
Supplement to "Amortized Projection Optimization for Sliced Wasserstein
Generative Models"

In this supplement, we first collect some proofs in Appendix A. We then introduce Amortized
Projected Robust Wasserstein in Appendix B. Next, we discuss the training detail of generative
models with different mini-batch losses in Appendix C. Moreover, we present detailed results on the
deep generative model in Appendix D. Next, we report the experimental settings including neural
network architectures, and hyper-parameter choices in Appendix E. Finally, we discuss the potential
impacts of our works in Appendix F.

A Proofs

In this appendix, we provide proofs for main results in the main text.

A.1 Proof of Proposition 1

Recall that, the definition of A-SW(µ, ⌫) is as follows:
A-SW(µ, ⌫) = max

 2 
E(X,Y )⇠µ⌦m⌦⌫⌦m [Wp(f (X,Y )]PX , f (X,Y )]PY )].

For the symmetric property of the amortized sliced Wasserstein, we have
A-SW(⌫, µ) = max

 2 
E(Y,X)⇠⌫⌦m⌦µ⌦m [Wp(f (Y,X)]PX , f (Y,X)]PY ]

= max
 2 

E(Y,X)⇠⌫⌦m⌦µ⌦m [Wp(f (X,Y )]PX , f (X,Y )]PY ]

= max
 2 

E(X,Y )⇠µ⌦m⌦⌫⌦m [Wp(f (X,Y )]PX , f (X,Y )]PY )]

= A-SW(µ, ⌫),

where the second equality is because of the symmetry of Wasserstein distance, the third equality is
due to the symmetry of f (X,Y ) (see forms of f (X,Y ) in Section 3). The positiveness of A-SW
comes directly from the non-negativity of the Wasserstein distance.

To prove that A-SW violates the identity, we use a counter example where µ = ⌫ = 1
2�x1 +

1
2�x2 (x1 6= x2). In this example, there exists a pair of mini-batches X = (x1, x1) and Y =
(x2, x2). We choose f (X,Y ) = x1+x2

||x1+x2||2 , then f (X,Y )]PX 6= f (X,Y )]PY which implies
Wp(f (X,Y )]PX , f (X,Y )]PY ) > 0. Since A-SW defines on the maximum value of  2  ,
A-SW(µ, ⌫) � Wp(f (X,Y )]PX , f (X,Y )]PY ) > 0.

A.2 Proof of Proposition 2

Since the function f is continuous in terms of  , it indicates that the func-
tion E(X,Y )⇠µ⌦m⌦⌫⌦m [Wp(f (X,Y )]PX , f (X,Y )]PY )] is continuous in terms
of  . Furthermore, as the parameter space  is compact, there exist  ⇤

2

argmax 2 E(X,Y )⇠µ⌦m⌦⌫⌦m [Wp(f (X,Y )]PX , f (X,Y )]PY )]. Then, we have

A-SW(µ, ⌫) = E(X,Y )⇠µ⌦m⌦⌫⌦m [Wp(f ⇤(X,Y )]PX , f ⇤(X,Y )]PY )]

= E(X,Y )⇠µ⌦m⌦⌫⌦m [Wp(✓ ?]PX , ✓ ?]PY )]

 E(X,Y )⇠µ⌦m⌦⌫⌦m


max
✓2Sd�1

Wp(✓]PX , ✓]PY )

�
:= m-Max-SW(µ, ⌫).

As a consequence, we obtain the conclusion of the proposition.

B Amortized Projected Robust Wasserstein

We first recall the definition of projected robust Wasserstein (PRW) distance [44]. Given two
probability measures µ, ⌫ 2 Pp(Rd), the projected robust Wasserstein distance between µ and ⌫ is
defined as:

PRWk(µ, ⌫) := max
U2Vk(Rd)

Wp(U]µ,U]⌫), (14)
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Table 3: Summary of FID and IS scores of methods on CIFAR10 (32x32), CelebA (64x64), STL10 (96x96),
and CelebA-HQ (128x128).

Method CIFAR10 (32x32) CelebA (64x64) STL10 (96x96) CelebA-HQ (128x128)

FID (#) IS (") FID (#) IS (") FID (#) IS (") FID (#) IS (")

SNGAN (baseline) 17.09 8.07 12.41 2.61 59.48 9.29 19.25 2.32

SW (L=1) 53.95 5.41 34.47 2.61 144.64 5.82 147.35 2.02
SW (L=100) 15.90±0.45 8.08±0.04 10.45 2.70 62.44 9.91 17.57 2.43
SW (L=1000) 14.58±0.95 8.10±0.06 10.96 2.67 57.12 10.25 16.17 2.65
SW (L=10000) 14.25±0.84 8.12±0.07 10.82 2.66 56.32 10.37 18.08 2.62

Max-SW (T2=1; ⌘2=0.001) 35.52±1.97 6.54±0.22 11.28 2.60 101.37 7.98 34.97 1.98
Max-SW (T2=10;⌘2=0.001) 31.33±3.02 6.67±0.37 15.98 2.51 77.40 9.46 29.50 2.36
Max-SW (T2=100; ⌘2=0.001) 41.20±2.33 6.02±0.25 16.52 2.46 86.91 9.05 56.20 2.26
Max-SW (T2=1; ⌘2=0.01) 40.28±2.10 6.21±0.19 14.11 2.62 88.29 9.26 43.16 2.36
Max-SW (T2=10; ⌘2=0.01) 39.56±4.55 6.25±0.36 16.89 2.49 90.82 9.18 59.74 2.16
Max-SW (T2=100; ⌘2=0.01) 44.68±3.22 5.98±0.31 12.80 2.70 99.32 8.52 55.94 2.11
Max-SW (T2=1; ⌘2=0.1) 36.60 6.58 18.87 2.42 94.33 8.19 52.68 2.16
Max-SW (T2=10; ⌘2=0.1) 48.42 6.19 16.22 2.49 90.17 9.70 43.65 2.17
Max-SW (T2=100; ⌘2=0.1) 50.74 5.42 14.40 2.59 101.38 8.46 42.81 2.20

LA-SW (ours) 13.21±0.69 8.19±0.03 9.82 2.72 52.08 10.52 14.94 2.50
GA-SW (ours) 13.64±0.11 8.22±0.11 9.21 2.78 53.80 10.40 18.97 2.34
NA-SW (ours) 14.22±0.51 8.29±0.08 8.91 2.82 53.90 10.14 15.17 2.72

where Vk(Rd) := {U 2 Rd⇥k
|U>U = Ik} is the Stefel Manifold. PRW can be seen as the

generalization of Max-SW since PRW with k = 1 is equivalent to Max-SW. Similar to Max-SW, the
optimization of PRW is solved by using projected gradient ascent. The detailed of the algorithm is
given in Algorithm 4. We would like to recall that other methods of optimization have also been used
to solved PRW such as Riemannian optimization [28], block coordinate descent [21]. However, in
this paper, we consider the original and simplest method which is projected gradient ascent.

In deep learning and large-scale applications, the mini-batch loss version of PRW is used, that is
defined as follow:

m-PRWk(µ, ⌫) = EX,Y⇠µ⌦m⌦⌫⌦m


max

U2Vk(Rd)
Wp(U]PX , U]PY )

�
. (15)

Amortized Projected Robust Wasserstein loss: We define Amortized Projected Rubust Wasserstein
loss as follow:

Definition 6 Let p � 1, m � 1, and µ, ⌫ are two probability measures in P(Rd). Given an
amortized model f : Rdm

⇥ Rdm
! Vk(Rd) where  2  , the amortized projected robust

Wasserstein between µ and ⌫ is:

A-PRW (µ, ⌫) := max
 2 

E(X,Y )⇠µ⌦m⌦⌫⌦m [Wp (f (X,Y )]PX , f (X,Y )]PY )]. (16)

Similar to the case of A-SW, A-PRW is symmetric, positive, and is a lowerbound of PRW. Also,
A-PRW is not a metric since it does not satisfy the identity property.

Amortized models: Similar to the case of A-SW, we can derive linear model, generalized linear
model, and non-linear amortized model. The only change is that the model gives k output vectors
instead of 1 vector.

Definition 7 Given X,Y 2 Rdm, and the one-one "reshape" maping T : Rdm
! Rd⇥m, the linear

projected amortized model is defined as:

f (X,Y ) := ProjVk(Rd)(W0 + T (X)W1 + T (Y )W2), (17)

where W1,W2 2 Rm⇥k,W0 2 Rd⇥k, and ProjVk(Rd) return the Q matrix in QR decomposition.

The definitions of the generalized linear projected amortized model and non-linear projected amortized
model are straight-forward from the definitions of generalized linear model and non-linear model in
A-SW.
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Algorithm 4 Projected Robust Wasserstein distance
Input: Probability measures: µ, ⌫, learning rate ⌘, max number of iterations T .
Initialize U
while U not converge or reach T do
U = U + ⌘ ·rUWp(U]µ,U]⌫)
Q,R = QR(U) (QR decomposition)
U = Q

end while
Return: ✓

C Training Generative Models

In this section, we review the parameterization of training losses of generative models.

Parametrization: We first discuss the parametrization of the model distribution ⌫�. In particular,
⌫� is a pushforward probability measure that is created by pushing a unit multivariate Gaussian (✏)
through a neural network G� that maps from the realization of the noise to the data space. The detail
of the architecture of G� is given in Appendix E. For training both SNGAN and generative models
of SW, Max-SW, and A-SW, we need a second neural network T� that maps from data space to a
single scalar. The second neural network is called Discriminator in SNGAN or Feature encoder in
the others. However, the architecture of the second neural network is the same for all models (see
Appendix E). For the better distinction between training objectives of SNGAN and the objectives of
the others, we denote T�1 is the sub neural network of T� that maps from the data space to a feature
space (output of the last Resnet block), and T�2 that maps from the feature space (image of T�1 ) to a
single scalar. More precisely, T� = T�2 � T�1 . Again, we specify T�1 and T�1 in Appendix E.

Training SNGAN: Let µ is theta data probability measure, these two optimization problems are done
alternatively in training SNGAN:

min
�1,�2

(Ex⇠µ[min(0,�1 + T�2(T�1(x)))] + Ez⇠✏[min(0,�1� T�2(T�1(G�(z))))]) ,

min
�

Ez⇠✏[�T�2(T�1(G�(z)))].

Training SW, Max-SW, and A-SW: For training these models, we adapt the framework in [11] to
SNGAN, namely, we use these two objectives:

min
�1,�2

(Ex⇠µ[min(0,�1 + T�2(T�1(x)))] + Ez⇠✏[min(0,�1� T�2(T�1(G�(z))))]) ,

min
�

D̃(T̃�1,�2]µ, T̃�1,�2]G�]✏),

where the function T̃�1,�2 = [T�1(x), T�2(T�1(x))] which is the concatenation vector of T�1(x) and
T�2(T�1(x)), D is one of the mini-batch SW, the mini-batch Max-SW (see Equation 5), and A-SW
(see Definition 2). This technique is an application of metric learning since Lp norm is not meaningful
on the space of natural images. This observation is mentioned in previous works [11, 14, 55, 39].

Other settings: The information about the mini-batch size, the learning rate, the optimizer, the
number of iterations, and so on, are given in Appendix E.

D Full Experimental Results

Detailed FID scores and Inception scores: We first show the detailed FID scores and IS scores of
all settings in Table 3. From the table, we can see that the quality of the SW depends on the number of
projections. Namely, a higher number of projections often leads to better performance. For Max-SW,
we obverse that increasing the number of iterations T2 might not lead to a lower FID score and a
higher IS score. The reason might be that the optimization gets stuck at some local optima. For the
choice of the learning rate ⌘2, we do not see any superior setting for Max-SW.

Generated Images: We show generated images from SW, GA-SW, and NA-SW on CIFAR10,
CelebA, and STL10 in Figure 3. The generated images from Max-SW on CIFAR10, CelebA, and
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SW (CIFAR) SW (CelebA) SW (STL10)

GA-SW (CIFAR) GA-SW (CelebA) GA-SW (STL10)

NA-SW (CIFAR) NA-SW (CelebA) NA-SW (STL10)
Figure 3: Random generated images of SW, GA-SW, and NA-SW from CIFAR10, CelebA, and STL10.

Max-SW (CIFAR) Max-SW (CelebA) Max-SW (STL10)

Figure 4: Random generated images of Max-SW from CIFAR10, CelebA, and STL10.

STL10 are given in Figure 4. The generated images from SNGAN and LA-SW are given in Figure 5.
The generated images from SW, Max-SW, GA-SW, and NA-SW on CelebA-HQ are presented in
Figure 6. Again, we observe consistent quality results compared to the quantitative results of FID
scores and Inception scores.
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SNGAN (CelebA-HQ) LA-SW (CelebA-HQ)

Figure 5: Random generated images of SNGAN and LA-SW from CelebAHQ.

Max-SW (CelebA-HQ) SW (CelebA-HQ)

GA-SW (CelebA-HQ) NA-SW (CelebA-HQ)

Figure 6: Random generated images of Max-SW, SW, GA-SW, and NA-SW from CelebA-HQ.

Results on Amortized PRW: We present the result of training generative models on CIfAR10
with mini-batch PRW loss and amortized PRW losses in Table 4. For both PRW and A-PRW,
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Table 4: Summary of FID and IS scores of methods based on projected robust Wasserstein on CIFAR10 (32x32).

Method CIFAR10 (32x32)
FID (#) IS (")

PRW (k=2) 42.03 6.48
LA-PRW (k=2) (ours) 14.27 8.02
GA-PRW (k=2) (ours) 14.56 8.15
NA-PRW (k=2) (ours) 14.69 8.43
PRW (k=4) 36.82 6.50
LA-PRW (k=4) (ours) 14.33 8.01
GA-PRW (k=4) (ours) 13.84 8.18
NA-PRW (k=4) (ours) 14.68 8.05

PRW (k=16) 56.74 5.41
LA-PRW (k=16) (ours) 14.16 8.06
GA-PRW (k=16) (ours) 26.57 7.31
NA-PRW (k=16) (ours) - -

Table 5: CIFAR10 architectures.

(a) G�

Input: ✏ 2 R128
⇠ N (0, 1)

128 ! 4⇥ 4⇥ 256, dense
linear

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU,
3⇥ 3 conv, 3 Tanh

(b) T�1

Input: x 2 [�1, 1]32⇥32⇥3

ResBlock down 128

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

(c) T�2

Input: x 2 R128⇥8⇥8

ReLU

Global sum pooling

128 ! 1
Spectral normalization

we set the learning rate for U is 0.01. We choose the best result from PRW with the number of
gradient updates in {10, 100} while we only update the amortized model once for A-PRW. We
observe that A-PRW gives better FID and IS than PRW for all choice of k 2 {2, 4, 16}. Moreover,
linear amortized projected model gives the best result among amortized models. When k = 16, the
non-linear amortized model suffers from numerical error when using QR decomposition, hence, we
cannot provide the result for it. Overall, the result on PRW strengthen the claim that using amortized
optimization for deep generative models with (sliced) projected Wasserstein can improve the result.

E Experimental Settings

Neural network architectures: We present the neural network architectures on CIFAR10 in Table 5,
CelebA in Table 6, STL10 in Table 7, and CelebA-HQ in Table 8. In summary, we use directly the
architectures from https://github.com/GongXinyuu/sngan.pytorch.

Hyper-parameters: For CIFAR10, CelebA, and CelebA-HQ, we set the training iterations to 50000
while we set it to 100000 in STL10. We update T�1 and T�2 every iterations while we update G�

each 5 iterations. The mini-batch size m is set to 128 on CIFAR10 and CelebA, is set to 32 on STL10,
is set to 16 on CelebA-HQ. The learning rate of G�, T�1 , and T�2 is set to 0.0002. The optimizers
for all optimization problems are Adam [22] with (�1,�2) = (0, 0.9).

FID scores and Inception scores: For these two scores, we calculate them based on 50000 random
samples from trained models. For FID scores, the statistics of datasets are calculated on all training
samples.
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Table 6: CelebA architectures.

(a) G�

Input: ✏ 2 R128
⇠ N (0, 1)

128 ! 4⇥ 4⇥ 256, dense
linear

ResBlock up 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU,
3⇥ 3 conv, 3 Tanh

(b) T�1

Input: x 2 [�1, 1]64⇥64⇥3

ResBlock down 128

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ResBlock 128

(c) T�2

Input: x 2 R128⇥8⇥8

ReLU

Global sum pooling

128 ! 1
Spectral normalization

Table 7: STL10 archtectures.

(a) G�

Input: ✏ 2 R128
⇠ N (0, 1)

128 ! 3⇥ 3⇥ 256, dense
, linear

ResBlock up 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU,
3⇥ 3 conv, 3 Tanh

(b) T�1

Input: x 2 [�1, 1]96⇥96⇥3

ResBlock down 128

ResBlock down 128

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ResBlock 128

(c) T�2

Input: x 2 R128⇥6⇥6

ReLU

Global sum pooling

128 ! 1
Spectral normalization

Table 8: CelebA-HQ archtectures.

(a) G�

Input: ✏ 2 R128
⇠ N (0, 1)

128 ! 4⇥ 4⇥ 256, dense
, linear

ResBlock up 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU,
3⇥ 3 conv, 3 Tanh

(b) T�1

Input: x 2 [�1, 1]128⇥128⇥3

ResBlock down 128

ResBlock down 128

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ResBlock 128

(b) T�2

Input: x 2 R128⇥8⇥8

ReLU

Global sum pooling

128 ! 1
Spectral normalization

F Potential Impact and Limitations

Potential Impact: This work improves training generative models with sliced Wasserstein by using
amortized optimization. Moreover, amortized sliced Wasserstein losses can be applied to various
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applications such as generative models, domain adaptation, and approximate inference, adversarial
attack, and so on. Due to its widely used potential, it can be used as a component in some applications
that do not have a good purpose. For example, some examples are creating images of people without
permission, attacking machine learning systems, and so on.

Limitations: In the paper, we have not been able to investigate the amortization gaps of the
proposed amortized models since the connection of the optima of Max-SW to the supports of two
probability measures has not been well-understand yet. Moreover, the design of amortized models
requires more engineering to achieve better performance since there is no inductive bias for designing
them at the moment. The hardness in designing amortized models is that we need to trade-off between
the performance and computational efficiency. We will leave these questions to future work.
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