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A Mutual Information Maximization

Estimating mutual information I(yk,m
θ
t |xk) can be difficult task from a computational point of view.

Therefore, to make the task more trackable we use a lower bound for mutual information derived by
[1]. Adapting it for the MemUP case, we get the following inequality:

I(yk,m
θ
t |xk) = H(yk|xk)−H(yk|mθ

t , xk)

≥ H(yk|xk)− CE(p(yk|mθ
t , xk), qϕ(yk|mθ

t , xk)), (1)

where mθ
t is a shortcut notation denoting dependence of the memory state mt on the parameters

of memory network gθ. The distribution p is the true conditional distribution of future outcomes
yk, which is unknown to us, but we can sample from it using training data. The distribution qϕ is
approximated by the predictor network with parameters ϕ. Inequality 1 follows from the relation
between KL-divergence, cross-entropy (CE) and entropy: DKL(p||qϕ) = CE(p, qϕ)−H(p). Using
non-negativity property of KL-divergence leads to CE(p, q) ≥ H(p). The bound becomes exact
when qϕ(yk|mθ

t , xk) is equal to p(yk|mθ
t , xk)

Since H(yk|xk) is independent from memory and predictor networks, maximizing the lower bound is
the same as minimizing cross-entropy. Therefore, the memory gθ and the predictor qϕ can be jointly
trained to maximize mutual information by simply minimizing cross entropy loss:

min
θ,ϕ

T∑
k∈Ut

CE(p(yk|mθ
t , xk), qϕ(yk|mθ

t , xk)) = min
θ,ϕ

T∑
k∈Ut

Exk,yk [− log qϕ(yk|mθ
t , xk)]. (2)

Specifically, the memory module gθ is trained by backpropagating gradients directly through the
predictor network qϕ.

B Supervised Learning Tasks

For accuracy evaluation we involve four tasks: Copy, Scattered copy, Add and permuted MNIST
(pMNIST). All these tasks are benchmarks that are used for testing models with long-term memory.

Copy task. This is an aligned sequence to sequence classification problem (X → Y ). Denote by
T length of X and Y . The first 10 elements contain random uniform digits from set {2, . . . , 9} that
model has to copy and reproduce in the end of the sequence where Xi = 1, i ∈ {T − 10, . . . , T − 1}.
In all other positions except the first 10 and the last 10Xi = 1, i ∈ {10, . . . , T−11}. Correspondingly
Yi = 0, i ∈ {0, . . . , T − 11} except the last 10 where YT−10+i = Xi, i ∈ {0, . . . , 9}. We split this
task into four different sub-tasks by the length where T ∈ {120, 520, 1020, 5020}. Train dataset
contains 10k sequences and test consists of 1k sequences.
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Table 1: Supervised Learning Results. Metrics: Accuracy (classification accuracy in %) in Copy, Scattered
copy and pMNIST tasks, MSE in Add task. Bold font highlights the best score per task, * shows the best score
among truncated methods.

Task/Method MemUP LSTM LSTM tr SRNN SRNN tr Transf. Transf. tr
Copy 120 100* 69.3 12.7 100 99.7 100 12.5
Copy 520 100* 12.4 13.0 100 13.1 100 12.7
Copy 1020 100* 12.4 12.9 99.9 12.5 100 12.6
Copy 5020 99.3* 12.4 12.5 70.8 12.5 out of mem 12.5
Scat. copy 120 100* 99.2 70.4 89.4 57.8 100 20.3
Scat. copy 520 100* 80.1 43.4 74.5 5.0 99.5 14.3
Scat. copy 1020 99.9* 47.2 26.2 33.4 5.1 99.3 12.9
Scat. copy 5020 99.9* 16.8 12.9 30.3 12.5 out of mem 12.9
Add 100 0.00003* 0.00019 0.00027 0.00095 0.356 0.00103 0.420
Add 500 0.00031* 0.00032 0.02830 0.00565 0.516 0.00291 0.536
Add 1000 0.00101* 0.00066 0.04294 0.00744 0.685 0.00638 0.537
Add 5000 0.00526* 0.00074 0.12550 0.01206 1.000 out of mem 0.546
pMNIST 784 95.4* 89.5 79.85 96.43 95.33 97.1 84.55
pMNIST 3136 94.3* 33.6 11.7 90.31 11.7 63.5 49.7

Table 2: Memory size impact. We compute for MemUP method the dependence of MSE metric on LSTM
layer’s dimension in tasks Add 500 and pMNIST 784.

Task/Memory size 128 256 512 1024
Add 500 0.00028 0.00018 0.00024 0.00056
pMNIST 784 89.4 92.5 95.4 96.1

Scattered copy task. It is similar to the previous one. The only difference is that locations where
one has to make predictions are choosen at random in range [10, . . . , T −1]. In such locations Xi = 1
and Yi equals to some element from the first 10 digits. We split this task into four different sub-tasks
by the length where T ∈ {120, 520, 1020, 5020}. This task is more complex because it requires
locations detection and their ordered number counting. As a metric in the previous two tasks we use
negative log-likelihood (NLL). Train dataset contains 10k sequences and test consists of 1k sequences.

Add task. This is an aligned sequence to sequence regression problem (X → Y ). Each element
in X is two dimensional. The first dimension contains a random uniform value ∈ [0, 1] and second
component is 0 or 1. There are only three ones per sequence that correspond to two summands and
their sum. Values of Y elements equal to zero except one element at the sum location. MSE metric
was used here as a loss function and quality measure. Train dataset contains 10k sequences and
test consists of 1k sequences. We split this task into four different sub-tasks by the length where
T ∈ {100, 500, 1000, 5000}.

Permuted sequential MNIST task (pMNIST). The dataset is obtained from the ordinary MNIST
that includes 60k train images and 10k test images. Each image is flattened to one dimensional vector.
It yields vectors of size 784 and we also add zero-value padding to obtain vectors of size 3136. A
random permutation changes order of the vector elements consistently. In training procedure we
apply NLL loss function and measure quality by classification accuracy in %.

C Reinforcement Learning Tasks

Noisy T-Maze. Namely, the agent starts at the very beginning of the central corridor next to the hint
that it observes in the first step of the episode. The agent can only move forward along the corridor.
At each step, the agent’s observations ot are represented by a vector of length 3. The first element
ot[0] contains value of the hint: +1 or -1 at the first step, 0 otherwise. The second element ot[1] is the
indicator of reaching the intersection, which is 1 if the agent has reached the place of turn. The last
element ot[2] does not carry information and is a random noise, it is +1 or -1 with equal probability.
The agent receives the reward only at the end of the episode. It is +4 if the correct turn was chosen
and -3 otherwise.

2



The length of the maze is defined as the number of steps between the moment the agent sees the hint
and the moment the agent has to make a choice based on the value of the hint. The real maze length
in experiments varies within 10 steps from episode to episode in order to decorrelate the observations
of agents trained in parallel on multiple instances of environments (see PPO algorithms [2], A3C [3],
IMPALA [4] ). The naming of the environment indicates the minimum possible maze length, for
example, the designation T-Maze-LNR-100 means that the maze length in each episode can be from
100 to 109 steps.

Vizdoom-Two-Colors. Despite the fact that T-Maze environment allows simulating very long
temporal dependencies, it is too simplistic. To explore if MemUP augmentation can be scaled to much
more complex tasks and environments it was tested in the Vizdoom-Two-Colors task introduced by
Beeching et al. [5]. In this task, the agent is placed in a room filled with acid (see Figure 3.2) and
constantly loses health. Objects of green and red colors are scattered throughout the environment.
Items of one color replenish the agent’s health and give a +1 reward, while others take away health
and give a -1 reward. The correspondence between effects and items’ colors is determined randomly
at the beginning of each episode. This information is conveyed by a column whose color matches the
color of health replenishing items. The episode ends when the agent’s health drops to zero or after
1050 time steps. At each step agent receives a small "living reward" equal to +0.02. Accordingly,
the goal of the agent is to survive as long as possible in the environment by collecting items of the
rewarding color.

To solve this problem, it is necessary to keep the color of the signal column in memory in order to
be able to select objects of the correct color, even when the column is out of sight. However, in
the course of preliminary experiments, it turned out that a reactive agent without memory is able
to learn a strategy in which it will always keep the column in sight, even if the room is filled with
walls blocking the view from many angles. Therefore, we created a new version of the environment,
where the column disappears after the 45th step (see Figure 3.3) and the number of walls in the room
is significantly reduced. Thus, the subtask of memorization became harder in comparison with the
original version, and the subtask of navigation in the environment was simplified. It is also worth
noting that the agent does not receive information about the current health or the rewards received,
since these observations actually provide the same information as the color of the column.

D T-Maze Scaling Experiments.

In this section, we test MemUP’s scaling ability in the T-maze-LNR environment. For each version
of the environment (with lengths 500, 1000, 5000, 10000, 20000) we train PPO+MemUP from scratch
in 3 separate runs. Picture 1a shows average episodic return after 500 training steps of PPO in the
respective environment. Picture 1b shows the root mean squared error of the MemUP memory and
predictor modules after 200 training epochs. The evaluation of the memory is conducted in the same
way as in Section 8. The memory module is trained with BPTT rollout r = 20 in all runs.

500 1000 5000 10000 20000
T-Maze Length

0

2

4

M
ea

n 
Ep

iso
de

 R
et

ur
n Policy

(a)

500 1000 5000 10000 20000
T-Maze Length

10-6

10-4

10-2

100

Ro
ot

-M
ea

n-
Sq

ua
re

 E
rro

r Memory

(b)

Figure 1: T-Maze Scaling Experiments. a) Final PPO+MemUP performance with respect to corridor
length in Noisy T-Maze. Each point is averaged over 3 runs. b) Final memory and predictor quality
with respect to corridor length in Noisy T-Maze. Each point is averaged over 3 runs.
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E Open Source Implementation

Implementation for MemUP can be found at: https://github.com/griver/memup

F Space Complexity for MemUP

Time complexity for MemUP would be the same as for RNNs trained with TBPTT. In our method we
focus on space complexity, as MemUP allows RNNs to learn long dependencies with short rollouts.

Space complexity for MemUP is O(k rf + r), where:

• r - rollout length;

• f - prediction frequency (you can predict from any intermediate step inside a single rollout);

• k - number of prediction targets.

In all experiments (excluding Section 8) frequency (long-term predictions are made at the end of each
rollout), therefore the space complexity is only O(k + r). We would like to note that we recommend
using f < r in longer rollouts as it saves from the vanishing gradient problem inside a single rollout.

G Pseudocode for Memory Training

This section provides a simplified version of the memory training algorithm with feedforward
predictor qϕ.

Algorithm 1 Recurrent Memory Training

Input: inputs x, targets y, r, K, dψ , qϕ, gθ
Train detector dψ on the sequence data x and y

Get uncertainty estimates s for each step using dψ
t = 0 and m = None
while t ≤ T do

for i = t to t+ r do
m = gθ(xi,m)

end for
t = min(T, t+ r)

Using s[t : T ] sample a set Ut of K elements with highest uncertainty
Optimize CE loss from eq. 5: minθ,ϕ

∑
k∈Ut

[− log qϕ(yk|m,xk)]

stop_gradient(m)
end while

H MemUP implementation for RL

H.1 Uncertainty detector module

The QRDQN algorithm[6] is used to train uncertainty detector dψ. QRDQN models the probability
distribution over future returns Zπ(ot, at). QRDQN represents the distribution with N atoms of the
quantile function {zi}Ni=1 all having the same probability weights. As proposed by the authors[6]
we treat these atoms as samples from the estimated distribution Zπ(ot, at) to estimate the standard
deviation:

σ =

√√√√ 1

N

N∑
n=1

(zi − z̄)
2
,
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where

z̄ =
1

N

N∑
i=1

zi.

Given standard deviation estimate and assuming that the prediction target is normally distributed,
we compute the uncertainty estimation using the formula for the entropy of Gaussian distribution:
H = ln(σ

√
2πe).

Archtecture for the uncertianty detector dψ:

xt = [Eobs(ot), at−1]

zt = MLP (xt).

Here, ot is current observation, and at−1 is a previous action. Eobs is an observation encoder network.
For ViZDoom-Two-Colors Eobs = Ecnn . Convolutional network Ecnn consists of 3 convolutional
layers: (8, 8) kernel with stride 4 and output channels 32; (4, 4) kernel with stride 2 and output
channels 64; (3, 3) kernel with stride 1 and output channels 64. For T-maze environment Eobs = Efc ,
where Efc is a single fully-connected (FC) layer with 256 output units. MLP has two linear layers
with 512 (256 for T-maze) and |A| ×N output units respectively.

Table 3: RL: Uncertainty detector training hyperparameters

HYPER-PARAMETER T-MAZE-LNR-100 T-MAZE-LNR-1000 VIZDOOM-TWO-COLORS

BATCH SIZE 512 512 512
LEARNING RATE 5E-5 5E-5 5E-5
REPLAY BUFFER SIZE 1E6 1E6 1E6
TARGET UPD. INTERVAL 1E4 1E4 1E4
NUMBER OF STEPS 4E6 4E6 5E6
N 200 200 200
ϵeval 0.001 0.001 0.001
ϵtrain 1.0 1.0 1.0
DISCOUNT FACTOR 0. 0. 0.8

H.2 Memory module

Architecture of gθ is presented below:

et = [Em(ot), at−1] ,

mt = LSTM(et,mt−1).

Here, Eobs , Em is an observation encoder (Ecnn in Vizdoom-Two-Colors, Efc in T-Maze environ-
ments). LSTM module has one layer with hidden size 256.

H.3 Predictor module

Archtecture for predictor qϕ:

ek = [Em(ok), ak],

xk = FC(ek),

ŷk = MLP ([mt, xk]).

Here, index k ∈ Ut is a future step selected to train memory using loss from eq. 5. Em is reused from
module gθ and shares the same parameters in both modules. FC layer has 256 output units. MLP has
two FC layers with 512 and 1 output units respectively. All layers use ReLU nonlinearity.

Training hyper-parameters are shown in Table 4. Hyper-parameters N and p are for sampling training
data and the parameter γ is for calculating prediction target Rt (see Table 4).
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Table 4: RL: Memory and predictor training hyperparameters

HYPER-PARAMETER T-MAZE-LNR-100 T-MAZE-LNR-1000 VIZDOOM-TWO-COLORS

BATCH SIZE 128 128 64
LEARNING RATE 2E-5 2E-5 3E-4
NUM. BATCHES PER EPOCH 300 300 400
NUM. EPOCHS 100 1000 300
ROLLOUT LENGTH 1 1 1
K 1 1 3
γ 0 0 0.8

H.4 Agent

We used PPO architecture for the agent. PPO agent recieve a memory state mt from pretrained module
gθ as part of its inputs along with current observation ot and previous action at−1. Weights of gθ are
frozen during agent training phase. MemUP+PPO had the following archtecture:

xt = Ea
PPO(ot),

et = FC1([mt, xt, at−1]),

πt = SoftMax(FC2(et)),

Vt = FC3(et).

The whole neural architecture estimated the policy and value function given the observation with the
help of the MemUP memory state. We utilized Ecnn for Vizdoom-Two-Colors and Efc for T-Maze
tasks as the encoder Ea

PPO. FC1 net is a FC layer with 256 output units. FC2 is FC layer with |A|
output units. FC3 is a FC layer with 1 output unit.

Training hyper-parameters for MemUP+PPO are listed in Table 5.

Table 5: Hyperparameters for MemUP+PPO agent.

HYPER-PARAMETER T-MAZE-LNR-100 T-MAZE-LNR-1000 VIZDOOM-TWO-COLORS

BATCH SIZE/NUM. ENVS. 128 128 64
LEARNING RATE 1E-3 1E-3 1E-3
NUMBER OF STEPS 5E7 6E8 1E8
ROLLOUT LENGTH 5 5 5
MINI-BATCH SIZE 4 4 4
NUM. PPO EPOCHS. 4 4 4
γ 0.99 0.99 0.995
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I MemUP implementation for SL

I.1 Uncertainty detector module

We estimate uncertainty in SL tasks by values − log qϕ(yk|m̃k, xk). We do not use extra networks
here besides memory gθ and predictor qϕ. We compute values m̃ with accumulated parameters θ̃
which we get from the original memory module in every batch iteration:

θ̃ = αθ + (1− α)θ̃,

where α = 0.03.

I.2 Memory module

Architecture of gθ is presented below:

et = Embedding(128)(xt),
mt = LSTM(et,mt−1).

Here, Embedding is an observation encoder that maps integers into IR128. If xt type is Float then
Embedding is two-layer MLP with ReLU activation and size 128. LSTM module has two layers with
hidden size 128 and dropout probability 0.1.

I.3 Predictor module

Predictor is also RNN that learns local context ct and concatenates it with memory output mt.
Architecture of qϕ is presented below:

et = Embedding(128)(xt),
ct = LSTM(et, ct−1),

qt = MLP (ct,mt).

Here, Embedding is the same as in memory module. LSTM module has two layers with hidden
size 128 and dropout probability 0.1. The final MLP (ct,mt) has three linear layers with ReLU
activations and one Dropaut layer with probability 0.1. In classification tasks (Copy, pMNIST) we
append LogSoftmax to MLP (ct,mt).

J Resources

We trained our models and baselines using a single server that has:

• 4 CPUs( Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz) with 10 cores each

• 8 GPUs (GeForce GTX 1080 Ti) with 12GB RAM each

• 256GB RAM
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