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Abstract

Hand, the bearer of human productivity and intelligence, is receiving much attention
due to the recent fever of digital twins. Among different hand morphable models,
MANO has been widely used in vision and graphics community. However, MANO
disregards textures and accessories, which largely limits its power to synthesize
photorealistic hand data. In this paper, we extend MANO with Diverse Accessories
and Rich Textures, namely DART. DART is composed of 50 daily 3D accessories
which varies in appearance and shape, and 325 hand-crafted 2D texture maps covers
different kinds of blemishes or make-ups. Unity GUI is also provided to generate
synthetic hand data with user-defined settings, e.g. pose, camera, background,
lighting, texture, and accessory. Finally, we release DARTset, which contains
large-scale (800K), high-fidelity synthetic hand images, paired with perfect-aligned
3D labels. Experiments demonstrate its superiority in diversity. As a complement
to existing hand datasets, DARTset boosts the generalization in both hand pose
estimation and mesh recovery tasks. Raw ingredients (textures, accessories), Unity
GUI, source code and DARTset are publicly available at dart2022.github.io.

1 Introduction

Humans rely heavily on their hands to interact with surrounding objects and express their attitudes
by sign language. Accurate reconstruction of these hand gestures from raw pixels, could facilitate
the immersive experience in AR/VR, and lead us to a better understanding of human mental and
physical activities. Emerging data-driven hand reconstruction approaches demand high-fidelity and
diverse hand images, paired with perfect-aligned hand geometries. In addition to manually labeling
the collected in-the-wild hand pictures, building large-scale synthetic data aided with photorealistic
rendering engines and articulated hand model seems a promising and more affordable alternative.

However, existing articulated hand models [40, 36, 24, 23] are too idealized to represent the com-
plexity and diversity of real hands. Realistic hands often vary in appearance (e.g. colors of skin and
nails, palm prints), with blemishes (e.g. moles, scars, bandages), personalized make-up (e.g. tattoos),
and accessories (e.g. ring, watch, bracelet, glove). Also, the captured textures with baked-in factors,
i.e. lighting, shading, and materials, like HTML [36], are not suitable for photorealistic rendering
pipeline. The comparison between different hand models is summarized in Tab. 1.

*These authors contributed equally to this work
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Figure 1: DART brings 3D hand model to a new level of realism. Aided with hundreds of high quality
textures and additional accessories, photorealistic hand photos are synthesized.

Table 1: Comparison between different articulated hand models.

MANO [40] HTML [36] NIMBIE [24] DART (ours)
Skin Color ✗ ✓ ✓ ✓
Albedo ✗ ✗ ✓ ✓
Wrist ✗ ✗ ✗ ✓
Muscle ✗ ✗ ✓ ✗
Accessories ✗ ✗ ✗ ✓

Num of 2D Textures 0 51 38 325
Num of 3D Accessories 0 0 0 50

Therefore, neither "Generalized Reconstruction" — the hand estimator learned from synthetic
images could generalize well to in-the-wild photos, nor the "Friendly VR Setup" — VR users do
not need to take off their daily accessories, or, find a medical beauty clinic to remove their scars and
tattoos before wearing VR Set, could be expected without a more realistic hand model with diverse
accessories and rich textures.

To achieve this, we extend the MANO [40] as DART with the following novel features:

a) Rich Texture: Hand-craft UV albedo textures that adequately span diverse appearances (e.g.
skin tones, nails, palm prints), together with blemishes (e.g. moles, scars, bandages), personalized
make-up (e.g. tattoos), and daily accessories (e.g. ring, watch, bracelet, glove), see Fig. 1.

b) Articulated Wrist: DART is built upon wrist-enhanced MANO template, which could be driven
by MANO’s pose parameters, see Fig. 2b. Its importance lies on two-folds: 1) wrists always appear
in real application, e.g. RGB(D) camera based hand tracking and reconstruction, but MANO was
initially designed without it. 2) some daily accessories, e.g. watch and bracelet, are worn on the wrist.

c) Diverse Accessories: Daily accessories with both UV textures and 3D mesh, include different
kinds of watches, rings, bracelets, and gloves, see Fig. 1.

Next, a synthetic data generator is constructed based on this DART model. Given the albedo texture
maps, skin materials, lights, background photos, and the target pose distribution, Unity is used to
render photorealistic images and export their paired hand pose and 3D/2D joint positions as well.
The data generator has a GUI (see Fig. 3) comes with useful controllers, allowing users to carve hand
images interactively. Also, the data generator can automatically render images based on a predefined
setting. By this means, we create DARTset (see Fig. 6), a large-scale (800K) hand dataset with
diverse poses, DART’s exquisite textures and accessories. Each data sample in DARTset contains a
photorealistic image and its corresponding MANO pose parameters, 2D/3D joints, mesh. All above
software and data are available at dart2022.github.io.

DART could also be used to boost current hand pose estimation and mesh reconstruction tasks, we
benchmark four representative reconstruction methods on DARTset. The quantitative results in Tab. 4
are well demonstrated that DARTset has great compatibility and generalizability. We also report the
cross-dataset evaluations and justify that DARTset is a great complement to existing datasets.
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2 Related work

2.1 Synthetic Hand Data

It is gradually realized by the computer vision community that, even though a neural network could
somehow benefit from carefully designed layers, its performance is substantially restricted by the
fidelity and diversity of training data. To further push the limit of data-driven approaches, people
are starting to shift their focus from tedious manual labeling on collected photos to large-scale
synthesizing using well-studied computer graphics and animation techniques.

Synthesizing has a few advantages over manual labeling: It can guarantee perfect and rich ground-
truth labels with relatively low cost; users can control the diversity (e.g., pose, camera, background)
w.r.t. requirements from specific users or scenarios; and it’s easy and cheap to scale up.

Taking 3D human synthetic data as an example, AGORA [33], HSPACE [2] and GTA-Human [4]
have proved their usefulness in downstream vision tasks, such as 3D pose estimation [9, 17], clothed
human reconstruction [50] and human-scene interaction [5]. We won’t discuss them in details since
they are beyond the scope of this paper. Existing hand synthesizing methods can be grouped into
three categories, summarized in Tab. 3

1) GAN/VAE-based generation: Based on CycleGAN [57], Mueller et al. [31] introduced GANer-
ated Hands (GANH) to bridge the domain gap via syn2real image translation. GANH is a decent
approach to resemble the distribution of real hand images. However, the authors don’t make their
articulated hand model publicly available, which limits its usage for other reconstruction tasks, e.g.
mesh-based hand pose estimation, contact-aware hand-object interaction.

2) Depth-based synthesis: Wan et al. [48] propose Crossing Net, which models the statistical
correlation of hand pose and its corresponding depth image by combining GANs and VAEs with
a shared latent space. Oberweger et al. [32] introduces a hand depth video dataset with labeled
3D joints. Rogez et al. [38] synthesizes a hand-object depth data under egocentric workspaces.
The model trained on these datasets can only be applied to the depth sensor’s input, thus couldn’t
generalize well on hands wearing additional 3D accessories.

3) Model-based rendering: Zimmermann et al. [58] and Simon et al. [42] choose to synthesize
hand data from Mixamo characters with a limited diversity of pose and skin colors. Rogez et al. [37]
proposed an egocentric RGB-D video dataset rendered from commercial Poser [41]. SynthHands [30]
is an RGB-D hand dataset, that is constructed by posing the articulated hand model with real mocap
data, together with interaction and occlusion introduced by objects and clusters. Hasson et al. [13]
presents a large-scale synthetic dataset of MANO hand grasping objects, called ObMan.

Though a few datasets already take skin tones into consideration, like GANH [31], RHD [58], and
SynthHands [30], the additional accessories are missing. Basically, their hand proxy models are too
clean. DART belongs to group 3), it introduces more diverse & complex textures and various 3D
accessories, see Tab. 2, making a more sophisticated hand model.

2.2 Articulated Hand Models

Though MANO [40] provides the raw RGB scans used for registration, they are with baked-in
textures. To decouple the albedo texture from raw RGB pixels is non-trivial. HTML [36] builds the
hand texture model by compressing the variations of captured hand appearance to a low dimensional
appearance basis using principal component analysis (PCA). But HTML still does not address the
problem of baked-in lighting and shadow casting, and the hand appearance varies during articulation.
Different from HTML’s learned backed-in texture maps, DART provides diffuse maps disentangled
from external factors, such as lighting and shading. Recent work NIMBLE [24] brings 3D hand model
into a new level of realism, with bones, muscles and skins. However, none of above models consider
daily accessories, which is the main contribution of DART. Besides, DART also adds common
traits of hand inside the texture, like moles, nail colors, scars, tattoos and palm prints, see Tab. 2.
And we propose a wrist-enhanced MANO hand tempalte, to synthesize hand data with wrist-based
accessories, e.g. watch and bracelet, see Fig. 2b.
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Basic Texture Amount

Bandage 5 × 3
Palm prints 10 × 3
Scars 20 × 3
Tattoos 20 × 3
Moles 20 × 3
Nail colors 20 × 3

Total 285

Accessories Amount

Rings 10
Watches 10
Bracelet 20
Gloves 10

Total 50

Table 2: Samples (left) and statistics (right) of DART’s textures and accessories. All textures contain
3 basic skin tones: dark, brown, light. Note that since above skin tones are represented as the same
2D UV map, it’s relatively easy to extend them from other skin tone libraries.

2.3 Image-based 3D Hand Pose / Mesh Reconstruction

Depending on the representation of the articulated geometry, 3D hand reconstruction can be catego-
rized as Image-to-Pose (I2P) and Image-to-Shape (I2S).

I2P only focuses on the skeleton joints’ locations of the articulation model. Existing I2P methods
can be divided into two paradigms: heatmap-based [45, 34, 55] and regression-based [44, 39, 20].
Heatmap represents the 3D location of joints as Gaussian likelihood in a normalized 3D space.
Regression-based methods map the input images to output joint locations. A representative method in
each paradigm is Integral Poses [45] and Residual Log-likelihood Estimation (RLE) [20], respectively.

I2S then focuses on reconstructing full hand’s surface geometry. The most common surface represen-
tation is the triangular mesh model (i.e. MANO [40]). MANO’s vertices: V ∈ R778×3 are driven
by the pose θ and shape β parameters: V = M(θ, β), where M(·) is a skinning function. Hence,
the common practice in earlier I2S methods is regressing the θ and β and to recover the hand mesh
[54, 52, 3, 13]. Yet, the pose parameters are not defined in the Euclidean space (while the vertices
are). The space shift hinders those methods from achieving higher performance. Later, several works
[51, 56, 21] showed that the I2P can be integrated into I2S through neural inverse kinematics. These
methods proved that I2P’s accurate joints prediction facilitated I2S pose estimation.

Since mesh is a kind of graph, some works adopted graph-based convolution networks (GCN) to
reconstruct hand. These methods leveraged the MANO’s topology and used the spectral [18, 11]
or spiral [19, 7] filtering to process the mesh vertices. GCN based methods achieved accurate
reconstruction and are robust against abnormality. Recently, transformer-based [26, 25, 10] I2S
methods have emerged. METRO [26] applying the self-attention on all the vertices-related features. It
proved the superiority of involving non-local interactions among vertices. In addition to mesh-based
hands, some I2S methods also seek to recover hand shape using other 3D representation, such as
voxel [28], UV position map [6], and sign distance function [15]. In this paper, we benchmark four
representative methods on DARTset, namely Integral Pose [45] (heatmap-based I2P), RLE [20]
(regression-based I2P), CMR [7] (GCN-based I2S), and METRO [26] (transformer-based I2S).

3 DART data generation framework

Our framework is compatible with MANO’s pose parameter and highly controllable. To achieve
this, we decouple the texture maps, materials, ambient and point lights (position, intensity and color),
backgrounds instead of using all-in-one baked-in texture maps. The narrative structure of DART data
generation framework is as follows: Firstly, we detail how to create hundreds of exquisite texture
maps and enhance the MANO’s template hand mesh with wrist. Next, we describe DART’s Unity
GUI to generate photorealistic high-res images and its corresponding MANO pose and 2D/3D joints.
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3.1 Texture map & Model

In the real scenario, 3D hand reconstruction and pose estimation tasks always take a hand crop as
input, with former arm or wrist appearing in the image. To synthesize data with the similar structure
with real-world input settings, we add a shaped wrist to the original MANO template hand mesh (778
vertices, 1,538 faces) as Fig. 2b shows. This composite structure, which contains 842 vertices and
1,666 faces, can be driven by the MANO pose θi ∈ SO(3), i ∈ 0, 1, ..., 15 directly.

Input: Winit ∈ R778×16, Pinit ∈ R778×3×135, Rinit ∈ R778×16

1: Wfinal = torch.zeros(842, 16)
2: Wfinal[: 778] = Winit
3: Wfinal[778 : 842] = Winit[777]
4: Pfinal = torch.zeros(842, 3, 15)
5: Pfinal[: 778, :, :] = Pinit
6: Rfinal = torch.zeros(842, 16)
7: Rfinal[: 778] = Rinit
Output: Wfinal, Pfinal, Rfinal, used for MANO’s LBS

(a) Pseudo code of alignment process
MANO Template (Flesh)

V 778 E 2315 F 1538
DART Template (Flesh + Cyan)

V 842 E 2507 F 1666

(b) Wrist-enhanced MANO

Figure 2: DART hand parametric model.

To achieve this, we first remove the shape coefficients β ∈ R10 and only focus on finger articulation
components, including blend weights, pose-dependent deformations, and joint-regressors. Next, we
align the blend weights Winit, pose-dependent deformations Pinit and joint-regressors Rinit from 778
to 842, the extra 64 vertices are all numbered sequentially on the wrist while maintaining the palm
and finger vertex number unchanged. The alignment process is shown in Fig. 2a

DART’s 325 texture maps are designed and hand-crafted by five experienced 3D artists. As mentioned
above, each texture map is of 4096× 4096 resolution, some samples shown in Tab. 2. The creation
of a texture map is as follows: we first create three basic texture maps in terms of skin tone: dark,
light and brown. Then we add extra symbols, i.e, moles, nail colors, scars, tattoos and palm prints, or
just fine-tune the basic texture map to get the various texture maps. Furthermore, we create dozens of
high-quality 3D textured accessories, and place them on DART’s template mesh. Given these hand
meshes, we could render high-fidelity hand images, more details in Sec. 3.2.

The relative position of accessories on finger/wrist is FIXED to avoid collision. In this way, accessories
on wrist, like bracelet and watch, could be transformed simply by applying root rotation. Regarding
the rings on fingers, additional parent rotation is needed. Since the MANO’s skeleton is represented
in parent-child hierarchy, parent rotation could be easily computed along the kinematic tree.

3.2 Synthetic data generator

DART’s another deliver is the synthetic data generator, based on Unity3D, allows us to render hands
under controllable settings, e.g. poses, camera views, background, illumination (intensity, color, and
position), and of course, DART’s textures and accessories. Four main components are as follows:

Lighting We set two sidebars (ambient, directional) to control the position and intensity of lighting.
Moreover, we add a palette for users who need to adjust the light color to mimic real-world scenarios.

Controllable skeletal animation Unity GUI supports skeletal animation for pose sampling. Given a
hand motion sequence, users could adjust the speed, pause & export a specific pose frame.

Pose refinement As shown in the upper left panel of Fig. 3, DART enables users to fine-tune the
position of bones manually. Hence, users could create a rare and challenging hand pose that is
uncommon during automatic generation, to further improve its flexibility and diversity.

Automatic data generation For each selected or manually designed hand pose, firstly, the data
generator randomly chooses a basic texture map and one background image. Among these subjects,
25% will be assigned a random accessory. Secondly, with all these ingredients, generator renders
images under selected illumination and view. Please refer to dart2022.github.io for more details.
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Figure 3: DART GUI for synthetic data generation. It supports adding textures, deforming skeleton,
changing illuminations and backgrounds, and exporting the MANO poses.

Table 3: Comparison among RGB-based 3D hand datasets. Note that syn indicates synthetic data,
real indicates real captured data, and Tex. & As. means the textures and accessories.

STB [53] RHD [58] GANH. [31] FreiH. [59] ObMan [13] InterH. [29] DARTset (ours)
Type real syn syn real syn real syn
Size 36K 44K 331K 134K 153K 2.6M 800K

Mesh ✗ ✗ ✗ ✓ ✓ ✓ ✓
Tex. & As. ✗ ✗ ✗ ✗ ✗ ✗ ✓

4 DARTset and Benchmark

4.1 DARTset

Pose Articulation. Pose articulation is a crucial step to augment pose distribution in DARTset.
Hand’s articulations are driven by one global wrist rotation and 15 fingers’ relative rotations. To
generate various global rotation, similar to MobRecon [8] and ArtiBoost [22], we uniformly adjust the
viewpoints through sphere sampling. To generate various relative rotations, we discretize adequate
poses within the hand’s joint limits to cover all the possible configurations that a human could perform.
We adopt the anatomically registered version of MANO: A-MANO [52] for conducting the discretion.
A-MANO defines the legal rotation axes of each finger joint. By permuting all the legal discretized
bending angles along the axes for each finger, we can get a group of the base poses.

Figure 4: TSNE visualization
for pose distribution of RHD,
FreiHAND, and DARTset.

However, these clean yet fake articulations are not diverse enough
to approximate the real-world scenario. Hence, we introduce
some noise from in-the-wild pose distribution, FreiHAND fits this
requirement well. For each synthetic pose θi ∈ R15×3 from the
aforementioned A-MANO, we first randomly choose 2,000 poses
from FreiHAND, calculate the difference between θi and the 2,000,
and select the one (denoted as θ̃i) that differs most from θi. Then,
we interpolate 8 rotations from θi to θ̃i through spherical linear
interpolation (Slerp) on quaternion. It is worth mentioning that
interpolation between synthetic and real pose could reduce the
pose domain gap of pose distribution between DARTset and the
real-world hand captures, and selecting the most different pose to
conduct interpolation promotes DARTset’s pose diversity.
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Figure 5: We augment the skin tones by adding
global offset onto the basic UV textures.

Texture Composition. We rendered the generated
poses with random foreground texture map and ac-
cessories in DART, and with random background
from COCO [27] dataset through alpha blending.
As reported in Tab. 3, the total number of samples in
DARTset is 800K. We split the DARTset into train-
ing, validation and testing set by the ratio of 0.8, 0.1,
and 0.1. With the generator described in Sec. 3.2,
we can easily expand the dataset to the number of
billions. We project the hand pose in RHD [58],
FreiHAND [59], and DARTset into the embedding
space using t-SNE [47]. From Fig. 4, we conclude
that compared with the synthetic data, RHD, DART-
set has a closer distribution to the real-world dataset,
FreiHAND. At the same time, DARTset has a more
continuous and wider distribution than the Frei-
HAND dataset, which means our dataset has more
generalizability. Besides, as Fig. 5 shows, we could added random global offsets o ∈ [−0.15,+0.15]
on top of three basic skin tones (dark, brown, light) to enhance their diversity. This simple augmenta-
tion operation could cover majority of human hand textures.

Statistics on Data Generation. DARTset is composed of train set (758,378) and test set (288,77).
For every sampled hand pose, we randomly select a basic texture map together with a background
image. Among these hands, 25% are assigned an accessory. Since accessory and texture map
(skin tones, scars, moles, etc.) are uniformly sampled, the number of their renders are roughly
equal. The resolution of rendered image is 512 × 512, and its corresponding annotations include
2D/3D joint positions, and MANO pose parameters. The whole process was executed sequentially,
rendering process cost around 500ms per image on Windows11-empowered laptop with CPU (Intel(R)
Core(TM) i7-10875H CPU @ 2.30GHz) and GPU (NVIDIA GeForce RTX 2070).

4.2 Task, Metrics, and Benchmark

We benchmark four mainstream hand reconstruction methods on DARTset testing set in Tab. 4, which
are grouped into two categories: 1) Keypoint-based: Integral Pose [45], RLE [20]; 2) MANO-based:
CMR [7], METRO [26]. These baselines could serve as a reference in 3D hand pose estimation /
hand mesh reconstruction tasks.

We re-implement the above four methods to fit our dataset and training pipeline. We use ResNet [14]
as the backbone of the first three networks, and HRNet [49] for METRO following the same practice
in their paper. We train all the networks 100 epochs using Adam optimizer [16].

All the training images are cropped at 1.5× the hand’s bounding box and resized to the resolution of
224 × 224. The outputs of Integral Pose and RLE are the joints’ UVD coordinates within a normalized
2.5D space. Later, we transform the UVD coordinates to 3D locations by a weakly-perspective camera
model. The outputs of CMR and METRO are the vertices’ 3D root relative coordinates.

To evaluate these methods, we report results using two standard metrics: PA-MPJPE and PA-MPVPE.
PA indicates a 3D alignment with Procrustes analysis [12]. Mean-Per-Joint-Position-Error (MPJPE)
and Mean-Per-Vertex-Position-Error (MPVPE) calculate the Euclidean distance between the ground
truth and predicted results on hand’s joints and vertices, respectively. To note, since the keypoint-based
methods (Integral Pose and RLE) only infer joints’ positions (without vertices), only the PA-MPJPE
can be evaluated. For a fair comparison, although DART’s hand has 842 vertices, PA-MPVPE only
measures the distances to the 778 vertices of MANO.

Table 4: 3D hand pose / mesh reconstruction results on four learning-based methods.

Integral Pose [45] RLE [20] CMR [7] METRO [26]
PA-MPJPE ↓ (cm) 3.52 4.45 4.84 3.96
PA-MPVPE ↓ (cm) - - 3.46 3.52
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According to Tab. 4’s col 1&2, Integral Pose outperforms RLE in terms of position errors. We offer a
possible conjecture: the RLE models the deviations of the annotated keypoint position from its actual
ground-truth. Since the rendered images in DARTset lack the inherited noise from the real-world
capturing system, and the synthetic dataset lacks the uncertainty on its auto-generated annotations,
RLE’s normalizing flow will degenerate to a nearly identical transformation. Hence, the RLE model
degrades to an ordinary regression model, which simply regressing the joints’ positions. As for the
two mesh-based networks (Tab. 4: col 3&4), METRO does not perform as well as CMR. We speculate
this is caused by the METRO’s transformer-based structure. METRO’s attentions are conducted on
all inputs tokens (vertices and joints queries), which is referred to as non-local interaction. Therefore,
it may be less effective on capturing fine-grained local information. On the contrary, CMR leverages
multi-level coarse-to-fine mesh structures and performs sequential spiral filtering based on those
structures. Spiral filtering is able to improve the local interactions among neighboring vertices.

4.3 Ablation Study On Accessories

We conduct an ablation study to verify the effect of accessories. We use the same hand poses and
camera views extracted from FreiHAND to re-render two datasets: DART with accessories and
DART without accessories. Each dataset contains 32,560 images (same as the FreiHAND train set).
We benchmark two learning-based models: Integral Pose and CMR on both datasets. As shown in
Tab. 5, introducing accessories improves Integral Pose by 7.8% in terms of PA-MPJPE, and CMR
network by 5.9% in PA-MPJPE and 7.2% in PA-MPVPE.

Table 5: Ablation study on training w/ and w/o DART’s accessories.

Method Integral Pose [45] CMR [7]
w/o. Acs w/. Acs w/o. Acs w/. Acs

PA-MPJPE ↓ (cm) 6.15 5.67 7.65 7.20
PA-MPVPE ↓ (cm) - - 6.73 6.24

4.4 Cross-Dataset Evaluations

To demonstrate the merit of our DARTset, we report the cross-dataset evaluations on two mesh
reconstruction methods: CMR [7] and METRO [26]. in Tab. 6 and Tab. 7. “Mixed” indicates we mix
the FreiHAND dataset and DARTset equally in one batch to train the network.

We pick FreiHAND [59] as a representative dataset for three reasons: 1) FreiHAND is a field collected
dataset with realistic lighting and environmental noise (compared to RHD, ObMan, and GANerated
Hands). 2) FreiHAND has diverse camera views and hand poses (compared to STB). 3) FreiHAND
is a commonly used benchmark. Instead, InterHand2.6M is a hand-interaction dataset. Half of the
data has obvious self-interactions between hands. A domain gap still exists between our single-hand
dataset DARTset and InterHand2.6M. Therefore, we only provide the baselines on the FreiHAND.

Table 6: Cross-dataset evaluation on CMR (PA-
MPJPE / PA-MPVPE (cm)).

test
train FreiHAND DARTset Mixed

FreiHAND 7.41 / 7.50 25.64 / 25.73 6.70 / 6.83
DARTset 12.82 / 11.95 4.84 / 3.46 5.30 / 4.10

Table 7: Cross-dataset evaluation on METRO
(PA-MPJPE / PA-MPVPE (cm)).

test
train FreiHAND DARTset Mixed

FreiHAND 7.35 / 6.94 17.73 / 17.58 6.88 / 6.85
DARTset 11.73 / 10.67 3.96 / 3.52 3.82 / 3.73

By comparing the column 1 and 3 in Tab. 6, we observe that the CMR model (Mixed training)
improved 8.9% on PA-MPVPE on the FreiHAND testing set. This improvement beard out the fact
that DARTset complements current challenging real-world dataset. However, column 2 and 3 reveals
the domain gap between DARTset and FreiHAND, mainly in two aspects: 1) textures and accessories;
2) hand pose distribution, between FreiHAND and our DARTset. Since DARTset’s large hand pose
distribution dominates the gap (see Fig. 4), the mixed data training could greatly boost FreiHAND
but not DARTset (wider pose distribution), which is the same case for METRO (in Tab. 7).
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Figure 6: Diagram of DARTset. We show some rendered images and their 2D keypoints annotations.
For better visualization quality, the displayed images are cropped around the center of hand.

5 Limitation and Future Works

This work mainly focus on generating hands with arbitrary gestures. The current pipeline is not
optimized for random hand shape sampling. Thus, hand shapes remain fixed during the generation
process. Besides, the 3D accessories are manually designed with fixed size, thus not adaptive to
various hand shapes (e.g., watch, bracelet, gloves). How to add size-adaptive accessories in a fully
automatic way is non-trivial. We leave this for future research. Also, DART currently does not
support the hand-object or two-hands interactions, but since all the ingredients are publicly available
and compatible with MANO, it’s natural to extend DARTset with dynamic hand gestures, such as
GRAB [46]. Last but not least, more advanced rendering techniques [43] or skin-specific shaders [35]
(DART adopt mainstream SSS (sub surface scattering) skin shader [1] for now) could be utilized for
more photorealistic rendering. We have released the full package on dart2022.github.io for only
research purpose, including DART documentation, Unity executable package, source code, DART’s
texture maps, 3D textured accessories, and DARTset. All above will be available for a long time.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]
Please check dart2022.github.io

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]

Please check Sec. 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
We describe the experiments in details in Sec. 4.2 and Sec. 4.4. We have release the
Unity executable package & source code in GDrive, PyTorch Dataloader in DARTset,
hand craft texture maps and DART hand template mesh in GDrive, DARTset (train set
+ test set) in Dropbox. Other documents and video, please check out webpage.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
In Sec. 4.1, we describe the dataset splits and experiment settings in details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please check Sec. 4.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Check dart2022.github.io
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
By default, MANO is licensed people to modify, adapt, translate or create derivative
works based upon the Software for academic purpose.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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