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Abstract

With the emergence of varied visual navigation tasks (e.g., image-/object-/audio-
goal and vision-language navigation) that specify the target in different ways, the
community has made appealing advances in training specialized agents capable of
handling individual navigation tasks well. Given plenty of embodied navigation
tasks and task-specific solutions, we address a more fundamental question: can we
learn a single powerful agent that masters not one but multiple navigation tasks
concurrently? First, we propose VXN, a large-scale 3D dataset that instantiates four
classic navigation tasks in standardized, continuous, and audiovisual-rich environ-
ments. Second, we propose VIENNA, a versatile embodied navigation agent that
simultaneously learns to perform the four navigation tasks with one model. Building
upon a full-attentive architecture, VIENNA formulates various navigation tasks as a
unified, parse-and-query procedure: the target description, augmented with four
task embeddings, is comprehensively interpreted into a set of diversified goal vec-
tors, which are refined as the navigation progresses, and used as queries to retrieve
supportive context from episodic history for decision making. This enables the
reuse of knowledge across navigation tasks with varying input domains/modalities.
We empirically demonstrate that, compared with learning each visual navigation
task individually, our multitask agent achieves comparable or even better perfor-
mance with reduced complexity.

1 Introduction

As a fundamental research topic, visual navigation has attained extensive attention across many disci-
plines, including robotics [1], computer vision [2, 3], and natural language processing [4]. Consider a
typical navigation scenario (Fig. 1), in which a human intends to direct a robot agent to navigate to a
target – a buzzing washer. The target can be specified by a photo of the washer (i.e., image-goal
nav. [5]), or the buzzing sound (i.e., audio-goal nav. [6]), or the corresponding semantic tag –
washing machine (i.e., object-goal nav. [7]), or linguistic instructions – “go to the end of this corri-
dor, turn left and enter the laundry-room” (i.e., vision-language nav. [8]). Naturally, the agent is
expected to be smart enough to execute all these kinds of navigation tasks involving varying modali-
ties/domains (i.e., image, audio, semantic tag, text) with different optimal policies. Contrary to our
expectation, almost all existing navigation agents are specifically designed/trained for one specific
task – a “versatile” agent capable of mastering multiple navigation tasks remains far beyond reach.

Besides its great value in practice, investigating embodied navigation in multitask scenarios can help
better understand human intelligence. First, we humans can learn multiple tasks in a parallel ad hoc
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Figure 1: Rather than existing efforts training specialized agents on individual navigation tasks, we build
a single powerful agent that can undertake multiple tasks, i.e., image-goal nav., audio-goal nav.,

object-goal nav., and vision-language nav., in visually and acoustically realistic environments.

manner, and benefit from commonalities across related tasks [9]. Second, we accomplish tasks by
processing and combining signals from different modalities. Evidences from cognitive psychology
indicate that our senses are functioning together and multisensory integration is a central tenant of
human intelligence [10, 11]. Though the idea of multitask learning [12] was widely explored in com-
puter vision field [13], prior attempts are often made in unsupervised and supervised learning settings;
in the context of multitask reinforcement learning (MTRL) [14], not much is done for visually-rich,
embodied navigation scenarios. One possible reason is the lack of a suitable dataset, compounded by
considerable costs involved in data collection, as multiple navigation tasks should be supported.

In response, a large-scale 3D dataset, VXN, is established to investigate multitask multimodal embodied
navigation in audiovisual complex indoor environments. VXN allows simulated robot agents to concur-
rently learn four tasks, i.e., image-goal nav., audio-goal nav., object-goal nav., and vision-language
nav., in continuous, acoustically-realistic and perceptually-rich world2. Based on a high-throughput
simulator [15], VXN instantiates different navigation tasks in unified environments following the same
physical rules. It equips the agents with multimodal sensors to gather information from 360◦ RGBD
and audio observations. Taken all together, VXN provides a realistic testbed for multitask navigation.

With VXN, we further develop VIENNA, a versatile embodied navigation agent that jointly learns to
solve the four navigation tasks using one single model without switching among different models.
Based on Transformer encoder-decoder architecture [16], VIENNA encodes the full episode history
of multisensory inputs (i.e., RGB, depth, and audio) and navigation actions, and absorbs common
knowledge across different navigation tasks with a shared decoder. Target signals (i.e., goal picture,
target class, aural cues, linguistic instruction) are parsed into queries, and the supportive context
retrieved from the encoded history is fed to corresponding policy for task-specific decision making.
With such a fully-attentive model design, VIENNA is able to comprehend multimodal observations,
conduct long-term reasoning, and, more essentially, exploit cross-task knowledge.

By contrasting our VIENNA to several single-task counterparts on VXN, we empirically demonstrate
i) Better performance. Through exploiting cross-task relatedness, VIENNA outperforms independent
task training. ii) Reduced model-size. Training four tasks together using a single VIENNA achieves
about four times model size compression, compared with training them individually. iii) Improved
generalization. VIENNA performs robust on unseen environments, through learning task-shared,
general representations. iv) More is better. The above conclusions are typically true when we train
VIENNA on more navigation tasks. v) Multisensory integration does matter. Both visual (RGB and
depth) and aural information are crucial building blocks for general-purpose navigation robot creation.

2 Related Work

Embodied Navigation. As a fundamental element in building intelligent robots, navigation has long
been the focus of the scientific community [17]. The availability of building-scale 3D datasets [18–21]

2Strictly speaking, as we synthesize visually and acoustically realistic environments, the classic image-goal
nav., object-goal nav., and vision-language nav. tasks in our VXN dataset are extended as image-goal visual-audio
nav., visual-audio object-goal nav., and visual-audio-language nav., respectively.
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and high-performance simulation platforms [15, 22–24] led to a plethora of reproducible research of
navigation in large-scale, visually-rich environments. Depending on how to specify the target goal,
diverse navigation tasks are proposed to let an agent i) navigate to target coordinates (point-goal
nav. [15]), ii) find an instance of a given object category (object-goal nav. [7]), iii) search for target
photos (image-goalnav. [5]), iv) locatesoundsources (audio-goalnav. [6]),orv) follownavigation instru-
ctions (vision-language nav. [8, 25]). Aside from these battlefields, there are some more complicated
embodied tasks, such as embodied question answering [26], vision-dialog nav. [27–29], and multiagent
nav. [30]. The community also made great strides in improving reinforcement learning (RL) algorithms
capable of fulfilling specific navigation tasks, by using, for example, recurrent neural networks [8, 15,
31], map building [3, 32–41], path planning [42–45], cross-modal attention [41, 46–49], synthesized
or unlabeled data [50–55], and external knowledge [7, 56]. However, though the learning algorithm is
general – RL, each solution is not; each navigation agent can only handle the one task it was trained on.

With various navigation tasks and task-specific navigation solutions, a critical question arises whether
we can build a single general agent that works well for multiple navigation tasks. In response, we
make two unique contributions. First, we build a large-scale 3D dataset that supports four representative
navigation tasks in continuous and realistic environments. In contrast, prior navigation datasets are
built upon different platforms and with certain assumptions/configurations (e.g., sparse navigation
graphs [8], discrete world representation[6]), making them hard to explore different navigation tasks in
unified and standardized environments. Second, we create a generalist agent which is capable of
undertaking a set of navigation tasks of different modalities/domains, and is equipped with multimodal
sensors (i.e., RGB, depth, audio) to better address real-world scenarios. However, existing navigation
agents are trained one task at the time, each new task requiring to train a new agent instance.

Multitask Learning (MTL). MTL [12], inspired by the human ability to transfer knowledge across
different tasks [57], has led to wide success in computer vision [58–60] and natural language pro-
cessing [61]. Related efforts were made along three directions [13]: i) architecture design (i.e., how
to partition the model into task-specific and shared components) [62–65], ii) optimization (i.e., how to
balance learning between different tasks) [66–71], and iii) task relationship learning (i.e., how to learn
and utilize task relationships to improve learning) [72–74]. In the field of MTRL [75–81], recent
solutions explored knowledge transfer [82], modular networks [83, 84], and policy distillation [85, 86].
A few robotics benchmarks [87–89] are also proposed for MTRL. However, most of these efforts
were based upon low-dimension observations, e.g., grid-world like or game environments. To the
best of our knowledge, there are two prior work [48, 90] that addressed multitask navigation, but they
only consider two closely-related, language-guided navigation tasks with the same input modalities.

Drawing inspiration from these efforts, we seek for a “universal” agent that can complete multiple
navigation tasks with a single agent instance, and distinguish ourselves by i) joint learning of four
navigation tasks with diverse input modalities, ii) visually complex and acoustically realistic operation
space, iii) multisensory integration, and iv) fully-attentive architecture based parse-and-query regime.

Auxiliary Learning in Embodied Navigation. There are a group of algorithms that exploit comple-
mentary objectives from auxiliary tasks to facilitate navigation policy learning. Specifically, super-
vised auxiliary tasks expose privileged information to the agent (e.g., depth [91], surface normals [92],
semantics [26], etc.). Self-supervised auxiliary tasks derive free supervisory signals from the agent’s
own experience (e.g., next-step visual feature prediction [93], predictive modeling [94], loop closure
prediction [91], temporal distance estimation [95], navigation progress estimation [96, 97], etc.).

Although auxiliary learning based navigation models are also trained on a set of tasks, their ideas are
far away from ours. These models still focus on only a single “main” navigation task with extra aid
of auxiliary intermediate objectives, while we aim to capture and utilize common knowledge of a
collection of different navigation tasks to enhance the performance on all the tasks. Moreover, their
auxiliary tasks, in principle, can be utilized by our agent, but they cannot handle our task setting.

Transformer in Embodied Navigation and MTL. Inspired by the great success of Transformer [16]
in sequence transduction tasks, a few recent methods applied Transformer for certain navigation
tasks [40, 98–102]. Rather than sharing similar advantages in long-term memory and cross-modal
information fusion, our method further formulates different navigation tasks as a unified process of
active goal parsing and supportive information query. Through cleverly encoding all task-specific
embeddings into goal parsing, our agent is able to explicitly leverage cross-task knowledge to boost
different navigation tasks. There are also a few notable studies that exploit Transformer-like network
architectures for MTL [103–106], while none of them addresses embodied visual tasks.
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Table 1: Data splits and the number of navi-
gation episodes in our VXN dataset (§3.2).

Navigation Task
train

(58 environments)
val seen

(58 environments)
val unseen

(11 environments)
Audio-goal 2.0M episodes 500 episodes 500 episodes

Vision-language 10,819 episodes 778 episodes 1,839 episodes
Object-goal 2.6M episodes 500 episodes 2,195 episodes
Image-goal 5.0M episodes 495 episodes 495 episodes

Total 9.6M episodes 2,273 episodes 5,029 episodes

Table 2: Comparison (§3.2) of navigation
datasets (MT: multitask; CS: continuous space;
VR/AR: visual/audio realistic; PA: panorama).

Navigation Dataset Year MT CS VR AR PA
EQA [26] 2018

Habitat-PointGoal [15] 2019 ✓ ✓
R2R [8] 2018 ✓

VLN-CE [25] 2020 ✓ ✓
Gibson-ImageGoal [3] 2020 ✓ ✓ ✓

SoundSpaces [6] 2020 ✓ ✓
VXN 2022 ✓ ✓ ✓ ✓ ✓

Pretraining in Embodied Navigation. A series of methods decompose embodied tasks into visual
(and linguistic) representation learning and policy training [53, 92, 107–109]. They pretrain a general
model on easily-acquired viual or multimodal data (e.g., image captions) and fine-tune the policy for
“downstream” navigation tasks. Though showing improved generalization and transfer abilities, the
result is still a collection of independent task-specific models rather than a single agent instance.

3 VXN Dataset for Multitask Multimodal Embodied Navigation

3.1 Task Collection and Dataset Acquisition

VXN includes four famous navigation tasks, i.e., image-goal nav. [5], audio-goal nav. [6], object-goal
nav. [7], and vision-language nav. [8]. These tasks are with different input modalities/domains (i.e.,
visual, audio, semantic tag, and language); their original datasets adopt different world representations
(i.e., graph based [8] vs discrete [6] vs continuous [15]), environment configurations (i.e., visually
poor [22] vs perception rich [8] vs audiovisual realistic [6]), and success criteria (i.e., 3 m [8] vs 1 m [5]
vs 1 m [7] vs 1 m [100]). Hence, to study these four tasks in a single learning system, it is desired to
build a standardized dataset that initiates them with similar problem settings, e.g., dynamic transition,
world representations, and audiovisual properties, instead of simply combining several single-task
navigation datasets together. On the other hand, it is wise to maximize the reuse of existing datasets,
ensuring continuity and compatibility w.r.t. former research, and reducing data annotation cost.

As many previous navigation datasets [6,8,110] are built upon Matterport3D (MP3D) [19] environments
and Habitat [15] simulator, we derive a unified, multitask navigation dataset – VXN – by converting
previous task-specific datasets to standardized, continuous, audiovisual-rich environments:

• Our audio-goal nav. is built upon SoundSpaces [6], which offers audio renderings for MP3D and
allows to navigate sounding targets, or conduct point navigation with extra aid of audio cues. Due to
heavy acoustic simulation cost, [6] uses a grid-based world model: it samples room impulse res- ponse
over a discrete, horizontal plane (1.5 m above the floor with 0.5 m×0.5 m grid size). We devise an audio
simulator to efficiently transfer grid-level audio renderings into continuous setting (cf. §3.2).

• Our vision-language nav. is built upon R2R [8], which labels MP3D with linguistic navigation ins-
tructions. R2R is yet bounded to graph-based world representation – each scene can be only observed
from a few fixed points (∼117) and environment topologies are pre-given. We use [25] to convert
R2R to the continuous setting, and then adopt [6] and our audio simulator for audio rendering.

• Our image-goal nav. is built upon Habitat [15] ImageNav repository [111], which is for photo target
guided navigation in MP3D environments. Again, continuous audio rendering is made.

• Our object-goal nav. is built upon Habitat2020 ObjectNav challenge [110], which requires an agent
to navigate a MP3D environment to find an instance of an object class. A total of 21 visually well
defined object categories (e.g., chair) are considered and audio rendering is also made; but the GPS
+ Compass sensor, used in [110], is not adopted in VXN, for formalizing different task settings.

3.2 Task Setting and Dataset Design

Panoramic Visual Simulator. With Habitat API, 360◦ egocentric RGBD view is rendered at 300 fps.

Audio Simulator. With [6], ambisonics are generated at locations sampled in MP3D scenes and
converted to binaural audio [112], i.e., an agent emulates two human-like ears. To synthesize continuous
auditoryscenes,weuse [113] for real-time binaural room impulse responses (BRIRs) interpolation. We
adopt Dynamic Time Wrapping [114] to temporally align left and right ear BRIRs and then map the
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warped interpolated vectors back into the “unwarped” time domain, to get BRIRs at arbitrary locations
and directions. As in [100], the sounds of the 21 object categories [110] in object-goal nav. are
used for audio rendering. Moreover, the sounds are associated with the objects of same semantic
categories to ensure generating semantically meaningful and contextual audio [100]. For image-goal
nav., object-goal nav., and vision-language nav., the audio is used as background sound, which can
reveal the geometry of environment [6], complement the visual cues, and make the tasks closer to the
real-world. For audio-goal nav., the navigation target is directly specified by the audio.

Episodes and Dataset Splits. In VXN, each episode is defined as a tuple: ⟨scene, audio waveform,
agent start location, agent start rotation, goal location, target description⟩. We use the standard 58/11/18
train/val/test split [115] of MP3D environments. Since previous navigation datasets [8, 15, 110]
keep test annotations private, we only use train and val environments to create VXN (cf. Table 1).

Action Space. We adopt a panoramic action space, which is widely used in recent embodied robotic
tasks [3, 43]. Specifically, the panoramic view is horizontally discreted into a total of 12 sub-views.
Agents can move towards a sub-view 0.25 m or stop.

Success Criterion. An episode is considered as successful if the agent i) executes stop action, ii)
within 1 m of the goal location, and iii) within a time horizon of 500 actions (as in [15, 92, 116]).

Dataset Features. As shown in Table 2, VXN poses greater challenges: the agent needs to master four
navigation tasks with various input modalities in continuous, audiovisual complex environments, mine
cross-task knowledge, and reason intelligently about all the senses available to it (RGB, depth, audio).

4 Our Approach

Problem Statement. In single-task navigation, an agent learns to reach a goal position. This is typically
formulated in a RL framework that solves a partially observable Markov decision process [117]: a tuple
(S,A,G, O, P,R, γ), where S, A, G are sets of states, actions and targets, ot =O(st) denotes the
local observation at global state st∈ S at epoch (decision step) t, P (st+1|st, at) is the transition prob-
ability from st to st+1 given action at∈A,R(s, a)∈R gives the reward, and γ∈(0, 1) discounts future
rewards. The agent uses a policyπ(a|o, g) to produce its action a, conditioned on its local observation
o and target goal g∈ G, and optimizes its accumulated discounted reward J=

∑T
t′=tγ

t′−tR(st′ , at′).

In our multitask navigation, a single agent needs to masterK=4 tasks, i.e., {audio-goal, object-goal,
image-goal, vision-language} inVXN environments. We formalize this as a MTRL problem:{(S,A, Gk,
O, P,Rk, γk)}Kk=1, where theagent concurrently learnsK task-specificpoliciesπ1:K that maximize the
rewardsJ1:K . The single multitask agent is expected to exploit cross-task knowledge to achieve close or
better navigation performance on theK tasks, compared with trainingK single-task agents individually.

Transformer Preliminary. The core of Transformer [16] is an attention function (denoted as fATT),
which takes a query sequence x∈Rn×d and a context sequence y∈Rm×d as inputs, and outputs:

ỹ=fATT(x,y)=softmax
(
(xW q)(yW k)⊤/

√
d
)(
yW v

)
. (1)

where ỹ∈Rn×d is with the same length n and embedding dimension d as x, andW q,k,v∈Rd×d are
learnable query, key, and value projection matrices, respectively. Note that Eq. 1 is applicable to both
self-attention in Transformer encoder (i.e., x≡y), and cross-attention in Transformer decoder (i.e.,
x ̸=y). Further, each Transformer layer block can be given as:

x′=x+fMHA(x,y) ∈Rn×d, z=x′+fMLP(x
′) ∈Rn×d, (2)

where fMHA refers to a multi-head attention layer, derived by computing several fATT in parallel, and
fMLP is multi-layer perceptron. The layer normalization is omitted for brevity.

Core Idea. Built upon a Transformer encoder-decoder architecture, our VIENNA unifies the four VXN
tasks as an attention-based, parse-and-query framework: the target description g∈Gk is online parsed
into a set of embeddings, which are used to “query” the encoded episode history; the retrieved suppor-
tive cues are fed into the corresponding policy πk for decision making. To better handle multiple tasks,
VIENNA i) learns task-wise context and involves all the task-specific embeddings into target parsing,
ii) shares representations among tasks, iii) lets task-specific policies π1:K reuse knowledge, and iv)
trains the polices via a multitask version of Distributed Proximal Policy Optimization (DPPO) [118].

VIENNA has three modules (cf. Fig. 2): i) an episodic encoder (§4.1) that fuses multisensory cues and
encodes the full episode history of navigation; ii) a target parser (§4.2) that actively interprets the
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Figure 2: Detailed network architecture of VIENNA, at epoch t in a vision-language nav. episode.

target specification into several embeddings; and iii) a multitask planner (§4.3) that uses the target
embeddings to query encoded episodic history and leverages the returned context for action prediction.

4.1 Episodic Encoder

At the start of each episode, VIENNA receives a target description g∈{goal image, target sound, target
class, language instruction} and derives an embedding vector g∈Rd (detailed in§4.2). At each epoch t,
VIENNA has a 360◦ egocentric audiovisual perception ot, i.e., RGB+depth+audio, of its surrounding.

Intra-Modal Encoders. A visual encoderfIMG maps perceived panoramic imageVt∈R12×224×224×3

into visual featuresVt=[v1,t, · · ·,v12,t]∈R12×d, wherevi,t∈Rd is the feature vector of i-th sub-view
inVt. Similarly, a depth encoder fDEP and an audio encoder fAUD map the perceived panoramic depth
imageDt∈R12×256×256×1 and spectogram tensor of binaural sound (collected over 12 horizontal di-
rections) Ht ∈ R12×41×44×2 into depth and audio features, i.e., Dt= [d1,t, · · ·,d12,t] ∈ R12×d, and
At=[a1,t, · · ·,a12,t]∈R12×d, respectively.

Target-Guided Cross-Modal Encoder. With the target description vector g∈Rd, cross-attention
fATT (cf. Eq.1) is separately applied overVt,Dt, andHt to assemble target-related sensory information:

ṽt=fATT(g,Vt)∈Rd, d̃t=fATT(g,Dt)∈Rd, h̃t=fATT(g,Ht)∈Rd. (3)

Then ṽt, d̃t, and h̃t are concatenated for attention based multisensory information integration (MSI):

ot=fMSI([ṽt, d̃t, h̃t])∈R3×d, (4)

where fMSI is achieved by stacking two self-attention based Transformer blocks (cf. Eq. 2).

Episodic History Encoder. At epoch t, the multimodal observation embedding ot∈R3×d and latest
navigation action embedding at−1∈Rd, are together projected into a compact “navigation token”:

et=[ot,at−1]W
e∈Rd. (5)

All the past navigation tokens, e1:t , summed with corresponding epoch embedding vectors, µ1:t∈Rd,
are collected into a sequence and fed into an episode history encoder (EHE) to get contextualized
history representation:

[ẽ1, · · · , ẽt] = fEHE([e1+µ1, · · · , et+µt]), (6)

where fEHE is implemented as four self-attention based Transformer blocks (cf. Eq. 2). In this way, VI-
ENNA is able to store and access its entire episode history of audiovisual observations and actions, lead-
ing to persistent memorization and long-term reasoning. The attended history representation ẽ1:t will

go to the end of this corridor, turn left and enter laundry-room.

go to the end of this corridor, turn left and enter laundry-room.

Figure 3: Attention visualization of online target parsing (Eq. 8).

serve as informative context for pre-
dicting the navigation action at at
epoch t (detailed in §4.3).

4.2 Target Parser

VIENNA is equipped with a target
parser that actively interprets the
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target g (no matter it is specified as a photo gI , sound gA, semantic tag gT , or linguistic instruction
gL) as a group of target embeddings, conditioned on the progress of the navigation episode. Guided
by the online created target embeddings, valuable context are selected from episodic experiences ẽ1:t
for flexible decision-making. VIENNA thus formulates various navigation tasks in a unified scheme,
allowing to exploit cross-task knowledge.

In image-goal nav., a goal image gI ∈R224×224×3 is given and embedded asgI=fIMG(gI)∈RNI×d. In
audio-goal nav., the target is signaled by the binaural sound, i.e., gA=Ht∈R12×41×44×2 and gA=Ht=
fAUD(Ht)∈RNA×d. In object-goal nav., the target is specified by a semantic tag gT∈{table, bed, · · · },
and embedded into a class vector gT∈R1×d. In vision-language nav., a language-based trajectory
instruction gL is given and mapped into a sequence of word vectors gL∈RNL×d by a bi-LSTM. At
the start of each episode, we first build an augmented target description embedding G∈R4NG×d:

G=
[
g′
I+[τI ]

NG, g′
A+[τA]

NG, g′
T +[τT ]

NG, g′
L+[τL]

NG
]
, (7)

whereNG=max(NI , NA, 1, NL),τI,A,T,L∈Rd are learnable task embedding vectors, and [·]NG copies
its inputNG times. Assuming VIENNA is in an image-goal nav. episode, we havegI=fIMG(gI)∈RNI×d,
and gA=[0]NA×d, gT=[0]1×d, gL=[0]NL×d. We pad gI,A,T,L to a unified length NG, by replication,
so as to get g′

I,A,T,L and make them contribute equally to G. We collect all the task-type embeddings
τI,A,T,L and current target description g ∈ {gI , gA, gT , gL} into G. In §4.3, we will show this
strategy is essential for making use of cross-task knowledge. The target description vector g∈Rd

used in Eq. 3 is given as: g=fAVG(G), where fAVG stands for the average pooling operation.

At epoch t, the target parser comprehends the augmented target description embedding G as a set of
N compact embeddings on-the-fly, conditioned on its episodic, contextualized history encoding ẽ1:t:

Qt=[q1
t , · · · , qN

t ]=fMHA(fAVG(ẽ1:t),G)∈RN×d, (8)

where fMHA is aN -head attention layer (cf. Eq. 2), i.e., explain G in different ways, with consideration
of current episodic navigation progress. Each of the target embedding vectors qt can be viewed as a
specific, time-varying goal, used to guide action selection at at epoch t. As shown in Fig. 3, given a
navigation instruction “go to the end of this corridor, turn left and · · · ”, the agent focuses more on
“go to the end of this corridor” at the start of the navigation episode. After reaching the end of the
corridor, the agent shifts its attention to “turn left”. Here a collection of N target embeddings q1:Nare
generated at each epoch t, allowing the agent to capture different aspects of target-related information
and making the time-varying goal well-planned. For instance, there may exist several essential
landmarks in a goal image, or multiple discriminative audio clips in target-emitted sound; during
navigation, the agent should be able to pay attention to all these informative clues simultaneously.

4.3 Multitask Planner

At epoch t, a multitask planner (MTP) uses the diversified target embeddings Qt=[q1
t , · · ·, qN

t ] to
query the episodic history ẽ1:t :

Ct=fMTP([q
1
t , · · ·, qN

t ], [ẽ1, · · ·, ẽt]), (9)

where fMTP is achieved by a four-layer Transformer decoder; the first two layers are shared among
the four navigation tasks for capturing task-shared policies, while the last two layers are private for
each task for task-specific policy learning. We empirically find such shared trunk based MTP design
yields better performance than learning task-specific policies individually or just training one single
“universal” policy (cf. §5.2).

The decision-making is conditioned on the retrieved context Ct ∈ RN×d, and the presentations
of current multi-modal observations (cf. §3.2), including Vt = [v1,t, · · ·,v12,t] ∈ R12×d, Dt =
[d1,t, · · ·,d12,t]∈R12×d, and At=[a1,t, · · ·,a12,t]∈R12×d. Specifically, at epoch t, VIENNA makes
navigate decision by choosing between the 12 current sub-views, as well as an extra STOP action.
Given 12 subview action embeddings {bi,t∈R3×d}12i=1, i.e., oi,t=[vi,t,di,t,hi,t] as well as a STOP
action embedding, i.e., b13,t=0⃗, represented as an all-zero vector, VIENNA predicts a probability
distribution pt=[p1,t, · · ·, p13,t]:

pi,t = softmaxi(fAVG(Ct)W
pbi,t) ∈ [0, 1], where i ∈ {1, · · · , 13}. (10)

As the task embeddings τI,A,T,L are encoded into Qt, which is used to find supportive cues from
episodic observations ẽ1:t for long-term reasoning and decision-making, τI,A,T,L are essentially
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trained as task-wise context – they are sensitive to task-related cues. Thus collecting τI,A,T,L into G
(cf. Eq. 7) enables a clever use of cross-task knowledge. For instance, during image-goal nav., τA
can help the agent notice some informative audio signals, τT can alert the agent to visually essential
semantics, while τI can be activated by crucial landmarks. Related experiments can be found in §5.2.

4.4 MTRL based Multitask Navigation Training

Reward Design. With standardized VXN environments,VIENNA adopts a same reward function for
the four navigation tasks, i.e., R1= · · ·=R4. Concretely, R1:4 has four terms, i.e., a sparse success
reward rsuccess, a progress reward rprogress, a slack reward rslack, and an exploration reward rexplore.
rsuccess=2.5 is only received at the end of a successful episode. rprogress=−∆geo_dist offers dense signals
indicating the progress that an action contributes: ∆geo_dist gives the change in geodesic distance to the
goal position by performing the action. rslack=−10−3, received at each epoch, penalizes redundant
actions. rexplore [119] divides each environment into a voxel grid with 2.5m×2.5m×2.5m voxels and
rewards the agent for visiting each voxel. rexplore is defined as 0.25η, where η=δt/ν is a coefficient that
decays as episode epoch t and visited voxel number ν increase, and δ is a decay constant of 0.995.

Multitask Distributed Proximal Policy Optimization. We present a multitask distributed proximal
policy optimization (MDPPO) algorithm, which utilizes the power of parallel processing to train
MTRL agents in our continuous and large-scale environments. MDPPO is built upon (DPPO) [118],
a distributed version of proximal policy optimization (PPO) [120] that bounds parameter updates to a
trust region to ensure stability, and distributes the computation over many parallel instances of agent
and environment. Similarly, MDPPO has a server-client structure: each client worker has several
agent copies that collect experiences from VXN environments, compute and send PPO’s gradients to the
server; the server worker averages the received gradients, updates the agent, and synchronizes the
updated weights with the clients. For balanced multitask learning, i.e., training data in VXN are biased
between vision-language nav. and other navigation tasks: 10.8K vs 2.0∼5.0M episodes (cf. Table 1),
each client worker is required to build four agent copies corresponding to the four VXN tasks.

4.5 Implementation Detail

Network Architecture. The visual encoder fIMG is made as an ImageNet [121]-pretrained ResNet50
[122]. The CNN features are fed into a linear layer for dimension compression and flattened into a
feature sequence. Similarly, the depth encoder fDEP is a modified ResNet50 CNN. The audio encoder
fAUD, following [6], is a CNN of conv 8×8, conv 4×4, conv 3×3 and a linear layer, interleaved with
ReLU. All the sensory features are combined with orientation embeddings. For the epoch embedding
µ, we use sinusoidal encoding. For the target parser, N=5 target embeddings are generated at each
epoch t. We set other hyper-parameters as: d=512, NI=16, NL=120, NG=120.

Training and Test. VIENNA is trained on 32 RTX 2080 GPUs for 180 M frames, costing 4, 608
GPU hours. As in [25], we select the checkpoint for evaluation with the best SR on val unseen. For
MDPPO, we use four client workers and set the discounted factor γ as 0.99. We use AdamW [123]
optimizer with a learning rate of 2.5×10−4. Casual attention [16] is adopted to prevent the prediction
at epoch t from the influence of future tokens after t. Once trained, a single instance of VIENNA can
conduct the four navigation tasks. As normal, greedy prediction is adopted for action selection.

5 Experiment

In §5.1, we first report comparison results for the four VXN tasks. In §5.2, we conduct diagnostic
studies to examine the efficacy of our core model design. More results are put in the supplementary.

Baseline. We test several open-source task-specific navigation methods [2, 5, 6, 25]. Note that [2, 5, 6]
are re-trained on VXN, since they use different training data [5], world representation [6] (discrete
vs continuous), or object categories [2] (6 vs 21). For [25], we use its check-point but the success
criteria are different (3 m vs 1 m). Thus their scores on VXN are different from the original ones. In
addition, we consider a Seq2Seq agent, which also serves as a standard baseline in [8, 25]: an LSTM
planner encodes the episode history and predicts navigation actions in a sequential menner. For all the
four tasks, we provide the performance of both the single-task and multitask versions of our VIENNA
and Seq2Seq. Further, Random policy, i.e., choosing actions randomly, is included.
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Table 3: Quantitative comparison results (§5.1) on VXN dataset (ST: Single-task; MT: Multitask).
val seen val unseen

Models SR↑ NE↓ OR↑ SPL↑ SR↑ NE↓ OR↑ SPL↑

Random 1.2 14.20 1.9 1.2 1.4 14.14 2.2 1.4
Seq2SeqST 15.1 10.44 19.1 12.6 9.3 12.02 13.9 7.4
Seq2SeqMT 15.8 10.21 21.3 13.0 10.2 10.22 15.4 8.5

Zhu et al. [5] 17.7 9.67 22.0 13.1 12.0 10.19 16.6 8.9
VIENNAST 19.9 9.52 23.2 13.4 12.6 9.83 17.1 9.5
VIENNAMT 22.1 9.43 24.2 14.1 14.3 9.66 18.5 11.1

(a) image-goal nav. (IGN)

val seen val unseen
Models

SR↑ NE↓ OR↑ SPL↑ SR↑ NE↓ OR↑ SPL↑

Random 0.0 17.13 0.0 0.0 0.0 16.84 0.0 0.0
Seq2SeqST 17.4 10.11 19.0 15.8 11.0 10.83 13.3 8.8
Seq2SeqMT 18.1 9.69 20.3 16.0 11.8 10.76 14.1 9.3

Chen et al. [6] 20.1 8.84 21.5 17.1 13.1 9.26 15.7 10.4
VIENNAST 22.4 8.76 22.4 17.3 14.3 9.22 16.5 10.6
VIENNAMT 25.3 8.61 23.9 17.8 18.7 8.93 17.9 12.5

(b) audio-goal nav. (AGN)
val seen val unseen

Models SR↑ NE↓ OR↑ SPL↑ SR↑ NE↓ OR↑ SPL↑

Random 0.8 7.67 1.0 0.8 2.0 7.56 2.1 1.7
Seq2SeqST 26.7 6.61 33.3 14.4 8.9 7.31 11.1 4.4
Seq2SeqMT 28.7 6.45 35.0 15.8 10.8 7.13 14.0 4.8

Chaplot et al. [2] 31.3 6.15 35.2 16.7 17.6 7.08 21.3 7.5
VIENNAST 33.2 6.11 36.4 17.1 18.5 6.95 22.1 8.1
VIENNAMT 33.3 5.92 37.8 17.7 19.4 6.77 25.1 10.7

(c) object-goal nav. (OGN)

val seen val unseen
Models SR↑ NE↓ OR↑ SPL↑ SR↑ NE↓ OR↑ SPL↑

Random 0.0 8.89 0.0 0.0 0.0 8.92 0.0 0.0
Seq2SeqST 13.2 7.54 17.7 12.1 5.2 8.49 9.7 4.6
Seq2SeqMT 17.6 7.29 22.8 15.4 7.6 8.21 13.4 6.5

Krantz et al. [25] 23.7 7.22 25.9 21.2 11.0 7.60 16.2 10.2
VIENNAST 23.9 7.16 26.1 22.2 14.3 7.35 18.5 12.5
VIENNAMT 26.5 7.08 27.9 24.1 16.3 7.26 20.6 15.7

(d) vision-language nav. (VLN)
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Figure 4:Training curves of VIENNA agents compared to Seq2Seq agents on the four VXN tasks (§5.1).

Metric. Four widely-used metrics are adopted for evaluation: i) Success Rate (SR); ii) Navigation
Error (NE); iii) Oracle success Rate (OR); and iv) Success rate weighted by Path Length (SPL) [115].

5.1 Performance Benchmarking

Table 3 reports the comparison results on the four VXN tasks. Some key conclusions are list below:

• VIENNA obtains impressive results, under val seen and unseen sets, across all the tasks and eval-
uation metrics. This proves the versatility of VIENNA and the power of our parse-and-query regime.

• VIENNA consistently outperforms Seq2Seq, no matter they are trained on single tasks individually
or multiple tasks jointly. Compared with other task-specific competitors [2,5,6,25], VIENNA gains
comparable results on audio-goal nav. and object-goal nav., and performs better on image-goal
nav. and vision-language nav. tasks. These results verify the effectiveness of our model design.

• When considering the performance gain from the single-task setting to multitask, VIENNA yields
more promising results, compared with Seq2Seq. For example, in Table 3a, VIENNAMT outper-
forms VIENNAST by 2.2% SR and 1.7% SR, on val seen and unseen, respectively; however, in
the same condition, Seq2SeqMT only provides 0.7% and 0.9% SR gains over Seq2SeqST. These
results demonstrates that VIENNA can make a better use of cross-task knowledge.

• When considering the performance gap between seen and unseen environments, VIENNAMT is more
favored than its single-task counterpart, VIENNAST. For instance, in Table 3c, VIENNAST suffers
from relatively large performance drop, i.e., 33.2%→18.5% SR; however,VIENNAMT shows reduced
degradation, i.e., 33.3%→19.4% SR, in unseen environments. This indicates that investigating
inter-task relatedness may help to strengthen the generalizability of navigation agents.

• The above results are particularly impressive considering the advantage of VIENNA in efficient
parameter utilization, i.e., VIENNAMT (31 M) vs VIENNAST×4 (101 M) vs Seq2SeqMT (27 M) vs
Seq2SeqST×4 (93 M) vs [5] + [6] + [2] + [25] (165M = 40 M + 45 M + 38 M + 42 M).

Fig. 4 plots the training curves of VIENNAST/MT compared to Seq2SeqST/MT for the four VXN tasks in
unseen envs. Aligning with the results in Table 3, VIENNA outperforms Seq2Seq, and benefits more
from multiple task learning. This shows that VIENNA makes a better use of cross-task knowledge.
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Table 4: Ablation studies (§5.2) with audio-goal nav. (AGN) and vision-language nav. (VLN) tasks.

AGN (SR↑) VLN (SR↑)Modality
(§4.2) seen/unseen seen/unseen

RGB only 2.5 / 2.1 21.1 / 11.2
audio only 23.1 / 15.9 0.3 / 0.2

RGBD only 2.4 / 2.3 21.9 / 12.5
RGBD+audio 25.3 / 18.7 26.5 / 16.3

(a) multisensory integration

AGN (SR↑) VLN (SR↑)
G (Eq. 7)

seen/unseen seen/unseen
episodic target only 23.1 / 17.2 22.7 / 14.1

episodic target +
episodic task embedding

24.2 / 17.9 25.1 / 15.5

augmented target des. embed. 25.3 / 18.7 26.5 / 16.3

(b) augmented target description embedding

AGN (SR↑) VLN (SR↑)Qt

(Eq. 8) seen/unseen seen/unseen
N= 1 21.0 / 15.6 22.2 / 13.2
N= 3 23.8 / 17.8 25.7 / 15.5
N= 5 25.3 / 18.7 26.5 / 16.3
N= 7 24.9 / 18.3 26.2 / 16.2

(c) diversified target parsing
AGN (SR↑) VLN (SR↑)FMTP

(Eq. 9) seen/unseen seen/unseen
separate 23.2 / 17.4 25.0 / 15.1
1-shared 24.4 / 18.1 25.8 / 15.7
2-shared 25.3 / 18.7 26.5 / 16.3
3-shared 24.8 / 17.9 25.9 / 15.5

all-shared 24.1 / 17.6 25.6 / 15.3

(d) multitask planner

AGN (SR↑) VLN (SR↑)
R (§4.4)

seen/unseen seen/unseen
rsuccess 2.1 / 1.5 5.5 / 2.3

rsuccess+rprogress 22.5 / 16.3 23.8 / 14.7
rsuccess+rprogress +rslack 23.1 / 16.9 24.3 / 15.1

rsuccess+rslack+
rprogress+rexplore

25.3 / 18.7 26.5 / 16.3

(e) reward function

AGN (SR↑) VLN (SR↑)
Task

seen/unseen seen/unseen
single task 22.1 / 15.4 23.8 / 14.1

AGN + VLN 22.7 / 16.1 24.4 / 14.9
AGN + VLN + IGN 24.1 / 17.3 25.1 / 15.5

AGN + VLN +
IGN + OGN

25.3 / 18.7 26.5 / 16.3

(f) multitask learning

5.2 Ablative Study

To thoroughly test the efficacy of crucial components of VIENNA, we conduct a series of diagnostic
studies on vision-language nav. and audio-goal nav. tasks. The results are summarized in Table 4.

Multisensory Integration. Agents in VXN are equipped with a multimodal sensor so as to find the
target by both seeing and hearing and make our navigation setting closer the real-world. We first study
the influence of different sensory signals (i.e., RGB, depth, audio) by training VIENNA with varying
sensory modalities. As shown in Table 4a, fusing multimodal sensory cues (i.e., RGBD + audio) is
more favored. For example, in VLN, although considering audio alone brings poor performance,
supplementing RGBD perception with audio yields notable improvements. This suggests audio is
complementary to visual sensory in capturing physical and semantic properties of environments.

Augmented Target Description Embedding. To better master cross-task knowledge, VIENNA
augments its episodic targets with all the four learnable task embeddings τI,A,T,L (cf. Eq. 7). We
compare this design against two variants in Table 4b, and find such a strategy is conducive to the
performance. This is because, through end-to-end training, τI,A,T,L carry task-specific knowledge,
e.g., τA is associated with some discriminative audio clips; τI focuses on essential visual landmarks.
By taking τI,A,T,L together, VIENNA use key knowledge of different tasks in single task episodes.

Diversified Target Parsing. We online parse the augmented target description embedding G into N
target embeddings Qt=[q1

t , · · · , qN
t ] (cf. Eq. 8), to achieve vivid and diversified interpretations of G.

In Table 4c, we present evaluation scores with different numbers of generated target embeddings, i.e.,
N = 1, 3, 5, 7. As can be seen, diversified target parsing indeed boots navigation performance.

Multitask Planner. Several variants of multitask planner fMTP (cf. Eq. 9) are compared in Table 4d.
The two-layer shared trunk design is adopted, due to its relatively better performance.

Reward Function. Next we examine the design of our reward function (§4.4). As seen in Table 4e,
each reward term is indeed useful and combining all the four terms leads to the best performance.

Multitask Learning. Table 4f reveals the value of training VIENNA on multiple tasks: training with
more navigation tasks improves both performance and generalizability. Compared to a composition
of four single-task models, multi-task VIENNA also greatly reduces the model size: 101M→31M.

6 Conclusion

In this work, we present VXN, a large-scale 3D indoor dataset for multimodal, multitask navigation in
continuous and audiovisual complex environments. Further, we devise VIENNA, a powerful agent
that simultaneously learns four famous navigation tasks within a single unified parsing-and-query
scheme. We empirically show that, through a fully attentive architecture, VIENNA is able to mine
and utilize cross-task knowledge to enhance the performance on all the tasks. These efforts move us
closer to a community goal of general-purpose robots capable of fulfilling a multitude of tasks.
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