
Appendix

A Latency prediction model.

As the dynamic operators in our method have not been supported by current deep learning libraries,
we propose a latency prediction model to efficiently estimate the real latency of these operators on
hardware device. The inputs of the latency prediction model include: 1) the structural configuration
of a convolutional block, 2) its activation rate r which decides the computation amount, 3) the spatial
granularity S, and 4) the hardware properties mentioned in Table 4. The latency of a dynamic block
is predicted as follows.

Input/output shape definition. The first step of predicting the latency of an operation is to calculate
the shape of input and output. Taking the gather-conv2 operation as an example, the input of this
operation is the activation with the shape of Cin × H × W , where Cin is the number of input
channels, and H and W are the resolution of the feature map. The shape of the output tensor is
P × Cout × S × S, where P is the number of output patches, Cout is the number of output channels
and S is the spatial granularity. Note that P is obtained based on the output of our maskers.

Operation-to-hardware mapping. Next, we map the operations to hardware. As is mentioned in the
paper, we model a hardware device as multiple processing engines (PEs). We assign the computation
of each element in the output feature map to a PE. Specifically, we consecutively split the output
feature map into multiple tiles. The shape of each tile is TP × TC × TS1 × TS2. These split tiles
are assigned to multiple PEs. The computation of the elements in each tile is executed in a PE. We
can configure different shapes of tiles. In order to determine the optimal shape of the tile, we make
a search space of different tile shapes. The tile shape has 4 dimensions. The candidates of each
dimension are power-of-2 and do not exceed the corresponding dimension of the feature map.

Latency estimation. Then, we evaluate the latency of each tile shape in the search space and select
the optimal tile shape with the lowest latency. The latency includes the data movement latency and
the computation latency: ℓ = ℓdata + ℓcomputation.

1) Data movement latency ℓdata. The estimation of the latency for data movement requires us to
model the memory system of a hardware device. We model the memory system of hardware as a
three-level architecture [12]: off-chip memory, on-chip global memory, and local memory in PE.
The input data and weight data are first transferred from the off-chip memory to the on-chip global
memory. We assume the hardware can make full use of the off-chip memory bandwidth to simplify
the latency prediction model.

After that, the data used to compute the output tiles is transferred from on-chip global memory to
the local memory of each PE. The latency of data movement to local memory is estimated by its
bandwidth and efficiency. We assume each PE only moves the corresponding input feature maps and
weights once to compute a output tile so as to simplify the prediction model. The input data movement
latency ℓin is calculated by adding the time from off-chip memory to on-chip global memory and the
time from on-chip global memory to local-memory together: ℓin = ℓoff2on + ℓglobal2local. Contrary
to the input data, the output data ℓout are moved from local memory to on-chip global memory and
then to off-chip memory: ℓout = ℓlocal2global + ℓon2off . We calculate the total data movement latency
by adding the input and output data movement latency together: ℓdata = ℓin + ℓout.

The latency of data movement is affected by the granularity S: when the granularity S is small, the
same input data has a higher probability of being sent to multiple PEs to compute different output
patches, which significantly increases the number of on-chip memory movement. And due to the
small amount of data transmitted each time and the data is randomly distributed, the efficiency of
data movement will be low. This accounts for our experiment results in the paper that a larger S will
effectively improve the practical efficiency.

2) Computation latency ℓcomputation. The computation latency of each tile is estimated using the
PE’s maximum throughput of FP32 computation and the FLOPs of computing an output tile. The
total computation latency can be obtained according to the number of tiles and the number of PEs.

To summarize, our latency prediction model can predict the real latency of dynamic operators by
considering both the data movement cost and the computation cost. Guided by the latency prediction
model, we propose our LASNets with coarse-grained spatially adaptive inference (S > 1). It is
validated in our paper that LASNets achieve better efficiency than previous approaches [35, 31]

14



(S = 1), as it effectively reduces the data movement latency, which is rarely considered by other
researchers.

B Detailed experimental settings

In this section, we present the detailed experiment settings which are not provided in the main paper
due to the page limit.

B.1 Latency prediction

Hardware properties considered by our latency prediction model include the number of processing
engines (#PE), the floating-point computation in a processing engine (#FP32), the frequency and the
bandwidth. We test four types of hardware devices, and their properties are listed in Table 4.

Table 4: Hardware properties.
Name #PE #FP32 frequency (MHz) bandwidth (G)

Nvidia Tesla V100 80 64 1500 700
Nvidia GTX1080 20 64 1700 320

Nvidia Jetson TX2 2 128 1300 59.7
Nvidia Nano 1 128 921 25.6

It could be found that the server GPU V100 is the most powerful hardware device, especially with
the most number of processing engines (#PE). Therefore, spatially adaptive inference could easily
fall into a memory-bounded operation on V100 due to its high parallelism. Our experiment results
in Figure 7 (a) and Figure 8 in the paper can reflect this phenomenon: the more flexibility the
computation is, the harder to improve the practical efficiency.

In contrast, on the less powerful computing devices such as the IoT devices, the real acceleration is
close to the theoretical effect (compare Figure 7 (a) left with Figure 7 (a) middle).

Operator fusion.

1) Fusing the masker and the first convolution. We mentioned in Sec. 3.4 of the paper that the masker
operation is fused with the first 1×1 convolution in a block to reduce the cost on memory access.
This is feasible because the two operators share the same input feature, and their convolutional kernel
sizes are both 1×1.

Note that during the inference stage, we only need to perform argmax along the channel dimension
of a mask M ∈ R2×H×W to obtain the positions of the gathered pixels. Therefore, we can reduce
the output channel number of our maskers from 2 to 1 since the convolution is a linear operation:

[x ∗W]:,:,0 > [x ∗W]:,:,1 ⇐⇒ x ∗ (W:,:,0 −W:,:,1) > 0. (3)

Afterwards, we fuse the masker with the first convolution layer by performing once convolution
whose output channel number is C + 1, where C is the original output width of the first convolution.
The output of this step is split into a feature map (for further computation) and a mask (for obtaining
the index for gathering). Such operator fusion avoids the repeated reading the input feature, and helps
reduce the inference latency (see Table 1 in the paper).

2) Fusing the gather operation and the dynamic convolution. To facilitate the scheduling on hardware
devices with multiple PEs, the masker generates the indices of activated patches instead of sparse
mask at inference time. In this way, it is easy to evenly distribute the computation of output patches to
different PEs, thus avoiding unbalanced computation of PEs. Each element in the indices represents
the index of an activated patch. PE fetches the input data from the corresponding positions on the
feature map according to the index. The output patches could be densely stored in memory. Such
operator fusion benefits the contiguous memory access and parallel computation on multiple PEs.

3) Fusing the scatter operation and the add operation.

Similar to the previous operation, each PE fetches a tile of data from the residual feature map
according to the index, adds them with the corresponding feature map from previous dynamic

15



0.0 0.2 0.4 0.6 0.8 1.0
Activation rate (r)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

La
te

nc
y 

ra
tio

 (r
)

S = 1
S = 2
S = 4
S = 7
S = 8
S = 14
S = 28

0.0 0.2 0.4 0.6 0.8 1.0
Activation rate (r)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

La
te

nc
y 

ra
tio

 (r
)

S = 1
S = 2
S = 4
S = 7
S = 14

0.0 0.2 0.4 0.6 0.8 1.0
Activation rate (r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

La
te

nc
y 

ra
tio

 (r
)

S = 1
S = 2
S = 7

0.0 0.2 0.4 0.6 0.8 1.0
Activation rate (r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

La
te

nc
y 

ra
tio

 (r
)

S = 1

(a) Relationship between rℓ and r for LAS-ResNet blocks on Nvidia GeForce GTX1080.

1 2 4 7 8 14 28
Spatial granularity (S)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

La
te

nc
y 

ra
tio

 (r
)

stage 1
r = 0.00
r = 0.25
r = 0.50
r = 0.75
r = 1.00

1 2 4 7 14
Spatial granularity (S)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

La
te

nc
y 

ra
tio

 (r
)

stage 2
r = 0.00
r = 0.25
r = 0.50
r = 0.75
r = 1.00

1 2 7
Spatial granularity (S)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

La
te

nc
y 

ra
tio

 (r
)

stage 3
r = 0.00
r = 0.25
r = 0.50
r = 0.75
r = 1.00

(b) Relationship between rℓ and S for LAS-ResNet blocks on Nvidia GeForce GTX1080.

Figure 10: Latency prediction results of LAS-ResNet blocks on the Nvidia GTX1080 GPU.

3 4 5 6 7 8
Latency on Nvidia Geforce GTX1080 GPU (ms)

76.0

76.5

77.0

77.5

78.0

78.5

79.0

Ac
cu

ra
cy

 (%
)

static ResNets
ConvAIG-ResNet-101
DynConv-ResNet-101
LAS-ResNet-50 (Snet=1-1-1-1)
LAS-ResNet-50 (Snet=4-4-2-1)
LAS-ResNet-50 (Snet=8-4-7-1)
LAS-ResNet-101 (Snet=1-1-1-1)
LAS-ResNet-101 (Snet=4-4-1-1)
LAS-ResNet-101 (Snet=4-4-2-1)
LAS-ResNet-101 (Snet=4-4-7-1)
LAS-ResNet-101 (Snet=8-4-7-1)

Figure 11: Experimental results on the ImageNet classification task.

convolution, and then stores the results to the corresponding position on the residual feature map
according to the index. This optimization can significantly reduce the costs on memory access.

Speed test. We test the latency on real hardware devices to evaluate the accuracy of our latency
prediction model. On GPUs, we use TVM [2] and CUDA (version 11.6) for code generation and
compilation respectively. The results in Fig. 4 of the paper validate the effectiveness of our model.

B.2 ImageNet classification

As mentioned in the paper, we use pre-trained CNN models in the official torchvision website to
initialize our backbone parameters, and finetune the overall models for 100 epochs. The initial
learning rate is set as 0.01×batch size/128, and decays with a cosine shape. The training batch size is
determined on the model size and the GPU memory. For example, we train our LAS-ResNet-101 on
8 RTX 3090 GPUs with the batch size of 512, and the batch size for LAS-ResNet-50 is doubled. We
use the same weight decay and the standard data augmentation as in the RegNet paper [25]. For our
own hyper-parameter τ in Eq. (1) of the paper, this Gumbel temperature τ exponentially decreases
from 5 to 0.1 in the training procedure. For the training hyper-parameter in Eq. (2), we simply fix
α = 10, β = 0.5 and T = 4.0 for all dynamic models. We conduct a very simple grid search with a
RegNet for β ∈ {0.3, 0.5} and T ∈ {1.0, 4.0} to determine their values.

16



Figure 12: Visualization results.

B.3 COCO object detection & instance segmentation

We use the standard setting suggested in [20, 21, 10], except that we decrease the learning rate for
our pre-trained backbone network. We simply set a learning rate multiplier 0.5 for Faster R-CNN
[27], 0.2 for RetinaNet [21] and 0.5 for Mask R-CNN [10]. As for the additional loss items, the
hyper-parameters are kept the same as training our classification models, except that the temperature
is fixed as 0.1 in the 12 training epochs.

C More experimental results

In this section, we report more experimental results which are not presented in the main paper.

C.1 Latency prediction

In Figure 5 and Figure 6 of the paper, we report the latency prediction results of LAS-ResNet on V100
and TX2. Here we present the results on GTX1080 (Figure 10). It can be found that Snet=8-4-7-1
(which is the same to the optimal setting on V100 in the paper) will lead to faster inference on
GTX1080. This is reasonable since GTX1080 has a large #PE than those IoT devices, and requires
more contiguous memory access (a larger S for coarse-grained spatially adaptive inference) to achieve
realistic speedup (rℓ < 1). The accuracy-latency curves in Figure 11 further validate this observation.

17



C.2 ImageNet classification

Results on GTX1080 GPU. In Figure 7 of the paper, we report the ImageNet classification results
of LAS-ResNets on V100 and TX2. Here we present the results of LAS-ResNet on GTX1080
(Figure 11). From the results in Figure 11, we can get the same conclusion as in the paper, that
a proper large S is more parallel-friendly than the finest granularity. Remarkably, the latency of
ResNet-101 could be reduced by 41% without sacrificing the accuracy on GTX1080 under the
spatial granularity setting of Snet=8-4-7-1. With a similar inference latency, the accuracy of a static
ResNet-101 could be increased by 1.0% by our LAS-ResNet-101 (Snet=4-4-2-1).

Results of the extreme situation of Snet=56-28-14-7. We mentioned in the paper that when we
set Snet=56-28-14-7, the spatially adaptive inference paradigm will reduce into layer skipping. We
experiment on ResNet-50, and find that although being slightly faster (13ms) than our LAS-ResNet-50
(Snet=4-4-2-1, 16ms), the accuracy of LAS-ResNet-50 with Snet=56-28-14-7 could be significantly
degraded from 76.6% (ours, Snet=4-4-2-1) to 76.1%. Therefore, we mainly focus on the discussion
of spatially adaptive inference in this paper.

C.3 More visualization results

In addition to Figure 9 in the paper, here we present more visualization results of the regions selected
by our masker in the 3-rd block of a LAS-ResNet-101 (Snet=4-4-2-1) in Figure 12, which demonstrate
that our spatially adaptive inference paradigm can effectively locate the most task-related areas in
image features, and reduce the unnecessary computation on those background areas.

D Limitations

The current limitations of our work include the following aspects:

1) the latency-ware co-designing framework is only constructed for spatial-wise dynamic networks.
Support for more types of dynamic models (e.g. channel skipping) will be explored in the future;

2) To achieve faster inference, the spatial masks are defined the same for all input/output channels,
which might limit the flexibility of adaptive inference. Future work may explore more flexible forms
of dynamic computation;

3) The combination with other acceleration techniques such as Winograd, and the implementation on
more CNN backbones may be worth studying in the future.

Social impact. Our work can help reduce the inference cost of deep CNNs, but the training of our
models might potentially increase the carbon emissions.

18


