 1
1−γρ . This can be observed in the proof in appendix. Finally, peaking behaviors of TD such as

this one have been observed in the community (Scherrer, 2010) but not theoretically explained in a
general setting as far as we know.

4.4 Beyond stationary sampling

Until now, we always mentioned n as the number of state-action pairs with the assumption that Ξ
was non-singular, i.e that our off-policy sampling visited all the state-actions. Here, we take a closer
look at what happens when this is not the case. In particular, we study a simple toy model where we
assume Ξ only visits nvis(t) states at time t with uniform probability. This simply changes all the
n by nvis(t) in the previous results. As often observed during training, at t = 0, π might start as a
more exploratory policy (nvis(t = 0) high) and over time converges on a more deterministic solution
(nvis(t) low). This can be problematic when performing TD learning with a fixed stepsize η. In that
case, under the spiked model developed in Section 3.3 we need to ensure η ≤ 2/

(
1+

√
p/nvis(t)

)2 →
2/λmax or equivalently

nvis(t) ≥ p/
(√

2
η−1
)2

(13)

As nvis(t) can typically decrease, this condition can be broken and thus TD learning will diverge.
We conjecture this phenomenon may be related to the popularity of adaptive step size methods in
RL over fixed step size ones.

5 Experiments

In all the experiments we use Φ i.i.d with normal entries. Per the universality property, our theoretical
results hold for all distributions satisfying the hypotheses in Section 2.2.

Study of the spectral distribution: On Figure 1, we validate the theory and approximations of
Section 3. For an asymmetric random graph n = 4000, µ = 1/2, the spectrum of P (a) has an
eigenvalue at 1 and the rest of order 1/

√
n (Bordenave et al., 2012). As predicted, the spectrum of

the TD operator matches closely a spiked MP distribution (b). When the graph does not satisfy
the well-connected property, for instance on a 4 rooms domain (n = 4096, π stochastic6) (c) the
spectral distribution is more complex (d). The relative error on λ+

min is respectively 0.3% and 2%.
Despite this, we show that the empirical and theoretical (eq. (9)) values for λ+

min and λmax on the 4
rooms domain (n = 256) closely match, both for Ξ uniform or highly ill-conditioned with evenly
spaced ξi so that maxi ξi

mini ξi
= 2000. While (b) and (d) show how violating the asymptotically well-

connected property breaks our spiked MP distribution result, we show on (e) and (f) that the extreme
eigenvalues, which are the ones that matter for our optimization results, are still well predicted, even
in more complex settings.

5when Ξ = 1
n
In, by rotational invariance of Φ, we E[Π] = ρIn, thus E[ρ̃] = ρ.

6We sampled π(a|s) ∼ Uniform[0, 1] and renormalized.
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Figure 1: (a) and (b): scatterplot of the spectra of the Markov transition matrix for a G(n, µ) graph
and the 4 rooms domain. (c) and (d): spectral distribution for the TD operator for ρ = 2. When the
well-connected assumption is verified (a), the spectral distribution is a spiked (×) Marchenko-Pastur
(MP) law (in orange) (c). When the assumption is violated and P̂π ̸≈ 1nd

⊤
π (b), the distribution

bleeds out of the MP support, yet the minimum eigenvalue is still close to the spike (d). On (e)
and (f) we compare our prediction of the extreme eigenvalues λ+

min and λmax of the TD operator
on the 4 rooms domain (Sutton et al., 1999) (b) as a function of p/n. We plot the empirical extreme
eigenvalues (dotted) vs (e) MP theoretical ones (eqs. 3, 6) for Ξ uniform and (f) approximation
in eq. (9) for Ξ non-uniform. Shaded areas are a 95% confidence interval when randomizing Φ and
π (10 seeds).
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(a) γ = 0.1, d⊤
π r ≈ 0.08
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(b) γ = 0.98, d⊤
π r ≈ 0.02
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(c) γ = 0.98, d⊤
π r ≈ 0.07

Figure 2: Value of the MSBE as a function of the ratio p/n for various iterations T during optimiza-
tion. T = +∞ corresponds to the asymptotic solution found by TD(0) (eq. (10)). We use uniform
sampling (Ξ = 1

nIn). On (a), for low γ we observe a behavior similar to supervised learning where
the residual error decreases and reaches 0 at p = n. (b) displays a similar behavior as the term d⊤

π r
is small. (c) As d⊤

π r is higher, the peaking terms 1
1−γρ̃ are non-negligible. Shaded areas are a 99%

confidence interval over randomness of θ0 and Φ (100 seeds).

Optimization behavior of TD: On Figure 2 we discuss the results of Section 4. We use again
a 4 rooms domain with a fixed stochastic policy and study the Bellman error during training. On
all subfigures of Figure 2, we observe that for ρ ≫ 1 or ρ ≪ 1, the optimization is faster as the
curves for low T are much closer to the asymptotic solution T = +∞ (computed analytically)
than for ρ ≈ 1. This is in line with the result of section 4.2 for a spiked model: the ratio of
eigenvalues which governs the optimization speed is λmax/λ+

min → 1 for ρ ≪ 1 and to 1
1−γ for

ρ ≫ 1 while it diverges for ρ → 1. This leads to a classical double descent phenomenon on (a)
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(a) dπ on 4 rooms for different ϵ.
(b) Probability of divergence given step size and ϵ-
greediness.

Figure 3: (a): Example of the discounted state distribution in a small 4 rooms domain for varying
ϵ-greedy policies. (b) The probability of divergence of TD as a function of the step size η and the
ϵ-greediness. For each point we report the probability it leads to divergence computed over 100
random Φ: from yellow (0%) to black (100%).

and (b) purely due to optimization as predicted by Kuzborskij et al. (2021). On (a) and (b) because
either γ or d⊤

π r is small, the terms of order 1
1−γρ̃ are negligible and thus it behaves similarly to

supervised learning. On (c), the term 1
1−γρ̃ dominates and we observe the peaking behavior of the

estimation error (Section 4.3). Furthermore on Figure 4 in appendix we study how our model and
its approximation of Section 3.3 match the observed peaking behavior.

Stability and non-stationarity: On Figure 3 we highlight how Ξ can affect the convergence of TD
(p = 200). For this, we use a small 4 rooms (n = 144) environment7 and compute an optimal deter-
ministic policy π∗. Then, by varying the ϵ of a ϵ-greedy policy based on π∗, we can analyze which
combination of step size η and ϵ would lead to convergence. On (a), we show the discounted state
distribution for various ϵ where larger ϵ lead to more exploration. While our theoretical argument
in Section 4.4 was about the number of visited states, we take here a more general and realistic
approach where the state visitation is controlled by the greediness of our policy. Typically, during
the optimization of a value based method, ϵ is annealed to 0 and the policy becomes more determin-
istic. On (b) we show the probability of diverging (averaged over 100 samples of Φ) measured by
computing the spectral radius of our iteration matrix. As predicted, for a fixed η, when ϵ decreases,
we might go through a phase transition where the TD iteration, stable at the beginning, becomes
unstable.

6 Conclusion

In this work, we have analyzed the spectral distribution of the Temporal Difference operator when
using random features and modeling the Markov transition matrix as the one of a random graph. This
characterization allowed us to make predictive theories for the optimization error and stability of TD.
Notably we are able to predict how fast we converge and whether the solution found is accurate as
a function of the ratio between the number of parameters and the number of state-action pairs. In
particular, we highlighted and theoretically explained several phenomena specific to reinforcement
learning such as the peaking behavior of the estimation error of TD or how changing the policy
might cause divergence when using a fixed step size, even in the on-policy setting.

Important directions for future work include: (i) improving the model for Pπ through careful anal-
ysis of more expressive random graphs, (ii) derive non-asymptotic results using the fluctuations of
the extreme eigenvalues of the MP law (Baik et al., 2005) (iii) extend our results to neural networks
in the Neural Tangent Kernel regime and finally (iv) study the behavior of policy optimization algo-
rithms.

7where the bottom right state with a reward of 1 leads back to the initial state on the top left.
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We thank Alexandre Piché for useful comments on an earlier version of this paper.

References
Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions on automatic

control, 19(6):716–723, 1974.
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