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Abstract

In this paper, we show the arc length of the optimal ROC curve is an f -divergence.
By leveraging this result, we express the arc length using a variational objective and
estimate it accurately using positive and negative samples. We show this estimator
has a non-parametric convergence rate Op(n

−β/4) (β ∈ (0, 1] depends on the
smoothness). Using the same technique, we show the surface area between the
optimal ROC curve and the diagonal can be expressed via a similar variational ob-
jective. These new insights lead to a novel classification procedure that maximizes
an approximate lower bound of the maximal AUC. Experiments on CIFAR-10
datasets show the proposed two-step procedure achieves good AUC performance
in imbalanced binary classification tasks.

1 Introduction

The study of Receiver operating characteristic (ROC) curves has a long history in medicine [26],
psychology [15] and radiology [16, 13]. In machine learning, ROC curves have been primarily used
to analyze the performance of different classification algorithms [8, 9]. Indeed, the Area Under the
Curve (AUC) encodes a classifier’s ranking accuracy, making it a preferable performance metric for
imbalanced class classification [8, 3]. In recent years, ROC curves have also been used in comparing
two distributions and achieved promising results. Examples include analyzing the mode collapsing
issue of Generative Adversarial nets (GAN) [25], and diagnosing the performance of an amortized
Markov Chain Monte Carlo [18].

In applications that require computing statistical discrepancy between distributions (e.g. GAN [14]
or Variational Inference (VI) [1]), f -divergences are widely used discrepancy measures. The family
of f -divergences includes Kullback-Leibler divergence [23] and Total Variation distance. It has
been shown that f -divergences, generally, can be expressed via variational objectives and efficiently
approximated from empirical samples [29, 30].

Since the ROC curves are used as performance metrics in many two sample applications, are they in
any way related to f -divergences? For example, can AUC be an f -divergence between positive and
negative data distributions given some classification score function? An earlier investigation proves
that the answer is no when the score function is the likelihood ratio [31]. Nonetheless, this result
inspired us to look for f -divergence from other geometries of the ROC curve.

In this paper, we show that, when using the likelihood ratio score, a novel f -divergence arises from
the arc length of the corresponding ROC curve. By leveraging this result, we can express the arc
length using a variational objective and approximate it using only samples from two distributions.
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(a) different distributions, long ROC (b) different distributions, long ROC (c) same distribution, short ROC

Figure 1: ROC curves generated for one dimensional datasets using the identity classification score
function t(x) = x. Notice that the arc length of ROC curves seem to be a good indication on how
different the positive (red) and negative (blue) data distributions are.

We show this arc length estimator is also a consistent estimator to the arctangent of likelihood ratio
and has a non-parametric convergence rate Op(n

−β/4), where β ∈ (0, 1] depends on the smoothness
of the true arctangent likelihood ratio. Moreover, by parameterizing the ROC curves of positive and
negative mixtures distributions, the surface area between the optimal ROC curve and the diagonal can
be expressed via a similar variational objective. With the help of our arctangent ratio estimator, we
can approximately maximize a lower bound to this surface area. We point out the similarity between
this lower bound maximization and the classic AUC maximization [3]. We show our approximated
optimal score achieves comparable performance to a state of the art AUC maximizer in an imbalanced
classification problem on CIFAR-10 dataset.

2 Background

2.1 An Illustrative Example

ROC curves are frequently used to visualize binary classification performance, and we often rely on
the Area Under the Curve (AUC) as a numerical metric for selecting a good classifier. In this section,
we highlight an often overlooked ROC geometry: arc length. We illustrate its potential as a good
discrepancy measure between positive and negative data distributions.

Let us consider the one-dimensional distributions and the ROC curves in Figure 1. In this example,
ROC curves are generated using the identity score function t(x) = x.

In both (a) and (b), p+ and p− are quite different, and thus the discrepancies between positive and
negative distributions should be large in both cases. In (c), the densities p+ and p− are the same
and consequently their discrepancy should be smaller than that of both (a) and (b). Further, notice
that both (a) and (b) have long ROC curves (≈ 2) while (c) has a shorter one (≈

√
2). This example

suggests that the more similar p+ and p− are, the shorter the ROC curve is.

However, we can see that t(x) = x is a special choice: If t(x) = 0, the arc length will not reflect any
discrepancy between data distributions at all. This observation inspires the following questions: Why
is the arc length in this example good at telling the differences between two data distributions? Are
there other score functions whose ROC arc lengths are also good discrepancy measures? What are
the practical applications of studying the arc length of ROC? In the following sections, we study the
arc length of a ROC curve under a probabilistic framework and provide answers to these questions.

2.2 ROC Curve in a Probabilistic Setting

Suppose we have positive and negative datasets X+ := {x+
i }

n+

i=1 and X− := {x−
i }

n−
i=1 drawn from

two distributions P+ and P− respectively. These distributions have respective probability density
functions p+(x) and p−(x) that are both defined on the domain X ⊆ Rd. A classification score
function (score function for short) takes a sample x as input and outputs a real-valued score. Suppose
we have a score function t(x) ∈ R. We classify x as positive if t(x) > τ , where τ is a threshold.

LetF+ andF− denote the Cumulative Distribution Functions (CDFs) of t(x+) and t(x−) respectively.
Then we can define the following quantities:
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• False Positive Rate (FPR) at threshold τ , F̃−(τ) := 1− F−(τ)

• True Positive Rate (TPR) at threshold τ , F̃+(τ) := 1− F+(τ)

• The ROC curve of a score function t: the graph of function F̃+[F̃
−1
− (s)], where s ∈ [0, 1].

The above definition of ROC curve requires F− to be strictly increasing. In this paper, we assume
F+, F− to be both strictly increasing. Obviously, both F+ and F− depend on the choice of score
function t.

2.3 Arc Length of ROC Curve

Due to the strict monotonicity of F+ and F−, F̃+ and F̃− form a bijective parameterization of the
ROC curve in the sense that each point on this ROC curve can be written as (F̃−(τ0), F̃+(τ0)) for
a unique τ0 ∈ R. Using the line integral formula, the arc length of an ROC curve for a fixed score
function t can be expressed using the derivatives of F̃− and F̃+:

>
ROC(t) :=

∫ ∞

−∞

√[
∂τ F̃+(τ)

]2
+

[
∂τ F̃−(τ)

]2
dτ =

∫ ∞

−∞

√
f+(τ)2 + f−(τ)2dτ, (1)

where f+(τ) and f−(τ) are the density functions of t(x+) and t(x−) respectively. Although (1)
is an elementary result, it has been seldom discussed in the ROC literature. Authors in [5, 6] have
proposed a performance metric computed over the “ROC hypersurface” and (1) is used to justify
such a metric in a binary classification setting.

Using (1), we can confirm a simple geometric fact whose proof can be found in Appendix A:

Proposition 1.
>
ROC(t) ∈ [

√
2, 2], for all t.

This result reflects the geometric observation that any monotone curve (such as ROC curve) starts
and ends at two opposite corners of the ROC space [0, 1]2 has an arc length between

√
2 and 2.

3 f -divergences Arising from ROC Arc Length

3.1 f -divergence of Score Distributions

Among many discrepancies measures, f -divergence has been widely used in many applications.
Definition 1. Let p and q be densities of two continuous distributions. An f -divergence is defined as:
Dg(p|q) := Eq

[
g
(

p(z)
q(z)

)]
, where g is convex and lower-semicontinuous satisfying g(1) = 0.

Now let us slightly rewrite (1). Assuming f− is strictly positive (in which case F− is strictly
increasing), we can write

>
ROC(t)−

√
2 = Ef−

√[
f+(τ)

f−(τ)

]2
+ 1−

√
2. = Ef−

[
g

(
f+(τ)

f−(τ)

)]
, (2)

where g(s) =
√
s2 + 1−

√
2. Equation (2) yields the first important result of this paper:

>
ROC(t)−

√
2

is an f -divergence between score densities f+ and f− since g(s) is a convex function and g(1) = 0.
This result confirms, for any given t,

>
ROC(t) is a good discrepancy for measuring positive and

negative scores (i.e., score distributions). It also explains why the ROC arc length in Figure 1 is a
good discrepancy measure: Given t(x) = x, the score distributions are same as the data distributions
in each plot. The arc length of ROCs in Figure 1 plots are f -divergences of the score distributions
hence are also f -divergences of data distributions.

Although
>
ROC(t)−

√
2 is an f -divergence of score distributions, it is not an f -divergence of the

positive and negative data distributions for general t. The choice t(x) = x in the toy example does
not have simple analogues for higher dimensional datasets. Are there choices of t such that the arc
lengths of their ROC curves are good discrepancy measures on data distribution? In what follows, we
show when t is a bijective transform of the likelihood ratio p+(x)

p−(x) ,
>
ROC(t) encodes the differences

between p+(x) and p−(x) in the form of an f -divergence between p+(x) and p−(x).
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3.2 f -divergences of Data Distributions

Using the law of the unconscious statistician, we can express
>
ROC(t) in terms of an expectation

with respect to the negative data density p−(x): Ep−

√[
f+(t(x))
f−(t(x))

]2
+ 1. Consider a special family of

score functions: t∗(x) = γ
(

p+(x)
p−(x)

)
where γ is any strictly increasing function. Due to the Neyman-

Pearson lemma [27], ROC(t∗) has the highest TPR at any FPR level. Geometrically speaking, they
dominate all other ROC cuves in an ROC plot and have the maximal AUC. Hence, we refer to t∗ as
the optimal score and ROC(t∗) as the optimal ROC curve. For convenience, we denote the ROC(t∗)
as ROC∗ which reads “rock star”. It can be shown that

f+(t
∗(x0))

f−(t∗(x0))
=

∫
x:γ

(
p+(x)

p−(x)

)
=t∗(x0)

p+(x)dx∫
x:γ

(
p+(x)

p−(x)

)
=t∗(x0)

p−(x)dx
=
p+(x0)

p−(x0)
, ∀γ (3)

where the second equality holds due to
∫
D

a(x)dx∫
D

b(x)dx
= γ−1(C), when γ

(
a(x)
b(x)

)
≡ C, ∀x ∈ D. When

γ(x) = x, (3) expresses a known result [7], and is often given in plain English as “the density ratio
of the likelihood ratio score is the likelihood ratio itself”.

Finally,
>
ROC∗ takes an elegant form free from t∗ or γ: Ep−(x)

√[
p+(x)
p−(x)

]2
+ 1. Equivalently,

>
ROC∗ −

√
2 = Ep−(x)

[
g

(
p+(x)

p−(x)

)]
(4)

We can see that the same f -divergence arises from computing the arc length of ROC∗. However,
unlike the f -divergence given in (2), (4) is an f -divergence between data distributions, not score
distributions. It shows that as long as we use the the optimal scores, the arc length of the optimal
ROC can indeed reflect the differences between data distributions. From now on, we will refer to
>
ROC∗ −

√
2 as the ROC divergence. To the best of our knowledge, (4) has not been presented in

literature before.

By definition, the ROC divergence is symmetric. Moreover, as a result of Proposition 1, the ROC
divergence is upper bounded by 2 −

√
2 and lower bounded by 0. Some geometric properties of

ROC∗ can be found in Section B.

4 Estimating the Arc Length of ROC∗

4.1 A Variational Objective

To numerically approximate the arc length using samples alone, we leverage that
>
ROC∗ −

√
2 is an

f -divergence. Utilizing Fenchel’s duality [20], authors in [29] show that an f -divergence Dg(p+|p−)
has a variational representation:

Dg(p+|p−) =
∫
X
p−(x)g

[
p+(x)

p−(x)

]
dx =

∫
X
p−(x) sup

u

{
u(x) ·

[
p+(x)

p−(x)

]
− g′[u(x)]

}
dx

= sup
u

∫
X
p+(x)u(x)−

∫
X
p−(x)g

′[u(x)]dx,

where g′ is the convex conjugate of g and the supremum is taken over all measurable functions.
In the case of the ROC divergence, g(z) =

√
z2 + 1 −

√
2 and z ∈ [0,∞] thus g has a convex

conjugate g′(z′) = −
√
1− z′2 −

√
2, z′ ∈ [0, 1]. Rewriting

>
ROC∗ −

√
2 using the above variational

representation and dropping the −
√
2, we obtain:

>
ROC∗ = sup

u∈[0,1]

Ep+
[u(x)] + Ep− [

√
1− u2(x)].
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We reparameterize u(x) = sin[v(x)], where v ∈ [0, π/2]:
>
ROC∗ = sup

v∈[0,π/2]

Ep+
sin[v(x)] + Ep− cos[v(x)]. (5)

Differentiating the objective in (5) for v and setting the derivative to zero, we can see the supremum
is attained at v∗ = atan p+

p−
. In other words, the optimal v∗ is the arctangent likelihood ratio function.

Figure 2: ROC∗ and its tangent marked
by vector

(
1, p+(x0)

p−(x0)

)
(scaled to fit).

p+ = N (1, 1), p− = N (−1, 1).

It is also interesting to see how v∗ is visualized in the ROC
plot. We can see the tangent of ROC∗ at an FPR level
s0 ∈ [0, 1] is

∂sF̃+(F̃
−1
− (s0)) =

f+(F̃
−1
− (s0))

f−(F̃
−1
− (s0))

=
p+(x0)

p−(x0)
, (6)

where x0 is any point in X that satisfies the equality
γ
(

p+(x0)
p−(x0)

)
= F̃−1

− (s0). (6) is a known result [9]. In

other words, v∗ = atan p+

p−
is the slope angle of ROC∗.

See Figure 2 for a visualization of the tangent of ROC∗

expressed by the likelihood ratio.

Moreover, using (5), we can obtain a relationship between
>
ROC∗ and the total variation distance between P+ and
P− (denoted as TV(P+,P−)).
Proposition 2. TV(P+,P−) has a lower and upper
bound expressed via

>
ROC∗:

max
a∈[0,1]

2

π

[>
ROC∗ − 2

√
1− a2

a
+ arccos(a)− arcsin(a)

]
≤ TV(P+,P−) ≤

>
ROC∗−1.

Proof of this proposition can be found in Section C. This proposition justifies that
>
ROC∗ is a valid

measure of the discrepancy between P+ and P−. We compare this bound with other known TV
bounds in Section 6.1.

4.2 A Tractable Objective for Estimating atan p+

p−

To use (5) in practice, we need to find an appropriate function class F . We can simply restrict v to a
bounded (parametric/non-parametric) function class F and solve the sample version of (5):

max
v∈[0,π/2],v∈F

1

n+

n+∑
i=1

sin(v(x+
i )) +

1

n−

n−∑
i=1

cos(v(x−
i )). (7)

In practice, enforcing the boundedness v ∈ [0, π/2] over X is difficult. We can relax (7) by only
enforcing the boundedness constraint of v on the sample dataset X+ ∪X−.

For example, by letting F be a Reproducing Kernel Hilbert Space (RKHS) [33], we can translate (7)
into the following optimization problem:

v̂ := argmin
v∈H

ℓ(v) +
λ

2
∥v∥2H, ℓ(v) := − 1

n+

n+∑
i=1

sin⟨v, φ(x+
i )⟩ −

1

n−

n−∑
i=1

cos⟨v, φ(x−
i )⟩

s.t: ⟨v, φ(x)⟩ ∈
[
0,
π

2

]
, ∀x ∈ X+ ∪X−, (8)

where H is a RKHS with a positive definite kernel k(x,x′) = ⟨φ(x), φ(x′)⟩, ∥ · ∥H is the RKHS
norm and λ

2 ∥v∥
2
H is the regularization term. The optimizer ⟨v̂, φ(x)⟩ is an estimation of v∗(x), the

arctangent of the likelihood ratio. (8) is a strictly convex optimization and thus, if a solution v̂ exists,
it must be unique.

Instead of modelling atan p+

p−
, we can opt for modelling the log likelihood ratio log p+

p−
. However,

this modelling choice results in an non-convex optimization thus presents extra challenges in the
theoretical analysis. Details can be found in Section K.
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4.3 Finite Sample Guarantee

We show that the solution of (8), ⟨v̂, φ(x)⟩ converges to the true arctangent likelihood ratio (or its
projection onto H) as the number of samples goes to infinity. Below are a few regularity conditions.
Assumption 1. There exists a unique v∗ ∈ H, such that E[∇vℓ(v

∗)] = 0 and ⟨v∗, φ(x)⟩ ∈ [0, π/2]
holds for all x ∈ X .

A sufficient condition of the above condition is specified in the following proposition.

Proposition 3. If there exists a unique v∗ ∈ H, such that ⟨v∗, φ(x)⟩ = atan
[
p+(x)
p−(x)

]
then Assump-

tion 1 holds.

The proof can be found in Appendix F. Proposition 3 states if model is correctly specified and
identifiable then Assumption 1 holds. It is possible that there exists a v∗ ∈ H satisfying E[∇vℓ(v

∗)] =
0 which does not meet the boundedness constraint [0, π/2]. In this paper we only consider situations
where Assumption 1 holds, which includes all situations where the model is correctly specified and
some situations where the model is misspecified.
Assumption 2. Let nmin = min(n+, n−). There exists a subspace H∗ := {v ∈ H|∥v − v∗∥2H ≤
δ2nmin

}, such that ∀v ∈ H∗,∀x ∈ X+ ∪X−, ⟨v, φ(x)⟩ ∈ (0, π2 ) holds with high probability. The
sequence δnmin

is monotonically decreasing as nmin grows to infinity.

Assumption 2 states all v within a vicinity of v∗ are in the interior of (8)’s feasible region with high
probability. The following proposition gives a sufficient condition under which Assumption 2 holds.
Proposition 4. Suppose ∥φ(x)∥H ≤ 1. If our model is correctly specified as described in Proposition

3 and ∀x ∈ X , atan
[
p+(x)
p−(x)

]
∈ [R1, R2], for some R1 and R2 such that π

2 > R2 > R1 > 0, then
there exists N > 0 such that Assumption 2 holds when nmin > N .

The proof can be found in Appendix D. Since we use RKHS as the estimator function class, our final
assumption is that v∗ should be reasonably smooth. In previous works such an assumption depends
on the decay of the integral operator’s eigenvalues [36, 10]. In this paper, we measure the smoothness
using the range space technique which has been recently adopted in [11, 35]. We define

Σv := E[∇2
vℓ(v)] = Ep+

[sin⟨v, φ(x)⟩ · φ(x, ·)⊗ φ(x, ·)] + Ep− [cos⟨v, φ(x)⟩ · φ(x, ·)⊗ φ(x, ·)],
where ⊗ denotes the outer product. Given v0 ∈ H, Σv0 is an integral operator on u ∈ H and

Σv0u = Ep+
[sin⟨v0, φ(x)⟩ · φ(x, ·) · u(x)] + Ep− [cos⟨v0, φ(x)⟩ · φ(x, ·) · u(x)].

By definition Σv0 is a positive, self-adjoint operator, in the sense that ⟨u,Σv0u⟩ ≥ 0, ⟨u,Σv0v⟩ =
⟨Σv0 , u, v⟩,∀v, u ∈ H. Moreover, some algebra shows that Σv0 is also a bounded and compact
operator. See Section G for more details.

Next, we assume the true arctangent ratio function (or its projection) is in the range space of Σv∗ .

Assumption 3. Let R(Σv∗) denote the range space of Σv∗ . There exists 0 < β ≤ 1, v∗ ∈ R(Σβ
v∗),

where Cβ is the fraction power of a compact, positive and self-adjoint operator C.

Note that the larger β is, the smoother the functions in the range space are. More discussions on the
range space assumption can be found in Section 4.2, [35]. Now we are ready to state our theorem:
Theorem 1 (Convergence Rate of v̂). Suppose Assumptions 1, 2 and 3 hold and v̂ exists. If
∥φ(x)∥H ≤ 1 and

λ =
T

n
1/4
min

,
K

n
β/4
min

≤ δnmin ≤ 4

max (B+, B−)
,

where B+ = ∥ (Σv∗ + λI)
−1 Ep+

[φ(x)]∥H, B− = ∥ (Σv∗ + λI)
−1 Ep− [φ(x)]∥H and T ≥

1,K > 0 are constants that do not depend on nmin, then there exists a constant N > 0 such that
when nmin > N , ∥v̂ − v∗∥H = Op(n

−β/4
min ).

The proof can be found at Appendix E. Theorem 1 shows that, under mild assumptions, v̂ is indeed a
good estimator for atan

[
p+(x)
p−(x)

]
. Some discussions comparing our results with convergence results
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proved by Nguyen et al. [28] can be found in Section M. Since atan
[
p+(x)
p−(x)

]
is an optimal score that

gives rise to ROC∗, our estimator may have some interesting applications such as outlier detection
[19] or Neyman-Pearson classification [37]. We will defer discussions on those applications in future
works. In the next section, we employ our arctangent likelihood ratio estimator in an application of
lower bounding the maximal AUC.

5 Approximately Lower Bounding the Maximal AUC

Finding a score function t that approximately maximizes AUC is an important task in binary classifi-
cation. Let us denote the AUC of ROC(t) as AUC(t). It can be seen that

AUC(t) =

∫
[0,1]

F̃+(F̃
−1
− (s))ds = Ep−Ep+ [1 (t(x+) ≥ t(x−))] .

Due to the Neyman-Pearson lemma, ROC∗ has the maximum AUC among all ROC curves. Denote
the AUC of ROC∗ as AUC∗ Consider the following inequalities:

AUC∗ = sup
t

Ep−Ep+

[
1
(
t(x+) ≥ t(x−)

)]
︸ ︷︷ ︸

(i)

≥ sup
t∈F ′

Ep−Ep+

[
L
(
t(x+), t(x−)

)]︸ ︷︷ ︸
(ii)

, (9)

where L(a, b) is a continuous and concave lower bound of the indicator function 1(a > b). Due to
the Neyman-Pearson lemma, the supremum of (i) is only attained when t(x) = γ

(
p+(x)
p−(x)

)
where γ

is a strictly increasing function. Replacing the expectations in (ii) with sample averages yields the
optimization problem of AUC maximization [3, 12]:

max
t∈F ′

1

n−n+

n−∑
i=1

n+∑
j=1

L(t(x+
j ), t(x

−
i )). (10)

The objective above is also referred to as Wilcoxon-Mann-Whitney statistic [16]. Therefore, we can
see that AUC maximization is a procedure that approximates an optimal score function by maximizing
a lower bound of AUC∗.

Now, we show a different way of lower bounding AUC∗ with the help of atan p+(x)
p−(x) . We have

seen that how (F̃−(τ), F̃+(τ)) parameterizes an ROC curve in Section 2.3. In fact, the area between
ROC∗ and the diagonal line from (0, 0) to (1, 1) can be similarly parameterized by considering ROC
curves of positive and negative mixture score distributions.

Figure 3: Densities f∗+(τ, α) and
f∗−(τ, α) for α ∈ [0, .5].

Let F ∗
+ and F ∗

− denote CDFs of any optimal score. For
α ∈ [0, .5], we can define CDFs of α-mixtures of F ∗

+ and
F ∗
− as follows

F ∗
−(τ, α) :=(1− α)F ∗

−(τ) + αF ∗
+(τ),

F ∗
+(τ, α) :=αF

∗
−(τ) + (1− α)F ∗

+(τ).

Then, FPR (F̃ ∗
−(τ, α)) and TPR (F̃ ∗

+(τ, α)) for these α-
mixtures can be defined accordingly. We visualize densi-
ties of F ∗

+(α) and F ∗
−(α) for different α in Figure 3.

Further, we can see that the 2-dimensional coordinate
r(τ, α) := (F̃ ∗

−(τ, α), F̃
∗
+(τ, α)) parameterizes the area

between ROC∗ and the diagonal line in [0, 1]2:

• When fixing α and varying τ , the coordinates give rise to a smooth curve in ROC space
from [0, 0] to [1, 1].

– When α = 0, such a curve is ROC∗.
– When α = .5, such a curve is the diagonal line.

• When fixing τ = τ0 and varying α, the coordinates produce a straight line segment connect-
ing (F̃ ∗

−(τ0, 0), F̃
∗
+(τ0, 0)) and (F̃ ∗

−(τ0, .5), F̃
∗
+(τ0, .5)).
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Figure 4: Left: (F̃ ∗
−(τ, α), F̃

∗
+(τ, α)) parameterizes the surface between ROC∗ and the diagonal line

in [0, 1]2. This plot is created by setting p+ = N (1, 1), p− = N (−1, 1) and t∗(x) = 1
2 log

p+(x)
p−(x) =

x. Middle: Our parameterization “mesh” divides AUC into surface elements (small patches on the
plot). Right: Wilcoxon-Mann-Whitney statistic divides AUC into histogram bars.

The left plot in Figure 4 visualizes this parameterization. Now the surface area sandwiched between
ROC∗ and the diagonal line can be computed using a surface integration:

AUC∗ − .5 =

∫
dom(τ)

∫
[0,.5]

∥∂τr(τ, α)× ∂αr(τ, α)∥ dαdτ, (11)

where × denotes the cross product. After some algebra and applying the Fenchel duality technique in
Section 4.1, we prove that AUC∗ can be expressed as the supremum of a variational objective similar
to (5):

Proposition 5. AUC∗ =
√
2A
2 + 1

2 ,

A := sup
v∈[0,π/2]

Ep+

[
w

(
atan

p+(x)

p−(x)

)
sin[v(x)]

]
+ Ep−

[
w

(
atan

p+(x)

p−(x)

)
cos[v(x)]

]
, (12)

where w(τ) := sin(τ + π
4 ) · |F

∗
+(τ)− F ∗

−(τ)|. The supremum of (12) is attained at v∗ = atan p+

p−
.

The proof can be found in Appendix H in the supplementary material. A lower bound of A can be
obtained by restricting v to a function class.

Evaluatingw requires us to evaluate atan p+(x)
p−(x) , F ∗

+ and F ∗
− which are not readily available. However,

Section 4.3 shows that the empirical estimator (8) is a consistent estimator of atan p+(x)
p−(x) under mild

conditions. Therefore, we propose the following two-step procedure to approximately lowerbound A:

Algorithm 1 Two-step Procedure for Approximately Lower Bounding A

1. Obtain t̂(x) := ⟨v̂, ϕ(x)⟩ using (8). Approximate F ∗
+ and F ∗

− using F̂+ and F̂− which are
empirical CDFs of t̂(x+) and t̂(x−).

2. Optimize the empirical version of (12) by restricting v to a feasible function class and
plugging in estimates obtained in the earlier step, i.e.,

ˆ̂v := argmax
v∈[0,π/2],v∈F

1

n+

n+∑
i=1

ŵ
[
t̂(x+

i )
]
· sin[v(x+

i )] +
1

n−

n−∑
i=1

ŵ
[
t̂(x−

i )
]
· cos[v(x−

i )],

(13)

where ŵ(τ) := sin(τ + π
4 )

∣∣∣F̂+(τ)− F̂−(τ)
∣∣∣.

Note that (13) is nothing but a weighted sample objective (7). Thus, it can be easily optimized by the
algorithm that solves a weighted version of (7) given the approximated weights in the first step. In
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Figure 6: Testing AUC of one-versus-the-rest classification on CIFAR-10 dataset.

practice, we simply run the solver for (8) twice: The first time we run it without weights then run it
again with weights ŵ

[
t̂(xi)

]
calculated from the first run.

Since the above algorithm also approximates an optimal score (atan p+

p−
) by maximizing an approxi-

mated lower bound of AUC∗, it is natural to wonder how the maximizer ˆ̂v of (13) would perform
in AUC maximization tasks. In the next section, we show that our two-step algorithm achieves a
promising AUC performance compared to a state of the art AUC maximizer.

Computing AUC∗ using (11) is different from using Wilcoxon-Mann-Whitney statistic (i.e., (13)):
Our approach divides the space between ROC∗ and the diagonal into small surface elements and
then adds them up. Wilcoxon-Mann-Whitney statistic adds up all histogram bars, which are TPRs at
different FPR levels. Our approach requires F̃+ and F̃− to be differentiable with respect to τ , which
means the score distributions cannot be discrete. However, Wilcoxon-Mann-Whitney can compute
the AUC of discrete score distributions without a problem. This difference is visualized in the middle
and right plots of Figure 4.

6 Experiments

6.1 Numerical Comparison of Divergences and TV Bounds

Figure 5: Comparison of various diver-
gences and bounds of TV.

In this experiment, we numerically compare the ROC di-
vergence, the upper and lower bound in Proposition 2 with
several other divergences and some known bounds of TV
in Figure 5. In this numerical simulation, p+ = N (0, 1)
and p− = N (δ, 1). We plot ROC divergence, Jensen Shan-
non divergence, Wasserstein distance and TV between p+
and p− as δ grows from 0 to 5. We can see the (rescaled)
ROC divergence closely resembles TV. When δ > 1.45,
the upper bound given in Proposition 2 is the tightest
among known TV upper bounds [2, 4] (Pinsker’s upper-
bound, Bretagnolle & Huber’s upper bound, Le Cam’s
upper bound). This suggests that combining our upper-
bound with existing bounds may produce an even tighter
bound for TV.

6.2 Imbalanced Classification on CIFAR-10

In this section, we test if the ˆ̂v obtained in our two-step
procedure (13) is indeed a good score function in terms of AUC in imbalanced classification tasks.
We use a widely known image classification dataset CIFAR-10 [22]. The performance is compared
with an AUC maximizer which maximizes the empirical lower bound in (10) and a vanilla logistic
regression classifier. We set the surrogate loss L(a, b) := −(1− (a− b))2 in the AUC maximizer, as
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suggested in [12]. All methods use linear models with no regularization terms since our models are
simple and we have sufficient samples. Particularly, the t̂ and ˆ̂v in our two-step algorithm is obtained
using (8) by setting φ(x) = x and λ = 0. The AUC maximization (AUC max) is implemented using
SPAUC method [24].

Instead of using the raw features, we extract 50 dimensional bounded features by training a residual
network [17] on the training dataset using the 10-class cross entropy loss. The structure of the network
is included in the supplementary material. After obtaining features, we construct datasets for 10
different one-versus-the-rest classification tasks. For a single task, we pick a class and obtain X+ by
randomly sampling from this class n+ times in the training set. Similarly,X− is obtained by randomly
sampling from the rest of the classes n− times. In our experiments, we set n+ = 24, 48, 72, 96, 120
and fix n− = 1000 to create imbalanced positive and negative datasets. We run all three methods and
obtain the corresponding score functions. For each class, we repeat the experiment 96 times using
different random samples. We use the testing and training split provided by the dataset itself.

Our experiments can be seen as a transfer learning task which reuses predictive features trained for a
multi-class classifier for one-versus-the-rest binary classification tasks.

The average AUCs computed on the testing dataset and their standard errors over 96 runs over
different n+ sample sizes are shown in Figure 6. Our method has approximately equal performance
with the AUC maximizer despite not directly maximizing the AUC. This observation indicates that
ˆ̂v can be a good score function in AUC maximization tasks. Both of the methods significantly
outperform vanilla logistic regression.

6.3 Discussions on Computational Complexity

Without loss of generality, assume n+ = n− = n. The naive caclulation of objective (10) has
a computational complexity O(n2) since we evaluate the loss function L at each pair of samples.
However, authors in [21] have shown that the objective function in (10) can also be computed with
O(n log(n)) complexity for hinge loss (and decomposable loss functions). A recent work [39]
simplifies the computation of (10) for the squared loss function L with an unbiased estimate. Suppose
t(x) := ⟨v,x⟩, then the negative objective of (10) is an unbiased estimate of

1+Varp+ [⟨v,x⟩] + Varp− [⟨v,x⟩] + 2⟨v,Ep− [x]− Ep+ [x]⟩+ ⟨v,Ep− [x]− Ep+ [x]⟩2. (14)

After we approximating (14) with empirical terms, the computation can be done with a complexity
O(n). When implemented in an online fashion, it has a computational complexity of one datum.

In comparison, the objective (7) and (13) are summation of sin / cos(v(x)) evaluated at each datum,
so computing the objective/gradient has a computational complexity O(n). Computing F̂+ and
F̂− requires sorting our dataset, which has an average complexity O(n log n). However, once our
datasets are sorted, F̂+

(
t̂(x0)

)
= i

n+
, where i is the index of t̂(x0) in the sorted set {t̂(xi)}n+

i=1.

7 Conclusions

In this paper, we show that a novel f -divergence arises from the arc length of the optimal ROC curve.
The arc length can be accurately estimated from positive and negative samples using a variational
expression. It is also an estimator for atan p+/p− and has a convergence rate Op(n

−β/4). Finally,
we show that the area between the optimal ROC curve and the diagonal can be parameterized using a
similar variational objective. It leads to a two-step procedure that approximately lower bounds the
maximal AUC which achieves a promising result in AUC maximization tasks.
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[Yes] In introduction, we discussed the background/usages ROC curves, f -divergence
estimation and provided a full paragraph summary of the contribution of this paper. We
give the same contribution rundown in the abstract as well.

(b) Did you describe the limitations of your work?
[Yes] In Section 5, we included a brief discussion comparing the proposed maximal
AUC lower bounding approach vs. the classic Wilcoxon-Mann-Whitney statistic.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them?
[Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results?
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(b) Did you include complete proofs of all theoretical results?
[Yes] See Appendix
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?
[Yes] Full instructions on how to reproduce our experiments is provided in the supple-
mentary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
[Yes] See Section 6.2

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
[Yes] See Section 6.2

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)?
[N/A] The Computation time is not compared in this paper.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?
[N/A] CIFAR-10 dataset we use in our experiment does not contain any identifiable
human information.
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable?
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