
Amortized Projection Optimization for Sliced
Wasserstein Generative Models

Khai Nguyen
Department of Statistics and Data Sciences

The University of Texas at Austin
Austin, TX 78712

khainb@utexas.edu

Nhat Ho
Department of Statistics and Data Sciences

The University of Texas at Austin
Austin, TX 78712

minhnhat@utexas.edu

Abstract

Seeking informative projecting directions has been an important task in utilizing
sliced Wasserstein distance in applications. However, finding these directions
usually requires an iterative optimization procedure over the space of projecting
directions, which is computationally expensive. Moreover, the computational
issue is even more severe in deep learning applications, where computing the
distance between two mini-batch probability measures is repeated several times.
This nested loop has been one of the main challenges that prevent the usage of
sliced Wasserstein distances based on good projections in practice. To address this
challenge, we propose to utilize the learning-to-optimize technique or amortized
optimization to predict the informative direction of any given two mini-batch
probability measures. To the best of our knowledge, this is the first work that bridges
amortized optimization and sliced Wasserstein generative models. In particular,
we derive linear amortized models, generalized linear amortized models, and
non-linear amortized models which are corresponding to three types of novel mini-
batch losses, named amortized sliced Wasserstein. We demonstrate the favorable
performance of the proposed sliced losses in deep generative modeling on standard
benchmark datasets 1.

1 Introduction
Generative modeling is one of the most important tasks in machine learning and data science. Lever-
aging the expressiveness of neural networks in parameterizing the model distribution, deep generative
models such as GANs [17], VAEs [23], and diffusion models [19, 54], achieve a significant quality of
sampling images. Despite differences in the way of modeling the model distribution, optimization ob-
jectives of training generative models can be written as minimizing a discrepancy D(·, ·) between data
distribution µ and the model distribution ⌫� with � 2 �, parameter space of neural networks weights,
namely, we solve for �̂ 2 argmin�2�D(µ, ⌫�). For example, Kullback–Leibler divergence is used
in VAEs and diffusion models, Jensen–Shannon divergence appears in GANs, and f-divergences are
utilized in f-GANs [43]. Because of the complexity of the neural networks �, closed-form optimal
solutions to these optimization problems are intractable. Therefore, gradient-based methods and their
stochastic versions are widely used in practice to approximate these solutions.

Recently, optimal transport-based losses, which we denote as D(·, ·), are utilized to train gener-
ative models due to their training stability, efficiency, and geometrically meaning. Examples of
these models include Wasserstein GAN [3] with the dual form of Wasserstein-1 distance [46], and
OT-GANs [14, 51] with the primal form of Wasserstein distance and with Sinkhorn divergence [8]

1Code for the paper is published at https://github.com/UT-Austin-Data-Science-Group/
AmortizedSW.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/UT-Austin-Data-Science-Group/AmortizedSW
https://github.com/UT-Austin-Data-Science-Group/AmortizedSW

between mini-batch probability measures. Although these models considerably improve the gen-
erative performance, there have been remained certain problems. In particular, Wasserstein GAN
is reported to fail to approximate the Wasserstein distance [55] while OT-GAN suffers from high
computational complexity of Wasserstein distance: O(m3 logm) and its curse of dimensionality: the
sample complexity of O(m�1/d) where m is the number of supports of two mini-batch measures.
The entropic regularization [8] had been proposed to improve the computational complexity of
approximating optimal transport to O(m2) [1, 30, 31, 29] and to remove the curse of dimensional-
ity [34]. However practitioners usually choose to use the slicing (projecting version) of Wasserstein
distance [57, 11, 25, 42] due to a fast computational complexity O(m logm) and no curse of di-
mensionality O(m�1/2). The distance is known as sliced Wasserstein distance (SW) [4]. Sliced
Wasserstein distance is defined as the expected one-dimensional Wasserstein distance between two
projected measures over the uniform distribution over the unit sphere. Due to the intractability of
the expectation, Monte Carlo samples from the uniform distribution over the unit sphere are used to
approximate the distance. The number of samples is often called the number of projections and it is
denoted as L.

From applications, practitioners observe that sliced Wasserstein distance requires a sufficiently large
number of projections L relative to the dimension of data to perform well [25, 11]. Increasing L leads
to a linear increase in computational time and memory. However, when data lie in a low dimensional
manifold, several projections are redundant since they collapse projected measures to a Dirac-Delta
measure at zero. There are some attempts to overcome that issue including sampling orthogonal
directions [49] and mapping the data to a lower-dimensional space [11]. The most popular approach
is to search for the direction that maximizes the projected distance, which is known as max-sliced
Wasserstein distance (Max-SW) [10]. Nevertheless, in the context of deep generative models and
deep learning in general, the optimization over the unit sphere requires iterative projected gradient
descent methods that can be computationally expensive. In detail, each gradient-update of the model
parameters (neural networks) requires an additional loop for optimization of Max-SW between two
mini-batch probability measures. Therefore, we have two nested optimization loops: the global loop
(optimizing model parameters) and the local loop (optimizing projection). These optimization loops
can slow down the training considerably.

Contribution. To overcome the issue, we propose to leverage learning to learn techniques (amortized
optimization) to predict the optimal solution of the local projection optimization. We bridge the
literature on amortized optimization and optimal transport by designing amortized models to solve
the iterative optimization procedure of finding optimal slices in the sliced Wasserstein generative
model. To the best of our knowledge, this is the first time amortized optimization is used in sliced
Wasserstein literature. In summary, our main contributions are two-fold:

1. First, we introduce a novel family of mini-batch sliced Wasserstein losses that utilize amor-
tized models to yield informative projecting directions, named amortized sliced Wasserstein
losses (A-SW). We specify three types of amortized models: linear amortized, general-
ized linear amortized, and non-linear amortized models that are corresponding to three
mini-batch losses: linear amortized sliced Wasserstein (LA-SW), generalized linear amor-
tized sliced Wasserstein (GA-SW), and non-linear amortized sliced Wasserstein (NA-SW).
Moreover, we discuss some properties of A-SW losses including metricity, complexities,
and connection to mini-batch Max-SW.

2. We then introduce the application of A-SW in generative modeling. Furthermore, we carry
out extensive experiments on standard benchmark datasets including CIFAR10, CelebA,
STL10, and CelebAHQ to demonstrate the favorable performance of A-SW in learning
generative models. Finally, we measure the computational speed and memory of A-SW,
mini-batch Max-SW, and mini-batch SW to show the efficiency of A-SW.

Organization. The remainder of the paper is organized as follows. We first provide background about
Wasserstein distance, sliced Wasserstein distance, max-sliced Wasserstein distance, and amortized
optimization in Section 2. In Section 3, we propose amortized sliced Wasserstein distances and
analyze some of their theoretical properties. The discussion on related works is given in Section 4.
Section 5 contains the application of A-SW to generative models, qualitative experimental results,
and quantitative experimental results on standard benchmarks. In Section 6, we provide a conclusion.
Finally, we defer the proofs of key results and extra materials to the Appendices.

2

Notation. For any d � 2, Sd�1 := {✓ 2 Rd
| ||✓||22 = 1} denotes the d dimensional unit hyper-sphere

in L2 norm, and U(Sd�1) is the uniform measure over Sd�1. Moreover, � denotes the Dirac delta
function. For p � 1, Pp(Rd) is the set of all probability measures on Rd that has finite p-moments.
For µ, ⌫ 2 Pp(Rd), ⇧(µ, ⌫) := {⇡ 2 Pp(Rd

⇥ Rd) |
R
Rd ⇡(x, y)dx = ⌫,

R
Rd ⇡(x, y)dy = µ} is the

set of transportation plans between µ and ⌫. For m � 1, we denotes µ⌦m as the product measure
which has the supports are the joint vector of m random variables that follows µ. For a vector
X 2 Rdm, X := (x1, . . . , xm), PX denotes the empirical measures 1

m

Pm
i=1 �xi . We denote ✓]µ as

the push-forward probability measure of µ through the function T✓ : Rd
! R where T✓(x) = ✓>x.

2 Background

In this section, we first review the definitions of the Wasserstein distance, the sliced Wasserstein
distance, and the max-sliced Wasserstein distance. We then formulate generative models based on the
max-sliced Wasserstein distances and review the amortized optimization problem and its application
to the max-sliced Wasserstein generative models.

2.1 (Sliced)-Wasserstein Distances

We first define the Wasserstein-p distance [56, 45] between two probability measures µ 2 Pp(Rd)

and ⌫ 2 Pp(Rd) as follows: Wp(µ, ⌫) :=
⇣
inf⇡2⇧(µ,⌫)

R
Rd⇥Rd kx� ykppd⇡(x, y)

⌘ 1
p

. When d = 1,

the Wasserstein distance has a closed form which is Wp(µ, ⌫) = (
R 1
0 |F�1

µ (z) � F�1
⌫ (z)|pdz)1/p

where Fµ and F⌫ are the cumulative distribution function (CDF) of µ and ⌫ respectively.

To utilize this closed-form property of Wasserstein distance in one dimension and overcome
the curse of dimensionality of Wasserstein distance in high dimension, the sliced Wasserstein
distance [4] between µ and ⌫ had been introduced and admitted the following formulation:
SWp(µ, ⌫) :=

�R
Sd�1 Wp

p(✓]µ, ✓]⌫)d✓
� 1

p . For each ✓ 2 Sd�1, Wp
p(✓]µ, ✓]⌫) can be computed

in linear time O(n log n) where n is the number of supports of µ and ⌫. However, due to the
integration over the unit sphere, the sliced Wasserstein distance does not have closed-form expres-
sion. To approximate the intractable expectation, Monte Carlo scheme is used, namely, we draw
uniform samples ✓1, . . . , ✓L ⇠ U(Sd�1) from the unit sphere and obtain the following approximation:

SWp(µ, ⌫) ⇡
⇣

1
L

PL
i=1 Wp

p(✓i]µ, ✓i]⌫)
⌘ 1

p
. In practice, L should be chosen to be sufficiently large

compared to the dimension d. It is not appealing since the computational complexity of SW is linear
with L. To reduce projection complexity, max-sliced Wasserstein (Max-SW) is introduced [10] . In
particular, the max-sliced Wasserstein distance between µ and ⌫ is given by:

Max-SW(µ, ⌫) := max
✓2Sd�1

Wp(✓]µ, ✓]⌫). (1)

To solve the optimization problem, a projected gradient descent procedure is used. We present a
simple algorithm in Algorithm 1. In practice, practitioners often set a fixed number of gradient
updates, e.g., T = 100.

2.2 Learning Generative Models with Max-Sliced Wasserstein and Amortized Optimization

We now provide an application of (sliced)-Wasserstein distances to generative models settings. The
problem can be seen as the following optimization:

min
�2�

D(µ, ⌫�), (2)

where D(·, ·) can be Wasserstein distance or SW distance or Max-SW distance. Despite the recent
progress on scaling up Wasserstein distance in terms of the size of supports of probability measures [1,
30], using the original form of Wasserstein distances is still not tractable in real training due to both
the memory constraint and time constraint. In more detail, the number of training samples is often
huge, e.g., one million, and the dimension of data is also huge ,e.g., ten thousand. Therefore, mini-
batch losses based on Wasserstein distances have been proposed [12, 40, 41]. The corresponding
population form of these losses between two probability measures µ and ⌫ is:

D̃(µ, ⌫) := EX,Y⇠µ⌦m⌦⌫⌦mD(PX , PY), (3)

3

Algorithm 1 Max-sliced Wasserstein distance
Input: Probability measures: µ, ⌫, learning rate ⌘, max number of iterations T .
Initialize ✓
while ✓ not converge or reach T do
✓ = ✓ + ⌘ ·r✓Wp(✓]µ, ✓]⌫)
✓ = ✓

||✓||2
end while
Return: ✓

Algorithm 2 Training generative models with mini-batch max-sliced Wasserstein loss
Input: Data probability measure µ, model learning rate ⌘1, slice learning rate ⌘2, model maximum
number of iterations T1, slice maximum number of iterations T2, number of mini-batches k (is
often set to 1).
Initialize �, the model probability measure ⌫�
while � not converge or reach T1 do
r� = 0
Sample (X1, Y�,1), . . . , (Xk, Y�,k) ⇠ µ⌦m

⌦ ⌫⌦m
�

for i = 1 to k do
while ✓ not converge or reach T2 do
✓ = ✓ + ⌘2 ·r✓Wp(✓]PXi , ✓]PY�,i)

✓ = ✓
||✓||2

end while
r� = r� +

1
kr�Wp(✓]PXi , ✓]PY�,i)

end for
� = �� ⌘1 ·r�

end while
Return: �, ⌫�

where m � 1 is the mini-batch size and D is a Wasserstein metric.

In the generative model context [17], a stochastic gradient of the parameters of interest is utilized to
update these parameters, namely,

r�D̃(µ, ⌫�) ⇡
1

k

kX

i=1

r�D(PXi , PY�i
), (4)

where k is the number of mini-batches (is often set to 1), and (Xi, Y�i) is i.i.d sample from µ⌦m
⌦

⌫⌦m
� . The exchangeability between derivatives and expectation, and unbiasedness of the stochastic

gradient are proven in [13]. Mini-batch losses are not distances; however, we can derive mini-batch
energy distances from them [51].

Learning generative models via max-sliced Wasserstein: As we mentioned in Section 2.1, the max-
sliced Wasserstein distance can overcome the curse of dimensionality of the Wasserstein distance and
the issues of Monte Carlo samplings in the sliced Wasserstein distance. Therefore, it is an appealing
divergence for learning generative models. By replacing the Wasserstein metric in equation (3), we
arrive at the following formulation of the mini-batch max-sliced Wasserstein loss, which is given by:

m-Max-SW(µ, ⌫) = EX,Y⇠µ⌦m⌦⌫⌦m

max
✓2Sd�1

Wp(✓]PX , ✓]PY)

�
. (5)

Here, we can observe that each pair of mini-batch contains its own optimization problem of finding
the "max" slice. Placing this in the context of iterative training of generative models, we can
foresee its expensive computation. For a better understanding, we present an algorithm for training
generative models with mini-batch max-sliced Wasserstein in Algorithm 2. In practice, there are some
modifications of training generative models with mini-batch Max-SW for dealing with unknown
metric space [11]. We defer the details of these modifications in Appendix C.

Amortized optimization: A natural question appears: "How can we avoid the nested loop in mini-
batch Max-SW due to several local optimization problems?". In this paper, we propose a practical

4

solution for this problem, which is known as amortized optimization [2]. In amortized optimization,
instead of solving all optimization problems independently, an amortized model is trained to predict
optimal solutions to all problems. We now state the adapted definition of amortized models based on
that in [52, 2]:

Definition 1 For each context variable x in the context space X , ✓?(x) is the solution of the opti-
mization problem ✓?(x) = argmin✓2⇥ L(✓, x), where ⇥ is the solution space. A parametric function
f : X ! ⇥, where 2 , is called an amortized model if

f (x) ⇡ ✓?(x), 8x 2 X . (6)

The amortized model is trained by the amortized optimization objective which is defined as:

min
 2

Ex⇠p(x)L(f (x), x), (7)

where p(x) is a probability measure on X which measures the "importance" of optimization problems.

The amortized model in Definition 1 is sometimes called a fully amortized model for a distinction
with the other concept of semi amortized model [2]. The gap between the predicted solution and the
optimal solution Ex⇠p(x)||f (x)� ✓?(x)||2 is called the amortization gap. However, understanding
this gap depends on specific configurations of the objective L(·, x), such as convexity and smoothness,
which are often non-trivial to obtain in practice.

3 Amortized Sliced Wasserstein

In this section, we discuss an application of amortized optimization to the mini-batch max-sliced
Wasserstein. In particular, we first formulate the approach into a novel family of mini-batch losses,
named Amortized Sliced Wasserstein. Each member of this family utilizes an amortized model for
predicting informative slicing directions of mini-batch measures. We then propose several useful
amortized models in practice, including the linear model, the generalized linear model, and the
non-linear model.

3.1 Amortized Sliced Wasserstein and Amortized Models

We extend the definition of the mini-batch max-sliced Wasserstein in Equation (5) with the usage of
an amortized model to obtain the amortized sliced Wasserstein as follows.

Definition 2 Let p � 1, m � 1, and µ, ⌫ are two probability measures in P(Rd). Given an amortized
model f : Rdm

⇥Rdm
! Sd�1 where 2 , the amortized sliced Wasserstein between µ and ⌫ is:

A-SW(µ, ⌫) := max
 2

E(X,Y)⇠µ⌦m⌦⌫⌦m [Wp(f (X,Y)]PX , f (X,Y)]PY)]. (8)

From the definition, we can see that the amortized model maps each pair of mini-batches to the optimal
projecting direction on the unit hypersphere between two corresponding mini-batch probability
measures. We have the following result about the symmetry and positivity of A-SW.

Proposition 1 The amortized sliced Wasserstein losses are positive and symmetric. However, they
are not metrics since they do not satisfy the identity property, namely, A-SW(µ, ⌫) = 0 6() µ = ⌫.

Proof of Proposition 1 is in Appendix A.1. Our next result indicates that we can upper bound the
amortized sliced Wasserstein in terms of mini-batch max-sliced Wasserstein.

Proposition 2 Assume that the space is a compact set and the function f is continuous in terms of
 . Then, the amortized sliced Wasserstein are lower-bounds of the mini-batch max-sliced Wasserstein
(Equation 5), i.e., A-SW(µ, ⌫) m-Max-SW(µ, ⌫) for all probability measures µ and ⌫.

Proof of Proposition 2 is in Appendix A.2.

Parametric forms of the amortized model: Now we define three types of amortized models that we
will use in the experiments.

5

Definition 3 Given X,Y 2 Rdm, and the one-one "reshape" mapping T : Rdm
! Rd⇥m, the linear

amortized model is defined as:

f (X,Y) :=
w0 + T (X)w1 + T (Y)w2

||w0 + T (X)w1 + T (Y)w2||2
, (9)

where w1, w2 2 Rm, w0 2 Rd and = (w0, w1, w2).

In Definition 3, the assumption is that the optimal projecting direction lies on the subspace that is
spanned by the basis {x1, . . . , xm, y1, . . . , ym, w0} where X = (x1, . . . , xm) and Y = (y1, . . . , ym).
The computational complexity of this function is O((2m+1)d) since those of the operators T (X)w1

and T (Y)w2 are O(md) while adding the bias w0 costs an additional computational complexity
O(d). The number of parameters in linear amortized model is 2m+ d.

To increase the expressiveness of the linear amortized model, we apply some (non-linear) mappings
to the inputs X and Y , which results in the generalized linear amortized model as follows.

Definition 4 Given X,Y 2 Rdm, and the one-one "reshape" mapping T : Rdm
! Rd⇥m, the

generalized linear amortized model is defined as:

f (X,Y) :=
w0 + T (g 1(X))w1 + T (g 1(Y))w2

||w0 + T (g 1(X))w1 + T (g 1(Y))w2||2
, (10)

where w1, w2 2 Rm, w0 2 Rd, 1 2 1, g 1 : Rdm
! Rdm and = (w0, w1, w2, 1).

In Definition 4, the assumption is that the optimal projecting direction lies on the subspace that is
spanned by the basis {x0

1, . . . , x
0
m, y01, . . . , y

0
m, w0} where g 1(X) = (x0

1, . . . , x
0
m) and g 1(Y) =

(y01, . . . , y
0
m). To specify, we let g 1(X) = (W2�(W1x1) + b0, . . . ,W2�(W1xm) + b0), where �(·)

is the Sigmoid function, W1 2 Rd⇥d, W2 2 Rd⇥d, and b0 2 Rd. Compared to the linear model, the
generalized linear model needs additional computations for g (T (X)) and g (T (Y)), which are at
the order of O(2m(d2+d)). It is because we need to include the complexity for matrix multiplication,
e.g., W1x1 that costs O(d2), for Sigmoid function that costs O(d), and for adding bias b0 that costs
O(d). Therefore, the total computational complexity of the function f is O(4md2 + 6md + d)
while the number of parameters is 2(m+ d2 + d).

We finally propose another amortized model where we instead consider some mapping on the function
!0 + T (X)!1 + T (Y)!2 in the linear amortized model so as to increase the approximation power of
the function f .

Definition 5 Given X,Y 2 Rdm, and the one-one "reshape" mapping T : Rdm
! Rd⇥m, the

non-linear amortized model is defined as:

f (X,Y) :=
h 2(w0 + T (X)w1 + T (Y)w2)

||h 2(w0 + T (X)w1 + T (Y)w2)||2
, (11)

where w1, w2 2 Rm, w0 2 Rd, 2 2 2, h 2 : Rd
! Rd and = (w0, w1, w2, 2).

In Definition 5, the assumption is that the optimal projecting direction lies on the image of the
function h 2(·) that maps from the subspace spanned by {x1, . . . , xm, y1, . . . , ym, w0} where X =
(x1, . . . , xm) and Y = (y1, . . . , ym). The computational complexity for h 2(x) = W4�(W3x))+b0
when x 2 Rd, W3 2 Rd⇥d, W4 2 Rd⇥d, and b0 2 Rd is at the order of O(2(d2 + d)). Therefore,
the total computational complexity of the function f is O(2md+ 2d2 + 3d) while the number of
parameters is 2(m+ d2 + d).

Using amortized models in Definitions 3-5 leads to three amortized sliced Wasserstein losses, which
are linear amortized sliced Wasserstein loss (LA-SW), generalized linear amortized sliced Wasserstein
loss (GA-SW), and non-linear amortized sliced Wasserstein loss (NA-SW) in turn.

Remark 1 The parametric forms in Definitions 3-5 are chosen as they are well-known choices for
parametric functions. There are still several other ways of parameterization that can be utilized
in practice based on prior knowledge about data, e.g., we can use convolution operator for saving
parameters or we can strengthen the dependence between samples via recursive functions. We leave
the design of these amortized models for future work.

6

Algorithm 3 Training generative models with amortized sliced Wasserstein loss
Input: Data probability measure µ, model learning rate ⌘1, amortized learning rate ⌘2, maximum
number of iterations T , number of mini-batches k (is often set to 1).
Initialize �, the model probability measure ⌫�.
Initialize , the amortized model f .
while �, not converge or reach T do
r� = 0;r = 0
Sample (X1, Y�,1), . . . , (Xk, Y�,k) ⇠ µ⌦m

⌦ ⌫⌦m
�

for i = 1 to k do
r� = r� +

1
kr�Wp(f (Xi, Y�,i)]PXi , f (Xi, Y�,i)]PY�,i)

r = r + 1
kr Wp(f (Xi, Y�,i)]PXi , f (Xi, Y�,i)]PY�,i)

end for
� = �� ⌘1 ·r�

 = + ⌘2 ·r

end while
Return: �, ⌫�

3.2 Amortized Sliced Wasserstein Generative Models

Based on the amortized sliced Wasserstein losses, our objective function for training a generative
model ⌫� parametrized by � 2 � now becomes:

min
�2�

max
 2

E(X,Y�)⇠µ⌦m⌦⌫⌦m
�

[Wp(f (X,Y�)]PX , f (X,Y�)]PY�)] := min
�2�

max
 2

L(µ, ⌫�,).

Since the above optimization forms a minimax problem, we can use an alternating stochastic gradient
descent-ascent algorithm to solve it. In particular, the stochastic gradients of � and can be estimated
from mini-batches (X1, Y�,1), . . . , (Xk, Y�,k) ⇠ µ⌦m

⌦ ⌫⌦m
� as follows:

r�L(µ, ⌫�,) =
1

k

kX

i=1

r�Wp(f (Xi, Y�,i)]PXi , f (Xi, Y�,i)]PY�,i), (12)

r L(µ, ⌫�,) =
1

k

kX

i=1

r Wp(f (Xi, Y�,i)]PXi , f (Xi, Y�,i)]PY�,i). (13)

For more details, we present the procedure in Algorithm 3.

Computational complexity: From Algorithm 2 and Algorithm 3, we can see that training with
A-SW can escape the inner while-loop for finding the optimal projecting directions. In each iteration
of the global while-loop, the computational complexity of computing the mini-batch Max-SW is
O(2kT2(m logm+ dm)), which is composed by k mini-batches with T2 loops of the projection to
one-dimension operator which costs O(2dm) and the computation of the sliced Wasserstein which
costs O(2m logm). For the mini-batch sliced Wasserstein, the overall computational complexity is
O(2kL(m logm+dm)) where L is the number of projections. For LA-SW, the overall computation
complexity is O(2k(m logm+ 3md+ d)) where the extra complexity O((2m+ 1)d) comes from
the computation of f (·) (see Section 3.1). Similarly, the computational complexities of GA-SW and
NA-SW are respectively O(2k(m logm+4md2+7md+d)) and O(2k(m logm+3md+2d2+3d)).

Projection Complexity: Compared to the sliced Wasserstein, Max-SW reduces the space for
projecting directions from O(L) to O(1). For LA-SW, GA-SW, and NA-SW, the projection
complexity is also O(1). However, compared to d parameters of Max-SW, LA-SW needs 2m+ d
parameters for creating the projecting directions while GA-SW and NA-SW respectively need
O(2(m+ d2 + d)) parameters for producing the directions (see Section 3.1).

Remark 2 The computational complexities and the projection complexities of GA-SW and NA-SW
are based on the specific parameterization that we choose in Section 3. We would like to recall
that these complexities can be reduced by lighter parameterization as in the remark at the end of
Section 3.1.

7

Figure 1: FID scores and IS scores over epochs of different training losses on datasets. We observe that
members of A-SW usually help the generative models converge faster.

4 Related Works

Generalized sliced Wasserstein [24] was introduced by changing the push-forward function from
linear T✓(x) = ✓>x to non-linear T✓(x) = g(✓, x) for some non-linear function g(·, ·). To cope with
the projection complexity of sliced Wasserstein, a biased approximation based on the concentration of
Gaussian projections was proposed in [37]. An implementation technique that utilizes both RAM and
GPUs’ memory for training sliced Wasserstein generative model was introduced in [27]. Augmenting
the data to a higher-dimensional space for a better linear separation results in augmented sliced
Wasserstein [6]. Projected Robust Wasserstein (PRW) metrics appeared in [44] that finds the best
orthogonal linear projecting operator onto d0 > 1 dimensional space. Riemannian optimization
techniques for solving PRW were proposed in [28, 20]. We would like to recall that, amortized
optimization techniques can be also applied to the case of PRW, max-K-sliced Wasserstein [9], sliced
divergences [36], and might be applicable for sliced mutual information [16]. Statistical guarantees
of training generative models with sliced Wasserstein were derived in [38].

Amortized optimization was first introduced in the form of amortized variational inference [23, 47].
Several techniques were proposed to improve the usage of amortized variational inference such as
using meta sets in [58], using iterative amortized variational inference in [33], using regularization
in [53]. Amortized inference was also applied into many applications such as probabilistic reason-
ing [15], probabilistic programming [48], and structural learning [5]. However, to the best of our
knowledge, it is the first time that amortized optimization is used in the literature of optimal transport.
We refer to [2] for a tutorial about the amortized optimization.

5 Experiments

In this section, we focus on comparing A-SW generative models with SNGAN [35], the sliced
Wasserstein generator [11], and the max-sliced Wasserstein generator [10]. The parameterization of
model distribution is based on the neural network architecture of SNGAN [35]. The detail of the
training processes of all models is given in Appendix C. For datasets, we choose standard benchmarks
such as CIFAR10 (32x32) [26], STL10 (96x96) [7], CelebA (64x64), and CelebAHQ (128x128) [32].
For quantitative comparison, we use the FID score [18] and the Inception score (IS) [50]. We also
show some randomly generated images from different models for qualitative comparison. We give
full experimental results in Appendix D. The detailed settings about architectures, hyperparameters,
and evaluation of FID and IS are given in Appendix E. We would like to recall that all losses that are
used in this section are in their mini-batch version.

We first demonstrate the quality of using A-SW in the training generative model compared to
the baseline SNGAN, and other mini-batch sliced Wasserstein variants. Then, we investigate the
convergence of generative models trained by different losses including the standard SNGAN’s loss,

8

Table 1: Summary of FID and IS scores of methods on CIFAR10 (32x32), CelebA (64x64), STL10 (96x96),
and CelebA-HQ (128x128). We observe that A-SW losses provide the best results among all the training losses.

Method CIFAR10 (32x32) CelebA (64x64) STL10 (96x96) CelebA-HQ (128x128)

FID (#) IS (") FID (#) IS (") FID (#) IS (") FID (#) IS (")

SNGAN 17.09 8.07 12.41 2.61 59.48 9.29 19.25 2.32
SW 14.25±0.84 8.12±0.07 10.45 2.70 56.32 10.37 16.17 2.65
Max-SW 31.33±3.02 6.67±0.37 11.28 2.60 77.40 9.46 29.50 2.36

LA-SW (ours) 13.21±0.69 8.19±0.03 9.82 2.72 52.08 10.52 14.94 2.50
GA-SW (ours) 13.64±0.11 8.22±0.11 9.21 2.78 53.80 10.40 18.97 2.34
NA-SW (ours) 14.22±0.51 8.29±0.08 8.91 2.82 53.90 10.14 15.17 2.72

mini-batch SW, mini-batch Max-SW, and A-SW by looking at their FID scores and IS scores over
training epochs of their best settings. After that, we compare models qualitatively by showing their
randomly generated images. Finally, we report the training speed (number of training iterations per
second) and the training memory (megabytes) of all settings of all training losses.

Summary of FID and IS scores: We show FID scores and IS scores of all models at the last
training step on all datasets in Table 1. For SW and Max-SW, we select the best setting of hyper-
parameters for each score. In particular, we search for the best setting of the number of projec-
tions L 2 {1, 100, 1000, 10000}. Also, we do a grid search on two hyperparameters of Max-SW,
namely, the slice maximum number of iterations T2 2 {1, 10, 100} and the slice learning rate
⌘2 2 {0.001, 0.01, 0.1}. The detailed FID scores and IS scores for all settings are reported in Table 3
in Appendix D. For amortized models, we fix the slice learning rate ⌘2 = 0.01. From Table 1, the best
amortized model provides lower FID scores and IS scores than SNGAN, SW, and Max-SW on all
datasets of multiple image resolutions. We would like to recall that, SNGAN is reported to be better
than WGAN [3] in [35]. Furthermore, the best generative models trained by A-SW are better than
models trained with SNGAN, SW, and Max-SW. Interestingly, the LA-SW performs consistently
well compared to other members of A-SW. Also, we observe that Max-SW performs worse than
both A-SW and SW. This might be because the local optimization of Max-SW gets stuck at some
bad optimum. However, we would like to recall that Max-SW is still better than SW with L = 1 (see
Table 3 in Appendix D). It emphasizes the benefit of searching for a good direction for projecting.

FID and IS scores over training epochs: We show the values of FID scores and Inception scores
over epochs on CIFAR10, CelebA, STL10, and CelebA-HQ in Figure 1. According to the figures
in Figure 1, we observe that using SW and A-SW helps the generative models converge faster than
SNGAN. Moreover, FID lines of A-SW are usually under the lines of other losses and the IS lines of
A-SW are usually above the lines of others. Therefore, A-SW losses including LA-SW, GA-SW,
and NA-SW can improve the convergence of training generative models.

Generated images: We show generated images on CIFAR10, CelebA, STL10 from SNGAN, and
LA-SW in Figure 2 as a qualitative comparison. The generated images on CelebAHQ and the
generated images of Max-SW, GA-SW, and NA-SW are given in Appendix D. From these images,
we observe that the quality of generated images is consistent with the FID scores and the IS scores.
Therefore, it reinforces the benefits of using A-SW to train generative models. Again, we would like
to recall that all generated images are completely random without cherry-picking.

Computational time and memory: We report the number of training iterations per second and the
memory in megabytes (MB) in Table 2. We would like to recall that reported numbers are under
some errors due to the state of the computational device. From the table, we see that LA-SW is
comparable to Max-SW and SW (L = 1) about the computational memory and the computational
time. More importantly, LA-SW is faster and consumes less memory than SW (L � 100) and
Max-SW (T2 � 10). Compared to SNGAN, SW variants increase the demand for memory and
computation slightly. From LA-SW to GA-SW and NA-SW, the computational time is slower
slightly; however, we need between 800 to 2100 MB of memory in extra. Again, the additional
memory depends on the chosen parameterization (see Section 3). From this table, we can see that
using sliced Wasserstein models gives better generative quality than SNGAN but it also costs more
computational time and memory. Among sliced Wasserstein variants, LA-SW is the best option since
it costs the least additional memory and time while it gives consistently good results. We refer to
Section 3 for discussion of the time and projection complexities of A-SW.

9

SNGAN (CIFAR) SNGAN (CelebA) SNGAN (STL10)

LA-SW (CIFAR) LA-SW (CelebA) LA-SW (STL10)

Figure 2: Random generated images of SNGAN and LA-SW from CIFAR10, CelebA, and STL10.

Table 2: Computational time and memory of methods (in iterations per a second and megabytes (MB)).

Method CIFAR10 (32x32) CelebA (64x64) STL10 (96x96) CelebA-HQ (128x128)

Iters/s (") Mem (#) Iters/s (") Mem (#) Iters/s (") Mem (#) Iters/s (") Mem (#)

SNGAN (baseline) 19.97 1740 6.31 6713 9.33 3866 10.41 3459

SW (L=1) 18.73 2078 6.17 8011 9.31 4597 10.25 4111
SW (L=100) 18.42 2093 6.15 8015 9.11 4609 10.17 4120
SW (L=1000) 14.96 2112 6.13 8047 9.03 4616 9.63 4143
SW (L=10000) 5.84 2421 4.21 8353 6.50 4780 5.17 4428

Max-SW (T2=1) 18.61 2078 6.17 8011 9.23 4597 10.22 4111
Max-SW (T2=10) 18.16 2078 6.15 8011 9.17 4597 10.16 4111
Max-SW (T2=100) 13.47 2078 5.78 8011 8.32 4597 8.13 4111

LA-SW (ours) 18.58 2086 6.17 8021 9.23 4600 10.19 4115
GA-SW (ours) 17.27 4151 6.07 10083 9.08 5251 10.11 6163
NA-SW (ours) 17.67 4134 6.13 10068 9.11 5249 10.15 6152

6 Conclusion

We propose using amortized optimization for speeding up the training of generative models that are
based on mini-batch sliced Wasserstein with projection optimization. We introduce three types of
amortized models, including the linear, generalized, and non-linear amortized models, for predicting
optimal projecting directions between all pairs of mini-batch probability measures. Moreover, using
three types of amortized models leads to three corresponding mini-batch losses which are the linear
amortized sliced Wasserstein, the generalized linear amortized sliced Wasserstein, and the non-linear
amortized sliced Wasserstein. We then show that these losses can improve the result of training deep
generative models in both training speed and generative performance.

Acknowledgements

NH acknowledges support from the NSF IFML 2019844 and the NSF AI Institute for Foundations of
Machine Learning.

10

References

[1] J. Altschuler, J. Niles-Weed, and P. Rigollet. Near-linear time approximation algorithms for
optimal transport via Sinkhorn iteration. In Advances in Neural Information Processing Systems,
pages 1964–1974, 2017.

[2] B. Amos. Tutorial on amortized optimization for learning to optimize over continuous domains.
arXiv preprint arXiv:2202.00665, 2022.

[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning, pages 214–223, 2017.

[4] N. Bonneel, J. Rabin, G. Peyré, and H. Pfister. Sliced and Radon Wasserstein barycenters of
measures. Journal of Mathematical Imaging and Vision, 1(51):22–45, 2015.

[5] K.-W. Chang, S. Upadhyay, G. Kundu, and D. Roth. Structural learning with amortized
inference. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[6] X. Chen, Y. Yang, and Y. Li. Augmented sliced Wasserstein distances. International Conference
on Learning Representations, 2022.

[7] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

[8] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
Neural Information Processing Systems, pages 2292–2300, 2013.

[9] B. Dai and U. Seljak. Sliced iterative normalizing flows. In International Conference on
Machine Learning, pages 2352–2364. PMLR, 2021.

[10] I. Deshpande, Y.-T. Hu, R. Sun, A. Pyrros, N. Siddiqui, S. Koyejo, Z. Zhao, D. Forsyth, and
A. G. Schwing. Max-sliced Wasserstein distance and its use for GANs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 10648–10656, 2019.

[11] I. Deshpande, Z. Zhang, and A. G. Schwing. Generative modeling using the sliced Wasserstein
distance. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3483–3491, 2018.

[12] K. Fatras, Y. Zine, R. Flamary, R. Gribonval, and N. Courty. Learning with minibatch Wasser-
stein: asymptotic and gradient properties. In AISTATS 2020-23nd International Conference on
Artificial Intelligence and Statistics, volume 108, pages 1–20, 2020.

[13] K. Fatras, Y. Zine, S. Majewski, R. Flamary, R. Gribonval, and N. Courty. Minibatch optimal
transport distances; analysis and applications. arXiv preprint arXiv:2101.01792, 2021.

[14] A. Genevay, G. Peyré, and M. Cuturi. Learning generative models with Sinkhorn divergences.
In International Conference on Artificial Intelligence and Statistics, pages 1608–1617. PMLR,
2018.

[15] S. Gershman and N. Goodman. Amortized inference in probabilistic reasoning. In Proceedings
of the Annual Meeting of the Cognitive Science Society, volume 36, 2014.

[16] Z. Goldfeld and K. Greenewald. Sliced mutual information: A scalable measure of statistical
dependence. Advances in Neural Information Processing Systems, 34, 2021.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems,
pages 2672–2680, 2014.

[18] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two
time-scale update rule converge to a local Nash equilibrium. In Advances in Neural Information
Processing Systems, pages 6626–6637, 2017.

[19] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[20] M. Huang, S. Ma, and L. Lai. A Riemannian block coordinate descent method for computing
the projection robust Wasserstein distance. In International Conference on Machine Learning,
pages 4446–4455. PMLR, 2021.

11

[21] M. Huang, S. Ma, and L. Lai. A riemannian block coordinate descent method for computing the
projection robust wasserstein distance. In M. Meila and T. Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 4446–4455. PMLR, 18–24 Jul 2021.

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[24] S. Kolouri, K. Nadjahi, U. Simsekli, R. Badeau, and G. Rohde. Generalized sliced Wasserstein
distances. In Advances in Neural Information Processing Systems, pages 261–272, 2019.

[25] S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde. Sliced Wasserstein auto-encoders. In
International Conference on Learning Representations, 2018.

[26] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

[27] J. Lezama, W. Chen, and Q. Qiu. Run-sort-rerun: Escaping batch size limitations in sliced
Wasserstein generative models. In International Conference on Machine Learning, pages
6275–6285. PMLR, 2021.

[28] T. Lin, C. Fan, N. Ho, M. Cuturi, and M. Jordan. Projection robust Wasserstein distance and
Riemannian optimization. Advances in Neural Information Processing Systems, 33:9383–9397,
2020.

[29] T. Lin, N. Ho, X. Chen, M. Cuturi, and M. I. Jordan. Fixed-support Wasserstein barycenters:
Computational hardness and fast algorithm. In NeurIPS, pages 5368–5380, 2020.

[30] T. Lin, N. Ho, and M. Jordan. On efficient optimal transport: An analysis of greedy and
accelerated mirror descent algorithms. In International Conference on Machine Learning, pages
3982–3991, 2019.

[31] T. Lin, N. Ho, and M. I. Jordan. On the efficiency of the Sinkhorn and Greenkhorn algorithms
and their acceleration for optimal transport. ArXiv Preprint: 1906.01437, 2019.

[32] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV), December 2015.

[33] J. Marino, Y. Yue, and S. Mandt. Iterative amortized inference. In International Conference on
Machine Learning, pages 3403–3412. PMLR, 2018.

[34] G. Mena and J. Weed. Statistical bounds for entropic optimal transport: sample complexity and
the central limit theorem. In Advances in Neural Information Processing Systems, 2019.

[35] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative
adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

[36] K. Nadjahi, A. Durmus, L. Chizat, S. Kolouri, S. Shahrampour, and U. Simsekli. Statistical
and topological properties of sliced probability divergences. Advances in Neural Information
Processing Systems, 33:20802–20812, 2020.

[37] K. Nadjahi, A. Durmus, P. E. Jacob, R. Badeau, and U. Simsekli. Fast approximation of the
sliced-Wasserstein distance using concentration of random projections. Advances in Neural
Information Processing Systems, 34, 2021.

[38] K. Nadjahi, A. Durmus, U. Simsekli, and R. Badeau. Asymptotic guarantees for learning
generative models with the sliced-Wasserstein distance. Advances in Neural Information
Processing Systems, 32, 2019.

[39] K. Nguyen, N. Ho, T. Pham, and H. Bui. Distributional sliced-Wasserstein and applications to
generative modeling. In International Conference on Learning Representations, 2021.

[40] K. Nguyen, D. Nguyen, Q. Nguyen, T. Pham, H. Bui, D. Phung, T. Le, and N. Ho. On
transportation of mini-batches: A hierarchical approach. In Proceedings of the 39th International
Conference on Machine Learning, 2022.

[41] K. Nguyen, D. Nguyen, T. Pham, and N. Ho. Improving mini-batch optimal transport via partial
transportation. In Proceedings of the 39th International Conference on Machine Learning,
2022.

12

[42] K. Nguyen, S. Nguyen, N. Ho, T. Pham, and H. Bui. Improving relational regularized au-
toencoders with spherical sliced fused Gromov-Wasserstein. In International Conference on
Learning Representations, 2021.

[43] S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training generative neural samplers using
variational divergence minimization. Advances in Neural Information Processing Systems, 29,
2016.

[44] F.-P. Paty and M. Cuturi. Subspace robust Wasserstein distances. In International Conference
on Machine Learning, pages 5072–5081, 2019.

[45] G. Peyré and M. Cuturi. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[46] G. Peyré and M. Cuturi. Computational optimal transport, 2020.
[47] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate

inference in deep generative models. In International Conference on Machine Learning, pages
1278–1286. PMLR, 2014.

[48] D. Ritchie, P. Horsfall, and N. D. Goodman. Deep amortized inference for probabilistic
programs. arXiv preprint arXiv:1610.05735, 2016.

[49] M. Rowland, J. Hron, Y. Tang, K. Choromanski, T. Sarlos, and A. Weller. Orthogonal estimation
of Wasserstein distances. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 186–195. PMLR, 2019.

[50] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training GANs. Advances in Neural Information Processing Systems, 29, 2016.

[51] T. Salimans, H. Zhang, A. Radford, and D. Metaxas. Improving GANs using optimal transport.
In International Conference on Learning Representations, 2018.

[52] R. Shu. Amortized optimization http://ruishu.io/2017/11/07/
amortized-optimization/. Personal Blog, 2017.

[53] R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon. Amortized inference regulariza-
tion. Advances in Neural Information Processing Systems, 31, 2018.

[54] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

[55] J. Stanczuk, C. Etmann, L. M. Kreusser, and C.-B. Schönlieb. Wasserstein GANs work because
they fail (to approximate the Wasserstein distance). arXiv preprint arXiv:2103.01678, 2021.

[56] C. Villani. Optimal transport: Old and New. Springer, 2008.
[57] J. Wu, Z. Huang, D. Acharya, W. Li, J. Thoma, D. P. Paudel, and L. V. Gool. Sliced Wasserstein

generative models. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3713–3722, 2019.

[58] M. Wu, K. Choi, N. Goodman, and S. Ermon. Meta-amortized variational inference and learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 6404–6412,
2020.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

13

http://ruishu.io/2017/11/07/amortized-optimization/
http://ruishu.io/2017/11/07/amortized-optimization/

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

